Skip to content
2000
image of An Updated Review on Microsponges: From Research, Advances, andPatent Scenario to Future Perspective

Abstract

Introduction

A microsponge is an emerging technique that has great potential to enhance the water solubility and bioavailability of poorly soluble drugs. Such a technique also has the ability to protect various drugs and their formulations that can undergo degradation in certain physiological and biological conditions. Thus, considering such quality, it can be said that the microsponge technique may be a futuristic tool that can resolve different problems associated with formulation development.

Methods

The present manuscript considers the various aspects of microsponges, like, latest research performed by different researchers, newly developed formulations, various patents related to this technique, different excipients and tools used for formulation development, and their characterization methods. For fulfilling such a purpose, a wide range of literature was taken into consideration, and analyzed to extract useful information incorporated into the manuscript. Thus, on behalf of such significant information, it can be believed that this review will open a new path for new and existing researchers who want to work on such a technique.

Results

With this review, it is confirmed that microsponges are an effective technique that possesses the enormous potential to rectify several issues related to poor bioavailability, targeted drug delivery, dosing frequency, protection of active ingredients, and formulations in certain conditions. The different research performed in the last decade also indicated that the microsponge approach has been widely utilized to solve different concerns. But this field still needs more attention for new discoveries that may be helpful in the generation of new innovative products.

Discussion

Microsponge is an innovative drug delivery method, which was initially created for topical drug administration. Later on, it was applied for oral controlled drug delivery system, transdermal drug delivery system, cosmetic products, and also for tissue engineering. This review gives confirmation that such a delivery system may provide different advantages. However, some challenges are still associated with it. Therefore, in the future, researchers need to focus on some innovative analytical tools that can ensure the quality of microsponges.

Conclusion

Finally, on the basis of different findings, it may be concluded that microsponges are a cutting–edge technology that offers numerous advantages. This review also confirms that microsponges may be a noteworthy tool that can develop a variety of pharmaceutical products in the future, which will be safer, effective, and patient-friendly.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029351767250625113749
2025-07-14
2025-10-16
Loading full text...

Full text loading...

References

  1. Panchagnula R. Transdermal delivery of drugs. Indian J. Pharmacol. 1997 29 3 140 156
    [Google Scholar]
  2. Rao P.R. Diwan P.V. Formulation and in vitro evaluation of polymeric films of diltiazem hydrochloride and indomethacin for transdermal administration. Drug Dev. Ind. Pharm. 1998 24 4 327 336 10.3109/03639049809085627 9876592
    [Google Scholar]
  3. Rao P.R. Diwan P.V. Permeability studies of cellulose acetate free films for transdermal use: Influence of plasticizers. Pharm. Acta Helv. 1997 72 1 47 51 10.1016/S0031‑6865(96)00060‑X 9063088
    [Google Scholar]
  4. Thacharodi D. Rao K.P. Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials 1995 16 2 145 148 10.1016/0142‑9612(95)98278‑M 7734649
    [Google Scholar]
  5. Krishna R. Pandit J.K. Carboxymethylcellulose-sodium based transdermal drug delivery system for propranolol. J. Pharm. Pharmacol. 1996 48 4 367 370 10.1111/j.2042‑7158.1996.tb05934.x 8794984
    [Google Scholar]
  6. Bhat M. Shenoy D.S. Udupa N. Srinivas C.R. Optimization of delivery of betamethasone-dipropionate from skin preparation. Indian Drugs 1995 32 211 214
    [Google Scholar]
  7. Smith S. Morhenn V. Webster G. The characteristics and utility of solid phase porous microspheres: A review. J. Drugs Dermatol. 2006 5 10 969 974 10.36849/JDD.2020.5054 17373146
    [Google Scholar]
  8. Sharma R. Pathak K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm. Dev. Technol. 2011 16 4 367 376 10.3109/10837451003739289 20367024
    [Google Scholar]
  9. Jadhav N. Patel V. Mungekar S. Bhamare G. Karpe M. Kadams V. Microsponge delivery system: An updated review, current status and future prospects. J. Sci. Innov. Res. 2013 2 6 1097 1110
    [Google Scholar]
  10. Embil K. Nacht S. The Microsponge® Delivery System (MDS): A topical delivery system with reduced irritancy incorporating multiple triggering mechanisms for the release of actives. J. Microencapsul. 1996 13 5 575 588 10.3109/02652049609026042 8864994
    [Google Scholar]
  11. Draize J.H. Woodard G. Calvery H.O. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther. 1944 82 3 377 390 10.1016/S0022‑3565(25)08751‑8
    [Google Scholar]
  12. Franz T.J. Percutaneous absorption on the relevance of in vitro data. J. Invest. Dermatol. 1975 64 3 190 195 10.1111/1523‑1747.ep12533356 123263
    [Google Scholar]
  13. Yazici E. Kas H.S. Hincal A.A. Microsponges. FarmasotikBilimlerDerg 1994 19 121 128
    [Google Scholar]
  14. Wester R.C. Patel R. Nacht S. Leyden J. Melendres J. Maibach H. Controlled release of benzoyl peroxide from a porous microsphere polymeric system can reduce topical irritancy. J. Am. Acad. Dermatol. 1991 24 5 720 726 10.1016/0190‑9622(91)70109‑F 1869643
    [Google Scholar]
  15. Nacht S. Kantz M. The Microsponge: A novel topical programmable delivery system. Top Drug Deliv Syst. 1992 42 299 325
    [Google Scholar]
  16. Won R. Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen. US Patent 4690825 1987
  17. Wani S.P. Shinkar D.M. Pingale P.L. Boraste S.S. Amrutkar S.V. Microsponges: An emerging formulation tool for topical drug delivery. Pharmacophore 2022 13 16 20 34 10.51847/EvXRF0BGo6
    [Google Scholar]
  18. Orlu M. Cevher E. Araman A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int. J. Pharm. 2006 318 1-2 103 117 10.1016/j.ijpharm.2006.03.025 16687222
    [Google Scholar]
  19. Martin A. Swarbrick J. Cammarrata A. Physical Pharmacy-Physical Chemical Principles in Pharmaceutical Sciences. 3rd ed Philadelphia Lea and Febiger 1991 527
    [Google Scholar]
  20. D’Emanuele A. Dinarvand R. Preparation, characterisation, and drug release from thermoresponsive microspheres. Int. J. Pharm. 1995 118 2 237 242 10.1016/0378‑5173(94)00384‑H
    [Google Scholar]
  21. D’souza J.I. The microsponge drug delivery system: for delivering an active ingredient by controlled time release. Pharmaoinfo Net 2008 6 3
    [Google Scholar]
  22. Mansurelahi S.K. Microsponges as a novel drug delivery system. Int. J. Pharm. Rev. Res. 2014 4 3 166 174
    [Google Scholar]
  23. Pandey P. Jain V.A. Review: Microsponge drug delivery system. Int. J. Biopharm 2013 4 3 225 230
    [Google Scholar]
  24. Patil S. Dandekar V. Microsponge drug delivery system: An overview. Eur. J. Pharm. Med. Res. 2016 3 8 212 221
    [Google Scholar]
  25. Bamane G.S. Kakade T.B. Microsponges: A novel drug delivery system. World J. Pharm. Pharm. Sci. 2014 3 3 748 762
    [Google Scholar]
  26. Joshi G. Kaur R. Microsponges: A novel drug delivery system. Int. Res. J. Pharm. Biosci 2016 3 1 1 11
    [Google Scholar]
  27. Jain N. Sharma P.K. Recent advances on microsponge delivery system. Int. J. Pharma Sci. 2011 8 2 13 23
    [Google Scholar]
  28. Mantry S. Bagchi A. Microsponge as a novel strategy of drug delivery system. Univ J. Pharm. Sci. Res. 2015 1 1 32 38
    [Google Scholar]
  29. Patil R.S. Kemkar V.U. Microsponge drug delivery system: A novel dosage form. Am. J. PharmTech Res. 2012 2 4 227 251
    [Google Scholar]
  30. Pradhan S.K. Microsponges as the versatile tool for drug delivery system. Int. J. Res. Pharm. Chem. 2011 1 2 243 258
    [Google Scholar]
  31. Yerram C. Shaik F. Microsponges: A novel drug delivery system for controlled delivery of topical drugs. Int. J. Pharm. Res. Anal. 2012 2 2 79 86
    [Google Scholar]
  32. Rajashri B. Ambikar A.V. Bhosale A.V. Formulation and evaluation of Eudragit RL100 polymeric drug loaded microsponge for ophthalmic use. J. Pharm. Res. Int. 2021 33 24 45 51 10.9734/jpri/2021/v33i24B31440
    [Google Scholar]
  33. Kaity S. Maiti S. Ghosh A. Pal D. Ghosh A. Banerjee S. Microsponges: A novel strategy for drug delivery system. J. Adv. Pharm. Technol. Res. 2010 1 3 283 290 10.4103/0110‑5558.72416 22247859
    [Google Scholar]
  34. Tomar N. Pawar N. Bahmani K. Review on microsponge leading microporous particulate technology with controlled release, improve stability to provide optimum skin disorders management environment for therapeutic application. Int. J. Pharm. Sci. Res. 2020 11 11 1000 1016
    [Google Scholar]
  35. Sharma B. Sharma A. Future prospect of nanotechnology in development of anti-ageing formulations. Int. J. Pharma Sci. 2012 4 3 57 66
    [Google Scholar]
  36. Biharee A. Bhartiya S. Yadav A. Thareja S. Jain A.K. Microsponges as drug delivery system: Past, present, and future perspectives. Curr. Pharm. Des. 2023 29 13 1026 1045 10.2174/1381612829666230404082743 37013425
    [Google Scholar]
  37. Dutta D. Goyal N. Kumar Sharma D. Formulation and development of herbal microsponge sunscreen gel. J. Cosmet. Dermatol. 2022 21 4 1675 1687 10.1111/jocd.14274 34087952
    [Google Scholar]
  38. Ladeira B.M.F. Gomes M.C. Custódio C.A. Mano J.F. High-throughput production of microsponges from platelet lysate for tissue engineering applications. Tissue Eng. Part C Methods 2022 28 7 325 334 10.1089/ten.tec.2022.0029 35343236
    [Google Scholar]
  39. Jayasawal P. Rao N.G.R. Jakhmola V. Microsponge as novel drug delivery system: A review. Indo Glob. J. Pharm. Sci. 2022 12 21 29 10.35652/IGJPS.2022.12002
    [Google Scholar]
  40. Wang M. Gu Z. Li B. Zhang J. Yang L. Zheng X. Pan F. He J. Bioactive nanocomposite microsponges for effective reconstruction of critical-sized calvarial defects in rat model. Int. J. Nanomedicine 2022 17 6593 6606 10.2147/IJN.S389194
    [Google Scholar]
  41. Atabay N. Sariişik A.M. Karavana S.Y. Rençber S. A novel plaster containing benzoyl peroxide microsponges: Formulation, development and evaluation. J. Ind. Text. 2022 51 1_suppl 599S 612S.(Suppl.) 10.1177/1528083720980466
    [Google Scholar]
  42. Bhatt P. Patel D. Patel A. Patel A. Nagarsheth A. Oral controlled release systems: Current strategies and challenges. Novel Drug Delivery Technologies: Innovative Strategies for Drug Repositioning. Misra A. Shahiwala A. Singapore Springer Singapore 2019 73 120 10.1007/978‑981‑13‑3642‑3_4
    [Google Scholar]
  43. Hadi M.A. Rao N.G. Rao A.S. Formulation and evaluation of mini-tablets-filled-pulsincap delivery of lornoxicam in the chronotherapeutic treatment of rheumatoid arthritis. Pak. J. Pharm. Sci. 2015 28 1 185 193
    [Google Scholar]
  44. Shankar M. Lalitha S.K. Likhitha D. Dastagiri J. Niranjanbabu M. A current view on microsponge drug delivery system. Eur J. Mol. Biol. Biochem. 2016 3 1 33 38
    [Google Scholar]
  45. Pandit A.P. Patel S.A. Bhanushali V.P. Kulkarni V.S. Kakad V.D. Nebivolol-loaded microsponge gel for healing of diabetic wound. AAPS PharmSciTech 2017 18 3 846 854
    [Google Scholar]
  46. Yadav V. Jadhav P. Dombe S. Bodhe A. Salunkhe P. Formulation and evaluation of microsponge gel for topical delivery of antifungal drug. Int. J. App. Pharm. 2017 9 4 30 37
    [Google Scholar]
  47. Rajitha I. Umasankar K. Jayachandra Reddy P. Development and evaluation of microsponge drug delivery system of Indomethacin. Dev. Int. J. Pharm. 2017 7 3 125 131
    [Google Scholar]
  48. Gupta A. Tiwari G. Tiwari R. Srivastava R. Factorial designed 5-fluorouracil-loaded MDS and calcium pectinate beads plugged in hydroxypropyl methylcellulose capsules for colorectal cancer. Int. J. Pharm. Investig. 2015 5 4 234 246
    [Google Scholar]
  49. Khanka P.S. Hussain K. Formulation and evaluation of antifungal microsponge loaded gel. Int. J. Res. Eng. Sci. Manag. 2019 2 12 2581 5792
    [Google Scholar]
  50. Nokhodchi A. Jelvehgari M. Siahi M.R. Mozafari M.R. Factors affecting the morphology of benzoyl peroxide microsponges. Micron 2007 38 8 834 840 10.1016/j.micron.2007.06.012 17692528
    [Google Scholar]
  51. Gandhi S. Hemalata D. Ghorpade S. Microsponge: A prominent strategy to accelerate performance of topical formulation. Int. J. Pharm. Pharm. Res. 2016 7 3
    [Google Scholar]
  52. Rahman M. Almalki W.H. Panda S.K. Das A.K. Alghamdi S. Soni K. Hafeez A. Handa M. Beg S. Rahman Z. Therapeutic application of microsponges-based drug delivery systems. Curr. Pharm. Des. 2022 28 8 595 608 10.2174/1381612828666220118121536 35040411
    [Google Scholar]
  53. Redhu S. Pawar N. Development and characterization of microsponge gel for topical delivery of oregano oil. Int. J. Pharm. Sci. Res. 2021 12 2 1060 1073
    [Google Scholar]
  54. Kapoor D. Vyas R.B. Lad C. Patel M. Tyagi B.L. A review on microsponge drug delivery. J. Drug Deliv Ther. Syst. 2014 4 5 29 35
    [Google Scholar]
  55. Potulwar A. Wadher S.J. A review on different methods development approaches of micro Sponge’s drug delivery system. Turk J. Comput. Math. Educ. 2021 12 14 4353 4361 10.17762/turcomat.v12i14.11297
    [Google Scholar]
  56. Charde S.M. Ghanawat B.P. Microsponge: A novel new drug delivery system: A review. Int. J. Adv. Pharm. 2013 2 6 64 70
    [Google Scholar]
  57. Aloorkar N.H. Ingale D.J. Microsponge: A novel new drug delivery system: A review. Int. J. Pharm. Sci. Nanotechnol. 2012 5 1 1597 1606
    [Google Scholar]
  58. Mohite P.B. Khanage S.G. Recent advances in microsponges drug delivery system. J. Crit. Rev. 2016 3 1 9 16
    [Google Scholar]
  59. Dasthagiri S. Jagadesh P. Over review of microsponges – Advanced novel technology. World J. Pharm. Pharm. Sci. 2016 5 2 414 426
    [Google Scholar]
  60. Tile M.K. Pawar Y.A. Microsponges: A novel strategy for drug delivery. Int. J. Pure Appl. Biosci 2015 3 1 224 235
    [Google Scholar]
  61. Jagtap S.C. Karale A.A. Microsponge: A novel topical drug delivery system. J. Drug Deliv Res. 2014 3 4 1 9
    [Google Scholar]
  62. Shrivastava S. Kumar D.A. Review: Microsponge-An effective drug delivery system. Asian J. Pharm. Res. Dev. 2017 5 2 1 8
    [Google Scholar]
  63. Valmik K.S. Shalini R. Microsponge: Comprehensive review of application. Int. J. Pharm. Biol. Sci. 2013 3 1 214 226
    [Google Scholar]
  64. Arathy S.A. Sunil S. Microsponges - A new hope for drug delivery system. J. Pharm. Sci. Res. 2020 12 7 970 972
    [Google Scholar]
  65. Kumar R. Bhowmick M. Dubey B. Polymeric microsponge technology: An overview on highly cross-linked porous spherical particles for topical delivery. Inventi J. 2012 2 0976 3791
    [Google Scholar]
  66. Ahire P.V. Darekar A.B. Saudagar R.B. Review on microsponges as a novel drug delivery system. Int. J. Current Pharm. Review Res. 2017 8 3 293 297 10.25258/ijcprr.v8i03.9219
    [Google Scholar]
  67. Rajurkar V.G. Tambe A.B. Deshmukh V.K. Topical anti-inflammatory gels of naproxen entrapped in Eudragit based microsponge delivery system. J. Adv. Chem. Eng. 2015 5 2
    [Google Scholar]
  68. Osmani R.A.M. Moin A. Deb T.K. Bhosale R. Hani U. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy. J. Basic Clin. Pharm. 2016 7 2 39 48 10.4103/0976‑0105.177705 27057125
    [Google Scholar]
  69. Hussain H. Formulation and evaluation of gel-loaded microsponges of diclofenac sodium for topical delivery. Pharma Innov. 2014 3 10 58
    [Google Scholar]
  70. Pal S.L. Jana U. Manna P.K. Mohanta G.P. Manavalan R. Nanoparticle: An overview of preparation and characterization. J. Appl. Pharm. Sci. 2011 1 6 228 234
    [Google Scholar]
  71. Goel S. Sachdeva M. Agarwal V. Nanosuspension technology: Recent patents on drug delivery and their characterizations. Recent Pat. Drug Deliv. Formul. 2019 13 2 91 104 10.2174/1872211313666190614151615 31203813
    [Google Scholar]
  72. Sammour R.M.F. Khan G. Sameer S. Khan S. Zohair T. Saraya S. Abdul Rasool B.K. Development of Clindamycin Loaded Oral Microsponges (Clindasponges) for antimicrobial enhancement: In vitro characterization and simulated in vivo studies. Biol. Pharm. Bull. 2023 46 8 1088 1097 10.1248/bpb.b23‑00099 37245965
    [Google Scholar]
  73. Tang C.Y. Yang Z. Transmission Electron Microscopy (TEM). Membrane Characterization. Elsevier 2017 145 159 10.1016/B978‑0‑444‑63776‑5.00008‑5
    [Google Scholar]
  74. Rakesh P. Charmi P. Quantitative analytical applications of FTIR spectroscopy in pharmaceutical and allied areas. J. Adv. Pharm. Educ. Res. 2014 4 2
    [Google Scholar]
  75. Bottom R. Thermogravimetric Analysis. Principles and Applications of Thermal Analysis. Wiley 2008 87 118 10.1002/9780470697702.ch3
    [Google Scholar]
  76. Brown C.K. Chokshi H.P. Nickerson B. Reed R.A. Rohrs B.R. Shah P.A. Dissolution testing of poorly soluble compounds. Pharm. Technol. 2004 28 56 43
    [Google Scholar]
  77. Lunardi C.N. Gomes A.J. Rocha F.S. De Tommaso J. Patience G.S. Experimental methods in chemical engineering: Zeta potential. Can. J. Chem. Eng. 2021 99 3 627 639 10.1002/cjce.23914
    [Google Scholar]
  78. Rajab N.A. Jawad M.S. Formulation and in vitro evaluation of Piroxicam Microsponge as a tablet. Int. J. Pharm. Pharm. Sci. 2016 8 2
    [Google Scholar]
  79. Kanematsu A. Marui A. Yamamoto S. Ozeki M. Hirano Y. Yamamoto M. Ogawa O. Komeda M. Tabata Y. Type I collagen can function as a reservoir of basic fibroblast growth factor. J. Control. Release 2004 99 2 281 292 10.1016/j.jconrel.2004.07.008 15380637
    [Google Scholar]
  80. Kavya L.S. Shankar M. Likhitha D. Dastagiri J. Current view on microsponge drug delivery system. Eur J. Mol. Biol. Biochem. 2016 3 1 33 38
    [Google Scholar]
  81. Nikam V.K. Dolas R.T. Somwanshi S.B. Gaware V.M. Kotade K.B. Dhamak K.B. Khadse A.N. Kashid V.A. Microparticles: A novel approach to enhance the drug delivery: A review. Int. J. Pharm. Res. Dev. 2011 3 8 170 183
    [Google Scholar]
  82. Jain N. Sharma P.K. Banik A. Recent advances on microsponge delivery. Int. J. Pharm. Sci. Rev. Res. 2011 8 2
    [Google Scholar]
  83. Tiwari A. Tiwari V. Palaria B. Kumar M. Kaushik D. Microsponges: A breakthrough tool in pharmaceutical research. Future J. Pharm. Sci. 2022 8 1 31 10.1186/s43094‑022‑00421‑9
    [Google Scholar]
  84. Garud S.T. Tiwari K. Microsponges: A Novel Approach. Asian J. Pharm. Sci. Technol 2018 8 1 1 9
    [Google Scholar]
  85. Charde M.S. Ghanawat P.B. Welankiwar A.S. Kumar J. Chakole R.D. Microsponge A. Novel new drug delivery system: A review. Int. J. Adv. Pharm. 2013 2 6
    [Google Scholar]
  86. Gunasheela S. Chandrakala V. Srinivasan S. Microsponge: An adaptable topical drug delivery system. World J. Adv. Res. Rev. 2022 15 1 396 411 10.30574/wjarr.2022.15.1.0694
    [Google Scholar]
  87. Ali A.U. Abd-Elkareem M. Kamel A.A. Abou Khalil N.S. Hamad D. Nasr N.E.H. Hassan M.A. El Faham T.H. Impact of porous microsponges in minimizing myotoxic side effects of simvastatin. Sci. Rep. 2023 13 1 5790 10.1038/s41598‑023‑32545‑0 37031209
    [Google Scholar]
  88. Taghi H.S. Abdulbaqi M.R. Samein L.H. Rahmani M.H.P. Formulation and in vitro evaluation of a ramipril entrapped in a microsponge-based drug-delivery system. Int. J. Pharm. Compd. 2023 27 4 340 346 37595176
    [Google Scholar]
  89. Özdemir S. Üner B. Baranauskaite J. Sümer E. Yıldırım E. Yaba A. Design and characterization of dexamethasone loaded microsponges for the management of ulcerative colitis. Eur. J. Pharm. Biopharm. 2023 187 34 45 10.1016/j.ejpb.2023.04.007 37061099
    [Google Scholar]
  90. Patole V.C. Awari D. Chaudhari S. Resveratrol-loaded microsponge gel for wound healing: In vitro and in vivo characterization. Turk J. Pharm. Sci. 2023 20 1 23 34 10.4274/tjps.galenos.2022.93275 36864580
    [Google Scholar]
  91. Raut S.S. Singh N.R. Rane B.R. Jain A.S. WITHDRAWN: Formulation of benzoyl peroxide microsponge-based transdermal gel for acne infection and its evaluation. Pharm. Nanotechnol. 2024 10.2174/2211738511666230908162410 37694777
    [Google Scholar]
  92. Ma L. Guo S. Piao J. Piao M. Preparation and evaluation of a microsponge dermal Stratum Corneum retention drug delivery system for griseofulvin. AAPS PharmSciTech 2022 23 6 199 10.1208/s12249‑022‑02362‑1 35854184
    [Google Scholar]
  93. Khattab A. Nattouf A. Microsponge based gel as a simple and valuable strategy for formulating and releasing Tazarotene in a controlled manner. Sci. Rep. 2022 12 1 11414 10.1038/s41598‑022‑15655‑z 35794139
    [Google Scholar]
  94. Patel P. Thanki A. Viradia D. Shah P. Honey-based Silver Sulfadiazine Microsponge-Loaded hydrogel: In vitro and in vivo evaluation for burn wound healing. Curr. Drug Deliv. 2023 20 5 608 628 10.2174/1567201819666220516092359 35578874
    [Google Scholar]
  95. Yehia R.M. Teaima M.H. Ragaie M.H. Elmazar M.M. Attia D.A. El-Nabarawi M.A. Resolving acne with optimized adapalene microspongeal gel, in vivo and clinical evaluations. Sci. Rep. 2024 14 1 1359 10.1038/s41598‑024‑51392‑1 38228631
    [Google Scholar]
  96. Bharathy P. Thanikachalam P.V. Parthasarathy N.P. Formulation and characterization of Luliconazole Microsponge Gel for diaper dermatitis. J. Pharm. Innov. 2023 18 2362 2372 10.1007/s12247‑023‑09797‑4
    [Google Scholar]
  97. Cai B. Feng J. Wan J. Preparation method of adapalene gel with high drug loading rate. CN Patent 117018225A 2023 2023
  98. Khademhosseini A. Annabi N. Kheirkhahh A. Dana R. Bioadhesive for corneal repair. AU Patent 2023219872A1 2023
  99. Pund A.K. Luliconazole loaded microsponges gel composition. IN Patent 202321056510 2023
  100. Jagtap K.S. Microsponges drug delivery system of polyherbal drug for hepatoprotective disorder. IN Patent 202221023987 2022
  101. Deshmukh R. Mesalamine loaded microsponges formulation. IN Patent 02211031794 2022
  102. Paliwal S.K. Preparation of ranitidine hydrochloride floating microsponges using quasi-emulsion solvent diffusion technique. IN Patent 202311048735 2023
  103. Sharma S. Design of Bexarotene Microsponge topical gel. IN Patent 202311052476 2023
  104. Paliwal S.K. Development and evaluation of a controlled release formulation of ranitidine hydrochloride as floating microsponges for targeted stomach disorder treatments. IN Patent 202311048737 2023
  105. Rathi R.A. Topical gel formulation comprising microsponges of basil oil and process of preparation thereof. IN Patent 202211024801 2022
  106. Dhyani A. A microsponge laden gel and a novel formulation thereof. IN Patent 202211032035 2022
  107. Tiwari A. Development and evaluation of raloxifene hydrochloride microsponge formulation for topical delivery. IN Patent 202211005950 2022
  108. Imam S.S. Agarwal S. A pragmatic approach to treat lung cancer through loading theaflavin-3,3′-digallate and epigallocatechingallate in spanlastic. Asian J. Pharm. Clin. Res. 2021 14 11 1 8 10.22159/ajpcr.2021.v14i11.42757
    [Google Scholar]
  109. Imam S.S. The future of non-invasive ways to treat cancer. Int. J. Pharm. Sci. Res. 2021 12 8 4684 4696
    [Google Scholar]
  110. Imam S.S. Imam S.T. Mdwasifathar; Kumar, R.; Ammar, M.Y. Interaction Between ACE2 and SARS-CoV2, and Use of EGCG and Theaflavin to Treat COVID-19 in initial phases. Int. J. Curr. Pharm. Res. 2022 14 2 5 10 10.22159/ijcpr.2022v14i2.1945
    [Google Scholar]
  111. Imam S.S. Sharma R. Natural compounds promising way to treat lung cancer. Int. J. Pharm. Res. Appl. 2023 8 2 552 558
    [Google Scholar]
  112. Sharma S. Kumari D. Khan S. Pathak P. Katiyar D. Imam S.S. An expedient approach to treat asthma through non-steroidal, natural transferosomes aerosol system. Innovare J. Med. Sci. 2022 10 7 11 10.22159/ijms.2022.v10i6.46451
    [Google Scholar]
  113. Imam S.S. Imam S.T. Smriti A. Kumar R. Lung cancer therapy using naturally occurring products and nanotechnology. Lung Cancer 2022 10 4
    [Google Scholar]
  114. Tuba Imam S. Saif Imam S. The cream which relieves the pain of menstrual cramps without interfering with the Hormones or period cycle. Research. J. Pharmacy Technol. 2023 16 3 1239 1246 10.52711/0974‑360X.2023.00205
    [Google Scholar]
  115. Imam S.S. Topical formulation constituted with transferosomes for the treatment of non-melanoma skin cancer. Asian J. Pharm. Clin. Res. 2023 16 27 32 10.22159/ajpcr.2023.v16i5.47033
    [Google Scholar]
  116. Imam S.S. Nanoparticles: The future of drug delivery. Int. J. Curr. Pharm. Res. 2023 15 6 8 15 10.22159/ijcpr.2023v15i6.3076
    [Google Scholar]
  117. Arena P. Bucolo M. Buscarino A. Fortuna L. Frasca M. Reviewing bioinspired technologies for future trends: A complex systems point of view. Front. Phys. (Lausanne) 2021 9 750090 10.3389/fphy.2021.750090
    [Google Scholar]
/content/journals/mns/10.2174/0118764029351767250625113749
Loading
/content/journals/mns/10.2174/0118764029351767250625113749
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: bioavailability ; targeted delivery ; drug delivery ; controlled release ; Microsponges ; patents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test