Skip to content
2000
Volume 17, Issue 3
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Introduction

The slot type of photonic waveguide is commonly used in designing sensors based on the evanescent field because of its high evanescent field characteristics.

Methods

In this study, we introduced multiple uniform strips to improve the performance of the waveguide, aiming for a higher evanescent field ratio and reduced propagation loss to optimize the effectiveness of the sensor. The inclusion of uniform strips enhances the overall capabilities of the waveguide for evanescent field-based sensing applications.

Results

The investigation showed that the one-strip and three-strip design structures achieved maximum evanescent field values of 0.43 and 0.38, respectively, indicating significant levels. However, the three-strip design structure exhibited the minimum propagation loss, recorded at 9.1 dB/cm. Considering the variations in Evanescent Field Ratio (EFR) and propagation loss, the slot waveguide with three strips emerges as a potentially optimal design structure.

Conclusion

This conclusion is particularly relevant in the context of brain cancer applications, where heightened sensitivity is crucial. Therefore, the three-strip configuration shows promise for superior performance in detecting and addressing the complexities of brain cancer.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029351169250211043329
2025-02-27
2025-09-26
Loading full text...

Full text loading...

References

  1. XingC. ZhouB. YanD. FangW.H. Integrating full‐color 2D optical waveguide and heterojunction engineering in halide microsheets for multichannel photonic logical gates.Adv. Sci.20241117231026210.1002/advs.202310262 38425136
    [Google Scholar]
  2. DaiM. QiZ. YanD. In situ generation of microwire heterojunctions with flexible optical waveguide and hydration-mediated photochromism.Int. Ed2024e20242013910.1002/anie.202420139
    [Google Scholar]
  3. ZhouB. QiZ. DaiM. XingC. YanD. Ultralow-loss optical waveguides through balancing deep-blue TADF and orange room temperature phosphorescence in hybrid antimony halide microstructures.Angew. Chem. Int. Ed. Engl.20236239e20230991310.1002/anie.202309913
    [Google Scholar]
  4. LiS. LuB. FangX. YanD. Manipulating light-induced dynamic macro-movement and static photonic properties within 1D isostructural hydrogen-bonded molecular Cocrystals.Angew. Chem. Int. Ed. Engl.202059502262322630
    [Google Scholar]
  5. BogaertsW. BaetsR. DumonP. WiauxV. BeckxS. TaillaertD. LuyssaertB. CampenhoutJ.V. BienstmanP. ThourhoutD.V. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology.J. Lightwave Technol.200523140141210.1109/JLT.2004.834471
    [Google Scholar]
  6. ButtM.A. DegtyarevS.A. KhoninaS.N. KazanskiyN.L. An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength.J. Mod. Opt.201764181892189710.1080/09500340.2017.1325947
    [Google Scholar]
  7. RanacherC. ConsaniC. VollertN. TortschanoffA. BergmeisterM. GrilleT. JakobyB. Characterization of evanescent field gas sensor structures based on silicon photonics.IEEE Photonics J.201810511410.1109/JPHOT.2018.2866628
    [Google Scholar]
  8. RanacherC. ConsaniC. TortschanoffA. JannesariR. BergmeisterM. GrilleT. JakobyB. Mid-infrared absorption gas sensing using a silicon strip waveguide.Sens. Actuators A Phys.201827711712310.1016/j.sna.2018.05.013
    [Google Scholar]
  9. RanacheraC. Photonic gas sensor using a silicon strip waveguide.Proceedings201714547
    [Google Scholar]
  10. KorsakovaS.V. RomanovaE.A. VelmuzhovA.P. KoterevaT.V. SukhanovM.V. ShiryaevV.S. Analysis of characteristics of the sensing elements for the fiber-based evanescent wave spectroscopy in the Mid-IR.Opt. Spectrosc.2018125341642410.1134/S0030400X18090163
    [Google Scholar]
  11. ButtM.A. KhoninaS.N. KazanskiyN.L. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor.J. Mod. Opt.201865217417810.1080/09500340.2017.1382596
    [Google Scholar]
  12. HuangY. KalyoncuS.K. ZhaoQ. TorunR. BoyrazO. Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors.Opt. Commun.201431318619410.1016/j.optcom.2013.10.022
    [Google Scholar]
  13. DingR. Baehr-JonesT. KimW.J. XiongX. BojkoR. FedeliJ.M. FournierM. HochbergM. Low-loss strip-loaded slot waveguides in Silicon-on-Insulator.Opt. Express20101824250612506710.1364/OE.18.025061 21164851
    [Google Scholar]
  14. AlmeidaV.R. XuQ. BarriosC.A. LipsonM. Guiding and confining light in void nanostructure.Opt. Lett.200429111209121110.1364/OL.29.001209 15209249
    [Google Scholar]
  15. DebnathK. KhokharA.Z. BodenS.A. ArimotoH. OoS.Z. ChongH.M.H. ReedG.T. SaitoS. Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching.Front. Mater.201631510.3389/fmats.2016.00051
    [Google Scholar]
  16. RifatA.A. AhmmedR. BhowmikB.B. SOI Waveguide-Based Biochemical Sensors.ChamSpringer201910.1007/978‑3‑319‑76556‑3_16
    [Google Scholar]
  17. SorefR.A. EmelettS.J. BuchwaldW.R. Silicon waveguided components for the long-wave infrared region.J. Opt. A, Pure Appl. Opt.200681084084810.1088/1464‑4258/8/10/004
    [Google Scholar]
  18. TienE.K. HuangY. GaoS. SongQ. QianF. KalyoncuS.K. BoyrazO. Discrete parametric band conversion in silicon for mid-infrared applications.Opt. Express20101821219812198910.1364/OE.18.021981 20941099
    [Google Scholar]
  19. Baehr-JonesT. SpottA. IlicR. SpottA. PenkovB. AsherW. HochbergM. Silicon-on-sapphire integrated waveguides for the mid-infrared.Opt. Express20101812121271213510.1364/OE.18.012127 20588335
    [Google Scholar]
  20. LiF. JacksonS.D. GrilletC. MagiE. HudsonD. MaddenS.J. MogheY. O’BrienC. ReadA. DuvallS.G. AtanackovicP. EggletonB.J. MossD.J. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared.Opt. Express20111916152121522010.1364/OE.19.015212 21934884
    [Google Scholar]
  21. WangZ. LiuH. HuangN. SunQ. WenJ. LiX. Influence of three-photon absorption on Mid-infrared cross-phase modulation in silicon-on-sapphire waveguides.Opt. Express20132121840184810.1364/OE.21.001840 23389168
    [Google Scholar]
  22. SchmittK. OehseK. SulzG. HoffmannC. Evanescent field sensors based on tantalum pentoxide waveguides—A review.Sensors20088271173810.3390/s8020711 27879731
    [Google Scholar]
  23. ParriauxO. VeldhuisG.J. Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors.J. Lightwave Technol.199816457358210.1109/50.664066
    [Google Scholar]
  24. AliL. MohammedM.U. KhanM. YousufA.H.B. ChowdhuryM.H. High-quality optical ring resonator-based biosensor for cancer detection.IEEE Sens. J.20202041867187510.1109/JSEN.2019.2950664
    [Google Scholar]
  25. DuW. ChenZ. ZhaoF. Analysis of single‐mode optical rib waveguide in silicon carbide.Microw. Opt. Technol. Lett.201355112636264010.1002/mop.27895
    [Google Scholar]
  26. LindecrantzS.M. HellesoO.G. Estimation of propagation losses for narrow strip and rib waveguides.IEEE Photonics Technol. Lett.201426181836183910.1109/LPT.2014.2337055
    [Google Scholar]
  27. ChandraV. RanjanR. Performance analysis of different slot waveguide structures for evanescent field based gas sensor applications.Opt. Quantum Electron.202153845710.1007/s11082‑021‑03102‑8
    [Google Scholar]
  28. PuumalaL.S. GristS.M. WickremasingheK. Al-QadasiM.A. ChowdhuryS.J. LiuY. MitchellM. ChrostowskiL. ShekharS. CheungK.C. An optimization framework for silicon photonic evanescent-field biosensors using sub-wavelength gratings.Biosensors2022121084010.3390/bios12100840 36290977
    [Google Scholar]
  29. ButtM.A. PiramidowiczR. Standard slot waveguide and double hybrid plasmonic waveguide configurations for enhanced evanescent field absorption methane gas sensing.Photonics Lett. Pol.2022141101210.4302/plp.v14i1.1121
    [Google Scholar]
/content/journals/mns/10.2174/0118764029351169250211043329
Loading
/content/journals/mns/10.2174/0118764029351169250211043329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test