Skip to content
2000
Volume 17, Issue 3
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Background

The current study set out to formulate, Design, and assess Solid Lipid Nanoparticles (SLNs) loaded with Gentamicin sulfate.

Methods

Glyceryl monostearate (GMS) was used as the lipid matrix in the formulation of solid lipid nanoparticles (SLNs) loaded Gentamicin sulfate through solvent evaporation and ultrasonication. To maximize the SLNs, a 32-level full factorial design was applied. The two independent variables selected were lipid concentration and sonication time. The dependent variables were PDI and particle size. The two dependent variables were particle size and % entrapment efficiency. The optimized formulation was subjected to various evaluation parameters like particle size, % entrapment efficiency, PDI, zeta potential, TEM analysis, pH, drug content, drug release, release kinetics, drug permeation, sterility test, isotonicity test, ocular irritation study and corneal histopathology studies.

Results

The optimized formulation showed a particle size of 178.2 nm, entrapment efficiency of 93.095%, and PDI of 0.246, where all these results were within ± 5% limits of predicted results suggested by software and statistically significant at 95% of the confidence interval. The optimized formulation showed sustained drug release with a maximum of 82.11 ± 0.34 till 8 hrs following the Higuchi drug release kinetics mechanism. The sterility test and isotonicity test confirmed that the formulation was sterile and isotonic with human blood. HET-CAM test proved that the optimized formulation exhibited neither irritability nor toxicity for ocular administration. A histopathology study confirmed that the formulation didn’t affect the structure of the cornea and hence the formulation was found to be safe for ocular administration.

Conclusion

Based on the obtained results, the study concluded that Gentamicin sulfate-loaded SLNs could be a promising novel formulation approach to address the limitations of commercial eye drops for treating ophthalmic bacterial conjunctivitis.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029352818250227012739
2025-03-24
2025-10-30
Loading full text...

Full text loading...

References

  1. OnugwuA.L. NwagwuC.S. OnugwuO.S. EchezonaA.C. AgboC.P. IhimS.A. EmehP. NnamaniP.O. AttamaA.A. KhutoryanskiyV.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases.J. Control. Release202335446548810.1016/j.jconrel.2023.01.018 36642250
    [Google Scholar]
  2. SubriziA. del AmoE.M. Korzhikov-VlakhV. TennikovaT. RuponenM. UrttiA. Design principles of ocular drug delivery systems: Importance of drug payload, release rate, and material properties.Drug Discov. Today20192481446145710.1016/j.drudis.2019.02.001 30738982
    [Google Scholar]
  3. KhamesA. KhaleelM.A. El-BadawyM.F. El-NezhawyA.O. Natamycin solid lipid nanoparticles: A sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: Preparation and optimization. Int J. Nanomed,2019142515253110.2147/IJN.S190502
    [Google Scholar]
  4. DuongV.A. NguyenT.T.L. MaengH.J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method.Molecules20202520478110.3390/molecules25204781 33081021
    [Google Scholar]
  5. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.235156 30065762
    [Google Scholar]
  6. SeyfoddinA. ShawJ. Al-KassasR. Solid lipid nanoparticles for ocular drug delivery.Drug Deliv.201017746748910.3109/10717544.2010.483257 20491540
    [Google Scholar]
  7. DubaldM. BourgeoisS. AndrieuV. FessiH. Ophthalmic drug delivery systems for antibiotherapy: A review.Pharmaceutics2018101103110.3390/pharmaceutics10010010 29342879
    [Google Scholar]
  8. SnyderR.W. GlasserD.B. Antibiotic therapy for ocular infection.West. J. Med.19941616579584 7856158
    [Google Scholar]
  9. HancockH.A. GuidryC. ReadR.W. ReadyE.L. KraftT.W. Acute aminoglycoside retinal toxicity in vivo and in vitro.Invest. Ophthalmol. Vis. Sci.200546124804480810.1167/iovs.05‑0604 16303982
    [Google Scholar]
  10. HosnyK.M. NaveenN.R. KurakulaM. SindiA.M. SabeiF.Y. FateaseA.A. JaliA.M. AlharbiW.S. MushtaqR.Y. FelembanM. TayebH.H. AlfayezE. RizgW.Y. Design and development of neomycin sulfate gel loaded with solid lipid nanoparticles for buccal mucosal wound healing.Gels20228638510.3390/gels8060385 35735729
    [Google Scholar]
  11. MulaniH. BhiseK.S. QbD approach in the formulation and evaluation of miconazole nitrate loaded ethosomal cream-o-gel.Int. Res. J. Pharm Sci.201781137
    [Google Scholar]
  12. LiuD. JiangS. ShenH. QinS. LiuJ. ZhangQ. LiR. XuQ. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method.J. Nanopart. Res.20111362375238610.1007/s11051‑010‑9998‑y
    [Google Scholar]
  13. RaibekasA.A. Estimation of protein aggregation propensity with a melting point apparatus.Anal. Biochem.2008380233133210.1016/j.ab.2008.05.023 18544334
    [Google Scholar]
  14. aIndian Pharmacopoeia. The Indian Pharmacopeia Commission Ghaziabad.20072726727
    [Google Scholar]
  15. b WeissmanS.A. AndersonN.G. Design of experiments (DoE) and process optimization: A review of recent citations.Org. Process Res. Dev.201519111605163310.1021/op500169m
    [Google Scholar]
  16. SaeidpourS. LohanS.B. SolikA. PaulV. BodmeierR. ZoubariG. UnbehauenM. HaagR. BittlR. MeinkeM.C. TeutloffC. Drug distribution in nanostructured lipid particles.Eur. J. Pharm. Biopharm.201711010192310.1016/j.ejpb.2016.10.008 27789357
    [Google Scholar]
  17. KraisitP. HirunN. MahadlekJ. LimmatvapiratS. Fluconazole-loaded solid lipid nanoparticles (SLNs) as a potential carrier for buccal drug delivery of oral candidiasis treatment using the Box-Behnken design.J. Drug Deliv. Sci. Technol.20216310243710.1016/j.jddst.2021.102437
    [Google Scholar]
  18. ÖztürkA.A. YenilmezE. ŞenelB. KıyanH.T. GüvenU.M. Effect of different molecular weight PLGA on flurbiprofen nanoparticles: formulation, characterization, cytotoxicity, and in vivo anti-inflammatory effect by using HET-CAM assay.Drug Dev. Ind. Pharm.202046468269510.1080/03639045.2020.1755304 32281428
    [Google Scholar]
  19. MahmoudR.A. HusseinA.K. NasefG.A. MansourH.F. Oxiconazole nitrate solid lipid nanoparticles: Formulation, in-vitro characterization and clinical assessment of an analogous loaded carbopol gel.Drug Dev. Ind. Pharm.202046570671610.1080/03639045.2020.1752707 32266837
    [Google Scholar]
  20. MahajanA. KaurS. KaurS. Design, formulation, and characterization of stearic acid-based solid lipid nanoparticles of candesartan cilexetil to augment its oral bioavailability.Asian J. Pharm. Clin. Res.201811434435010.22159/ajpcr.2018.v11i4.23849
    [Google Scholar]
  21. QushawyM. NasrA. Solid lipid nanoparticles (SLNs) as nano drug delivery carriers: Preparation, characterization and application.Int. J. App Pharm.20201419
    [Google Scholar]
  22. IriventiP. GuptaN.V. OsmaniR.A.M. BalamuralidharaV. Design and development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis.Daru202028248950610.1007/s40199‑020‑00352‑x 32472531
    [Google Scholar]
  23. JainS.K. ChourasiaM.K. MasurihaR. SoniV. JainA. JainN.K. GuptaY. Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery.Drug Deliv.200512420721510.1080/10717540590952591 16036715
    [Google Scholar]
  24. GokhaleJ.P. MahajanH.S. SuranaS.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies.Biomed. Pharmacother.201911210862210.1016/j.biopha.2019.108622 30797146
    [Google Scholar]
  25. HeS. JacobsenJ. NielsenC.U. GeninaN. ØstergaardJ. MuH. Exploration of in vitro drug release testing methods for saquinavir microenvironmental pH modifying buccal films.Eur. J. Pharm. Sci.2021163310586710.1016/j.ejps.2021.105867 33951482
    [Google Scholar]
  26. DashS. MurthyP.N. NathL. ChowdhuryP. Kinetic modeling on drug release from controlled drug delivery systems.Acta Pol. Pharm.2010673217223 20524422
    [Google Scholar]
  27. LokhandwalaH. DeshpandeA. DeshpandeS.H. Kinetic modeling and dissolution profiles comparison: An overview.Int. J. Pharm. Bio. Sci.201341728733
    [Google Scholar]
  28. SahA.K. SureshP.K. VermaV.K. PLGA nanoparticles for ocular delivery of loteprednol etabonate: A corneal penetration study.Artif. Cells Nanomed. Biotechnol.20174561156116410.1080/21691401.2016.1203794 27389068
    [Google Scholar]
  29. Indian Pharmacopoeia.6th edNew Delhi, IndiaMinistry of Health and Family Welfare20075660
    [Google Scholar]
  30. GaneshN.S. AshirT.P. VineethC. Review on approaches and evaluation of in situ ocular drug delivery system.Int. Res. J. Pharm. Biosci.2017432333
    [Google Scholar]
  31. WilsonS.L. AhearneM. HopkinsonA. An overview of current techniques for ocular toxicity testing.Toxicology2015327324610.1016/j.tox.2014.11.003 25445805
    [Google Scholar]
  32. KhanN. AqilM. ImamS.S. AliA. Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: In vitro and ex vivo characterization.Pharm. Dev. Technol.201520666266910.3109/10837450.2014.910807 24754411
    [Google Scholar]
  33. NarenjiM. TalaeeM.R. MoghimiH.R. Effect of charge on separation of liposomes upon stagnation.Iran. J. Pharm. Res.2017162423431 28979297
    [Google Scholar]
  34. CostaP. SousaLobo J.M. Modeling and comparison of dissolution profiles.Eur. J. Pharm. Sci.200113212313310.1016/S0928‑0987(01)00095‑1 11297896
    [Google Scholar]
  35. VinardellM.P. MitjansM. Alternative methods for eye and skin irritation tests: An overview.J. Pharm. Sci.2008971465910.1002/jps.21088 17701961
    [Google Scholar]
  36. UpadhayS.U. ChavanS.K. GajjarD.U. UpadhyaU.M. PatelJ.K. Nanoparticles laden in situ gel for sustained drug release after topical ocular administration.J. Drug Deliv. Sci. Technol.20205710171036
    [Google Scholar]
  37. KeerthanaK. SandeepD.S. Design, optimization, in vitro and in vivo evaluation of flurbiprofen loaded solid lipid nanoparticles (SLNs) topical gel. Indian J. Pharm. Educ. Res.,2022564
    [Google Scholar]
/content/journals/mns/10.2174/0118764029352818250227012739
Loading
/content/journals/mns/10.2174/0118764029352818250227012739
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): DoE; gentamicin sulfate; HET-CAM test; particle size; SLNs; zeta potential
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test