Skip to content
2000
Volume 17, Issue 3
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Introduction

In this study, silver nanoparticles (AgNPs) were synthesized using () plant extract without using any reducing or stabilizing agent.

Methods

The morphologies, optical properties, and crystallinities of the prepared AgNPs were determined using scanning electron microscopy, UV-visible spectroscopy, and X-ray diffraction.

Results

The antibacterial activities of the synthesized AgNPs against some gram-negative and gram-positive bacterial species were investigated. The lowest effect was observed against the Gram-positive ATCC 11778 with a concentration of 0.0375 µg/mL. Additionally, the toxic effect on the human normal cell line HEK-293T and the antiproliferative activity against the prostate (PC3) cancer cell line were examined. The IC values of AgNPs against PC3 and HEK-293T cells were found to be 4.72 µL/mL and 6.838 µL/mL, respectively.

Conclusion

In conclusion, due to their antiproliferative and antibacterial activities, AgNPs synthesized using LA Sevtopolis extract were found to have potential applications in various biomedical fields.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029351072250106052955
2025-01-24
2025-09-26
Loading full text...

Full text loading...

References

  1. NelA. XiaT. MädlerL. LiN. Toxic potential of materials at the nanolevel.Science2006311576162262710.1126/science.1114397 16456071
    [Google Scholar]
  2. ZahinN. AnwarR. TewariD. KabirM.T. SajidA. MathewB. UddinM.S. AleyaL. Abdel-DaimM.M. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery.Environ. Sci. Pollut. Res. Int.20202716191511916810.1007/s11356‑019‑05211‑0 31079299
    [Google Scholar]
  3. HasanA. MorshedM. MemicA. HassanS. WebsterT. MareiH. Nanoparticles in tissue engineering: Applications, challenges and prospects.Int. J. Nanomedicine2018135637565510.2147/IJN.S153758 30288038
    [Google Scholar]
  4. HaiderA. KangI.K. Preparation of silver nanoparticles and their industrial and biomedical applications: A comprehensive review.Adv. Mater. Sci. Eng.2015201511610.1155/2015/165257
    [Google Scholar]
  5. BorahD. DasN. DasN. BhattacharjeeA. SarmahP. GhoshK. ChandelM. RoutJ. PandeyP. GhoshN.N. BhattacharjeeC.R. Alga-mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity.Appl. Organomet. Chem.2020345e559710.1002/aoc.5597
    [Google Scholar]
  6. GhoshT. ChattopadhyayA. MandalA.C. PramanikS. KuiriP.K. Optical, structural, and antibacterial properties of biosynthesized Ag nanoparticles at room temperature using Azadirachta indica leaf extract.Zhongguo Wuli Xuekan20206883584810.1016/j.cjph.2020.10.025
    [Google Scholar]
  7. AnjanaV.N. KoshyE.P. MathewB. Facile synthesis of silver nanoparticles using Azolla caroliniana, their cytotoxicity, catalytic, optical and antibacterial activity.Mater. Today Proc.20202516316810.1016/j.matpr.2019.12.250
    [Google Scholar]
  8. MahmoudiR. AghaeiS. SalehpourZ. MousavizadehA. KhoramroozS.S. Taheripour SisakhtM. ChristiansenG. BaneshiM. KarimiB. BardaniaH. Antibacterial and antioxidant properties of phyto-synthesized silver nanoparticles using Lavandula stoechas extract.Appl. Organomet. Chem.2020342e539410.1002/aoc.5394
    [Google Scholar]
  9. ÖdemişÖ. ÖzdemirS. GoncaS. AğırtaşM.S. Characterization of silver nanoparticles fabricated by green synthesis using Urtica dioica and Lavandula angustifolia and investigation of antimicrobial and antioxidant. Inorg.Nano-Metal Chem.202254542944210.1080/24701556.2022.2068584
    [Google Scholar]
  10. SimsekA. PehlivanogluS. Aydin AcarC. Anti-proliferative and apoptotic effects of green synthesized silver nanoparticles using Lavandula angustifolia on human glioblastoma cells. 3 Biotech,20211137410.1007/s13205‑021‑02923‑4
  11. HuangH. YangX. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method.Carbohydr. Res.2004339152627263110.1016/j.carres.2004.08.005 15476726
    [Google Scholar]
  12. SharmaV.K. YngardR.A. LinY. Silver nanoparticles: Green synthesis and their antimicrobial activities.Adv. Colloid Interface Sci.20091451-2839610.1016/j.cis.2008.09.002 18945421
    [Google Scholar]
  13. Mert SivriF. AkkocS. ÖnemE. UysalE. Biosynthesis of Ag nanoparticles using Laurus nobilis leaf extract and biomedical applications.Inorg. Nano-Metal Chem20241810.1080/24701556.2024.2358339
    [Google Scholar]
  14. ThangamuniyandiP. NagarajK. VelmuruganG. KamalesuS. AlshalwiM. AlotaibiK.M. MaityP. AbhijithS.M. ShahF. KaliyaperumalR. RajaramanD. Green synthesis of starch-capped CdS nanoparticles doped with Copper (II) and Manganese (II): Structural, optical, and photocatalytic properties.Eur. J. Inorg. Chem.2024202400291e20240029110.1002/ejic.202400291
    [Google Scholar]
  15. MuhammedM.T. ErM. AkkocS. Molecular modeling and in vitro antiproliferative activity studies of some imidazole and isoxazole derivatives.J. Mol. Struct.2023128213506610.1016/j.molstruc.2023.135066
    [Google Scholar]
  16. UmashankariJ. InbakandanD. AjithkumarT.T. BalasubramanianT. Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens.Aquat. Biosyst.2012811110.1186/2046‑9063‑8‑11 22608057
    [Google Scholar]
  17. SaxenaA. TripathiR. SinghR. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity.Dig. J. Nanomater. Biostruct.20105427432
    [Google Scholar]
  18. HodaN. Budama AkpolatL. Mert Si̇vri̇F. KurtuluşD. Biosynthesis of bimetallic Ag-Au (core-shell) nanoparticles using aqueous extract of bay leaves (Laurus nobilis L.). J. Turk. Chem. Soc. Sect. AChem2021841035104410.18596/jotcsa.885558
    [Google Scholar]
  19. VinodM. GopchandranK.G. Ag@Au core-shell nanoparticles synthesized by pulsed laser ablation in water: Effect of plasmon coupling and their SERS performance.Spectrochim. Acta A Mol. Biomol. Spectrosc.201514991391910.1016/j.saa.2015.05.004 26004101
    [Google Scholar]
  20. PhilipD. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.Spectrochim. Acta A Mol. Biomol. Spectrosc.200973237438110.1016/j.saa.2009.02.037 19324587
    [Google Scholar]
  21. PatraJ.K. BaekK.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques.J. Nanomater.20142014141730510.1155/2014/417305
    [Google Scholar]
  22. AzadA. ZafarH. RazaF. SulaimanM. Factors influencing the green synthesis of metallic nanoparticles using plant extracts: A comprehensive review.Pharmaceutical Fronts202353e117e13110.1055/s‑0043‑1774289
    [Google Scholar]
  23. ElemikeE.E. OnwudiweD.C. EkenniaA.C. Katata-SeruL. Biosynthesis, characterization, and antimicrobial effect of silver nanoparticles obtained using Lavandula × intermedia.Res. Chem. Intermed.20174331383139410.1007/s11164‑016‑2704‑7
    [Google Scholar]
  24. DravianaH.T. FitriannisaI. KhafidM. KrisnawatiD.I. Widodo; Lai, C.H.; Fan, Y.J.; Kuo, T.R. Size and charge effects of metal nanoclusters on antibacterial mechanisms.J. Nanobiotechnology202321142810.1186/s12951‑023‑02208‑3 37968705
    [Google Scholar]
  25. SinghM. SinghS. PrasadS. GambhirI. Nanotechnology in medicine and antibacterial effect of silver nanoparticles.Dig. J. Nanomater. Biostruct.20083115122
    [Google Scholar]
  26. TagliettiA. Diaz FernandezY.A. AmatoE. CuccaL. DacarroG. GrisoliP. NecchiV. PallaviciniP. PasottiL. PatriniM. Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria.Langmuir201228218140814810.1021/la3003838 22546237
    [Google Scholar]
  27. FirdhouseM.J. LalithaP. Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis—antiproliferative effect against prostate cancer cells.Cancer Nanotechnol.20134613714310.1007/s12645‑013‑0045‑4 26069509
    [Google Scholar]
  28. AbdelhameedR.F.A. NafieM.S. HalD.M. NasrA.M. SwidanS.A. Abdel-KaderM.S. IbrahimA.K. AhmedS.A. BadrJ.M. EltamanyE.E. Comparative cytotoxic evaluation of Zygophyllum album root and aerial parts of different extracts and their biosynthesized silver nanoparticles on lung A549 and prostate PC-3 cancer cell lines.Pharmaceuticals20221511133410.3390/ph15111334 36355507
    [Google Scholar]
  29. PrasannarajG. SahiS.V. RavikumarS. VenkatachalamP. Enhanced cytotoxicity of biomolecules loaded metallic silver nanoparticles against human liver (HepG2) and prostate (PC3) cancer cell lines.J. Nanosci. Nanotechnol.2016164948495910.1166/jnn.2016.12336
    [Google Scholar]
  30. BhatM.P. KumarR.S. RudrappaM. BasavarajappaD.S. SwamyP.S. AlmansourA.I. PerumalK. NayakaS. Bio-inspired silver nanoparticles from Artocarpus lakoocha fruit extract and evaluation of their antibacterial activity and anticancer activity on human prostate cancer cell line.Appl. Nanosci.20231343041305110.1007/s13204‑022‑02381‑1
    [Google Scholar]
  31. VasanthK. IlangoK. MohanKumar, R.; Agrawal, A.; Dubey, G.P. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction.Colloids Surf. B Biointerfaces201411735435910.1016/j.colsurfb.2014.02.052 24681047
    [Google Scholar]
  32. AminiS.M. S Salavati Pour M.; Vahidi, R.; Kouhbananinejad, S.M.; S. Bardsiri, M.; Farsinejad, A. Green synthesis of stable silver nanoparticles using Teucrium polium extract: In-vitro anticancer activity on NALM-6.Nanomed Res J.20216217017810.22034/nmrj.2021.02.008
    [Google Scholar]
  33. MasimenM.A.A. HarunN.A. MaulidianiM. IsmailW.I.W. Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles.Antibiotics202211795110.3390/antibiotics11070951 35884205
    [Google Scholar]
/content/journals/mns/10.2174/0118764029351072250106052955
Loading
/content/journals/mns/10.2174/0118764029351072250106052955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test