Skip to content
2000
Volume 17, Issue 3
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Introduction

The size effect on the quasi-static analysis of microbeams embedded with micro shape memory alloys (SMAs) has not been studied as per today. Therefore, in the present research, the nonlinear bending performance of the microbeam comprising SMA micro SMA wires is implemented considering the size effects regarding the coupled geometric and material nonlinearities for the first time. The SMA has different properties depending on the amount of strain at each point of the microbeam. Moreover, the amount of strain depends on the SMA properties. This mutual dependence between SMA properties and strain leads to increased complexity in the analysis.

Methods

In this research, the formulation presented by Lagoudas and Hernandez is used for modeling the phase transformation and capturing the size effects for the SMA microwires. the modified couple stress theory, the size effect of the matrix material is captured.

Results

The nonlinear equations of motions are obtained by the principle of virtual work, using the von Karman strains and, Timoshenko beam theory for different boundary conditions. Then the return mapping scheme and also iterative nonlinear finite element methods were used for solving the governing equations. The results are presented according to the distribution of martensitic volume fraction (MVF), transverse deflection, distribution of strain, stress-strain graph, and variations of the elasticity modulus of the embedded micro SMA wires. A comparison of some obtained results with available references indicates the present work’s validity.

Conclusion

One of the most important findings of this work is that increasing the value of the length-scale factor as well as increasing the diameter of the micro SMA wires will reduce the maximum transverse deflection of the microbeam.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029348137250103140519
2025-01-08
2025-09-08
Loading full text...

Full text loading...

References

  1. Gómez-CortésJ.F. NóM.L. López-FerreñoI. Hernández-SazJ. MolinaS.I. ChuvilinA. San JuanJ.M. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale.Nat. Nanotechnol.201712879079610.1038/nnano.2017.91 28553962
    [Google Scholar]
  2. LeeA.P. CiarloD.R. KrulevitchP.A. A practical microgripper by fine alignment, eutectic bonding and SMA actuation.Sens. Actuator A Phys.,199654755759
    [Google Scholar]
  3. BenardW.L. KahnH. HeuerA.H. HuffM.A. Thin-film shape-memory alloy actuated micropumps.J. Microelectromech. Syst.19987224525110.1109/84.679390
    [Google Scholar]
  4. KohlM. LiuY. KrevetB. DürrS. OhtsukaM. SMA microactuators for microvalve applications.J. Phys. IV200411533334210.1051/jp4:2004115039
    [Google Scholar]
  5. GradinH. ClausiD. BraunS. StemmeG. PeirsJ. van der WijngaartW. ReynaertsD. A low-power high-flow shape memory alloy wire gas microvalve.J. Micromech. Microeng.201222707500210.1088/0960‑1317/22/7/075002
    [Google Scholar]
  6. SilvaP.C.S. GrassiE.N.D. AraújoC.J. DelgadoJ.M.P.Q. LimaA.G.B. NiTi SMA superelastic micro cables: Thermomechanical behavior and fatigue life under dynamic loadings.Sensors (Basel)20222220804510.3390/s22208045 36298397
    [Google Scholar]
  7. FuY.Q. LuoJ.K. HuM. DuH.J. FlewittA.J. MilneW.I. Micromirror structure actuated by TiNi shape memory thin films.J. Micromech. Microeng.200515101872187710.1088/0960‑1317/15/10/012
    [Google Scholar]
  8. BarthJ. KrevetB. KohlM. A bistable shape memory microswitch with high energy density.Smart Mater. Struct.201019909400410.1088/0964‑1726/19/9/094004
    [Google Scholar]
  9. FuY.Q. LuoJ.K. OngS.E. ZhangS. FlewittA.J. MilneW.I. A shape memory microcage of TiNi/DLC films for biological applications.J. Micromech. Microeng.200818303502610.1088/0960‑1317/18/3/035026
    [Google Scholar]
  10. HagaY. MinetaT. MatsunagaT. TsuruokaN. Micro-robotic medical tools employing SMA actuators for use in the human body.J. Robot. Mechatron20223461233124410.20965/jrm.2022.p1233
    [Google Scholar]
  11. Van HumbeeckJ. Shape memory alloys: a material and a technology.Adv. Eng. Mater.200131183785010.1002/1527‑2648(200111)3:11<837:AID‑ADEM837>3.0.CO;2‑0
    [Google Scholar]
  12. LesterB.T. BaxevanisT. ChemiskyY. LagoudasD.C. Review and perspectives: Shape memory alloy composite systems.Acta Mech.2015226123907396010.1007/s00707‑015‑1433‑0
    [Google Scholar]
  13. SunG. SunC.T. Bending of shape-memory alloy-reinforced composite beam.J. Mater. Sci.199530225750575410.1007/BF00356716
    [Google Scholar]
  14. JaberB.M. SmaouiH. TerriaultP. Finite element analysis of a shape memory alloy three-dimensional beam based on a finite strain description.Smart Mater. Struct.200817404500510.1088/0964‑1726/17/4/045005
    [Google Scholar]
  15. BaghaniM. MohammadiH. NaghdabadiR. An analytical solution for shape-memory-polymer Euler–Bernoulli beams under bending.Int. J. Mech. Sci.201484849010.1016/j.ijmecsci.2014.04.009
    [Google Scholar]
  16. MirzaeifarR. DesRochesR. YavariA. GallK. On superelastic bending of shape memory alloy beams.Int. J. Solids Struct.201350101664168010.1016/j.ijsolstr.2013.01.035
    [Google Scholar]
  17. ZamaniA.R. BotshekananD.M. Nonlinear bending analysis of shape memory alloy beam considering both material and geometric nonlinearity effects.J. Intell. Mater. Syst. Struct.201930682384310.1177/1045389X18818781
    [Google Scholar]
  18. VietN.V. ZakiW. UmerR. Bending models for superelastic shape memory alloy laminated composite cantilever beams with elastic core layer.Compos., Part B Eng.20181478610310.1016/j.compositesb.2018.04.035
    [Google Scholar]
  19. VietN.V. ZakiW. Modeling bending behavior of shape memory alloy wire-reinforced composites: Semi-analytical model and finite element analysis.Chin. J. Aeronauti.202134817619110.1016/j.cja.2021.01.004
    [Google Scholar]
  20. VietN.V. ZakiW. Bending model for functionally graded porous shape memory alloy/poroelastic composite cantilever beams.Appl. Math. Model.20219739841710.1016/j.apm.2021.03.058
    [Google Scholar]
  21. Masoudi MoghaddamS.A. Y Tooski M.; Jabbari, M.; Khorshidvand, A.R. Mechanical behavior of sandwich panels with hybrid face sheets and embedded super-elastic SMA wires under quasi-static loading: An experimental investigation.Int. J. Damage Mech.202130219621310.1177/1056789520953465
    [Google Scholar]
  22. FrickC.P. OrsoS. ArztE. Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars.Acta Mater.200755113845385510.1016/j.actamat.2007.02.034
    [Google Scholar]
  23. San JuanJ. Gómez-CortésJ.F. LópezG.A. JiaoC. NóM.L. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars.Appl. Phys. Lett.2014104101190110.1063/1.4860951
    [Google Scholar]
  24. San JuanJ. NóM.L. SchuhC.A. Superelasticity and shape memory in micro and nanometer-scale pillars.Adv. Mater.200820227227810.1002/adma.200701527
    [Google Scholar]
  25. JuanJ.S. NóM.L. SchuhC.A. Nanoscale shape-memory alloys for ultrahigh mechanical damping.Nat. Nanotechnol.20094741541910.1038/nnano.2009.142 19581892
    [Google Scholar]
  26. San JuanJ. NóM.L. SchuhC.A. Thermomechanical behavior at the nanoscale and size effects in shape memory alloys.J. Mater. Res.201126192461246910.1557/jmr.2011.291
    [Google Scholar]
  27. San JuanJ. NóM.L. SchuhC.A. Superelastic cycling of Cu–Al–Ni shape memory alloy micropillars.Acta Mater.201260104093410610.1016/j.actamat.2012.04.021
    [Google Scholar]
  28. JuanJ.M.S. Gómez-CortésJ.F. NóM.L. Ultra-high mechanical damping during superelastic bending of micro pillars and micro beams in Cu-Al-Ni shape memory alloys.J. Alloys Compd.202292916730710.1016/j.jallcom.2022.167307
    [Google Scholar]
  29. OzdemirN. KaramanI. MaraN.A. ChumlyakovY.I. KaracaH.E. Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation.Acta Mater.201260165670568510.1016/j.actamat.2012.06.035
    [Google Scholar]
  30. TabeshM. BoydJ. LagoudasD. A gradient-based constitutive model for shape memory alloys.Shape Mem. Superelast.2017328410810.1007/s40830‑017‑0100‑9
    [Google Scholar]
  31. HernandezE.A.P. LagoudasD.C. Modeling size effects on the transformation behavior of shape memory alloy micropillars.J. Micromech. Microeng.201525707500110.1088/0960‑1317/25/7/075001
    [Google Scholar]
  32. ZhouB. KangZ. MaX. XueS. On size-dependent bending behaviors of shape memory alloy microbeams via nonlocal strain gradient theory.J. Intell. Mater. Syst. Struct.202132172039205310.1177/1045389X20986993
    [Google Scholar]
  33. FallahA. DehkordiM.B. A new nonlinear finite element model for transient dynamic response of a micro composite plate embedded with micro SMA wires considering the size effects.Mech. Adv. Mater. Structures202229276733675410.1080/15376494.2021.1983900
    [Google Scholar]
  34. EringenA.C. Theory of micropolar plates.Z. Angew. Math. Phys.1967181123010.1007/BF01593891
    [Google Scholar]
  35. EringenA.C. Nonlocal polar elastic continua.Int. J. Eng. Sci.197210111610.1016/0020‑7225(72)90070‑5
    [Google Scholar]
  36. YangF. ChongA.C.M. LamD.C.C. TongP. Couple stress based strain gradient theory for elasticity.Int. J. Solids Struct.200239102731274310.1016/S0020‑7683(02)00152‑X
    [Google Scholar]
  37. AifantisE.C. AifantisE.C. Strain gradient interpretation of size effects.Int. J. Fract.1999951/429931410.1023/A:1018625006804
    [Google Scholar]
  38. ParkS.K. GaoX-L. Bernoulli–Euler beam model based on a modified couple stress theory.J. Micromech. Microeng.200616112355235910.1088/0960‑1317/16/11/015
    [Google Scholar]
  39. XiaW. WangL. YinL. Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration.Int. J. Eng. Sci.201048122044205310.1016/j.ijengsci.2010.04.010
    [Google Scholar]
  40. NateghiA. Salamat-talabM. RezapourJ. DaneshianB. Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory.Appl. Math. Model.201236104971498710.1016/j.apm.2011.12.035
    [Google Scholar]
  41. ŞimşekM. KocatürkT. AkbaşŞ.D. Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory.Compos. Struct.20139574074710.1016/j.compstruct.2012.08.036
    [Google Scholar]
  42. Salamat-talabM. NateghiA. TorabiJ. Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory.Int. J. Mech. Sci.2012571637310.1016/j.ijmecsci.2012.02.004
    [Google Scholar]
  43. ŞimşekM. ReddyJ.N. Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory.Int. J. Eng. Sci.201364375310.1016/j.ijengsci.2012.12.002
    [Google Scholar]
  44. GholamiM. AlizadehM. A quasi-3D modified strain gradient formulation for static bending of functionally graded micro beams resting on Winkler-Pasternak elastic foundation.Sci. Iran.2022292640
    [Google Scholar]
  45. Botshekanan DehkordiM. Modeling of simultaneous shape memory and pseudoelastic effects of shape memory alloys on nonlinear dynamic response of multilayer composite plate embedded with pre-strained SMA wires under thermal condition.Mech. Adv. Mater. Structures201926161411142210.1080/15376494.2018.1432813
    [Google Scholar]
  46. KhajekhabazM. EftekhariS.A. HashemianM. Free vibration analysis of sandwich micro beam with piezoelectric based on modified couple stress theory and surface effects.J. Simul. Anal. Nov. Technol. Mech. Eng2018103348
    [Google Scholar]
  47. NalbantM.O. M BağdatliS. TekinA. Free vibrations analysis of stepped nanobeams using nonlocal elasticity theory.Scientia Iranica2023
    [Google Scholar]
  48. FallahA. B DehkordiM. NourbakhshH. T BeniY. Semi-exact solution for nonlinear dynamic analysis of graded carbon nanotube-reinforced beam with graded shape memory wires.Mech. Adv. Mater. Structures202128656858210.1080/15376494.2019.1578012
    [Google Scholar]
  49. TrinhL.C. GrohR.M.J. ZuccoG. WeaverP.M. A strain-displacement mixed formulation based on the modified couple stress theory for the flexural behaviour of laminated beams.Compos., Part B Eng.202018510774010.1016/j.compositesb.2019.107740
    [Google Scholar]
  50. TaheranF. AhmadianM.T. FiroozbakhshK. Nonlinear oscillations of viscoelastic microcantilever beam based on modified strain gradient theory.Sci. Iran.202128785794
    [Google Scholar]
  51. LagoudasD. HartlD. ChemiskyY. MachadoL. PopovP. Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys.Int. J. Plast.201232-3315518310.1016/j.ijplas.2011.10.009
    [Google Scholar]
  52. FallahA. DehkordiM.B. NourbakhshS.H. Nonlinear dynamic analysis of microbeam containing graded shape memory microwires.Compos. Struct.2021257113085
    [Google Scholar]
  53. ReddyJ.N. An Introduction to Nonlinear Finite Element Analysis.OxfordOxford University Press2005
    [Google Scholar]
  54. LagoudasD.C. Shape Memory Alloys. Modeling and Engineering Applications.New YorkSpringer2007
    [Google Scholar]
  55. ArbindA. ReddyJ.N. SrinivasaA.R. Modified couple stress-based third-order theory for nonlinear analysis of functionally graded beams.Lat. Am. J. Solids Struct.201411345948710.1590/S1679‑78252014000300006
    [Google Scholar]
/content/journals/mns/10.2174/0118764029348137250103140519
Loading
/content/journals/mns/10.2174/0118764029348137250103140519
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test