Skip to content
2000
Volume 17, Issue 3
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Objectives

The objective of this review is to study the duodenal ulcer caused by using experimental animal models.

Methods

Animal models play an important role in the screening of new drugs and compounds to establish their safety and effectiveness. Peptic ulcer (PU) is a heterogeneous multifactorial disorder of known and unknown etiologies and may be caused by the imbalance between the mucosal defensive forces (prostaglandin, bicarbonate, mucus) and the stomach aggressive factors (, hydrochloric acid (HCL), and pepsin). Researchers used various animal models to evaluate the therapeutic potential of test substances. Among these, ethanol-induced peptic ulcers, NSAID-induced peptic ulcers, and pylorus ligation-induced peptic ulcers are frequently used. In this review, we focused on the -induced peptic ulcer, as we found in many published articles that most of the peptic ulcers are due to infection. enters into the host's stomach using urease to fight against the acidic environment. It colonizes the host's gastric epithelial cells and releases effector proteins and toxins. The stomach epithelium, which is the primary interface, secretes chemokines that trigger neutrophil activation and innate immunity and contribute to clinical illnesses like ulcers and gastritis.

Results

We have discussed several animal models in detail, such as the cat model, mice model, Mongolian gerbil model, pig model, rat model, and rhesus monkey model for -induced duodenal ulcer and gastritis.

Conclusion

Our efforts have been devoted to summarizing and explaining the mechanism of induced ulceration using different experimental animal models, which will help and prove to be an asset for future research.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029337470241015100428
2024-12-12
2025-09-08
Loading full text...

Full text loading...

References

  1. SatapathyT. SenK. SahuS. PradhanB. GuptaA. KhanM.A. KumarD. SatapathyA. YadavN. Experimental animal models for gastric ulcer/peptic ulcer: An overview.J. Drug Deliv. Ther.202414118218910.22270/jddt.v14i1.6258
    [Google Scholar]
  2. BeredaG. Peptic Ulcer disease: Definition, pathophysiology, and treatment.J. Biomed. Bio. Sci.20221210
    [Google Scholar]
  3. SatapathyT. PandaP.K. Solid lipid nanoparticles: A novel carrier in drug delivery system.Res. J. Pharm. Dos. Forms Technol.2013525661
    [Google Scholar]
  4. WilliamsonJ. Helicobacter pylori: Current chemotherapy and new targets for drug design.Curr. Pharm. Des.20017535539210.2174/1381612013397979 11254894
    [Google Scholar]
  5. SrishtiK. NegiO. HotaP.K. Recent development on copper-sensor and its biological applications: A review.J. Fluoresc.202410.1007/s10895‑024‑03587‑y 38416283
    [Google Scholar]
  6. WareM. TiwariS.P. RoyA. SatapathyT. New insights into gastro-retentive floating drug delivery systems.World J. Pharma. Sci.201331252270
    [Google Scholar]
  7. MalfertheinerP. ChanF.K.L. McCollK.E.L. Peptic ulcer disease.Lancet200937496991449146110.1016/S0140‑6736(09)60938‑7 19683340
    [Google Scholar]
  8. SinghR. PrasadJ. SatapathyT. JainP. SinghS. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.Indian J. Biochem. Biophys.2021582156161
    [Google Scholar]
  9. ErnstP. PappoJ. Preventive and therapeutic vaccines against Helicobacter pylori: Current status and future challenges.Curr. Pharm. Des.20006151557157310.2174/1381612003399086 10974152
    [Google Scholar]
  10. LauciricaI. García IglesiasP. CalvetX. Peptic ulcer.Med. Clín. (Barc.)2023161626026610.1016/j.medcli.2023.05.008 37365037
    [Google Scholar]
  11. DunlapJ.J. PattersonS. Peptic ulcer disease.Gastroenterol. Nurs.201942545145410.1097/SGA.0000000000000478 31574075
    [Google Scholar]
  12. RamakrishnanK. SalinasR.C. Peptic ulcer disease.Am. Fam. Physician200776710051012 17956071
    [Google Scholar]
  13. KavittR.T. LipowskaA.M. Anyane-YeboaA. GralnekI.M. Diagnosis and treatment of peptic ulcer disease.Am. J. Med.2019132444745610.1016/j.amjmed.2018.12.009 30611829
    [Google Scholar]
  14. GuH. Role of flagella in the pathogenesis of Helicobacter pylori.Curr. Microbiol.201774786386910.1007/s00284‑017‑1256‑4 28444418
    [Google Scholar]
  15. KrzyżekP. GościniakG. Morphology of Helicobacter pylori as a result of peptidoglycan and cytoskeleton rearrangements.Prz. Gastroenterol.201813318219510.5114/pg.2018.78284 30302161
    [Google Scholar]
  16. RuggieroP. Helicobacter pylori and inflammation.Curr. Pharm. Des.201016384225423610.2174/138161210794519075 21184659
    [Google Scholar]
  17. DesforgesJ.F. PetersonW.L. Helicobacter pylori and peptic ulcer disease.N. Engl. J. Med.1991324151043104810.1056/NEJM199104113241507 2005942
    [Google Scholar]
  18. KalaliB. Mejías-LuqueR. JavaheriA. GerhardM.H.H. pylori virulence factors: Influence on immune system and pathology.Mediators Inflamm.2014201442630910.1155/2014/426309 24587595
    [Google Scholar]
  19. MenchicchiB. HenselA. GoycooleaF. Polysaccharides as bacterial antiadhesive agents and “smart” constituents for improved drug delivery systems against Helicobacter pylori infection.Curr. Pharm. Des.201521334888490610.2174/1381612821666150820104028 26290206
    [Google Scholar]
  20. NakajimaS. GrahamD. HattoriT. BambaT. Strategy for treatment of Helicobacter pylori infection in adults. II. Practical policy in 2000.Curr. Pharm. Des.20006151515152910.2174/1381612003399013 10974148
    [Google Scholar]
  21. GisbertJ.P. CalvetX. Review article: Helicobacter pylori ‐negative duodenal ulcer disease.Aliment. Pharmacol. Ther.200930879181510.1111/j.1365‑2036.2009.04105.x 19706147
    [Google Scholar]
  22. ChenY.C. MalfertheinerP. YuH.T. KuoC.L. ChangY.Y. MengF.T. WuY.X. HsiaoJ.L. ChenM.J. LinK.P. WuC.Y. LinJ.T. O’MorainC. MegraudF. LeeW.C. El-OmarE.M. WuM.S. LiouJ.M. Global prevalence of Helicobacter pylori infection and incidence of gastric cancer between 1980 and 2022.Gastroenterology2024166460561910.1053/j.gastro.2023.12.022 38176660
    [Google Scholar]
  23. KustersJ.G. van VlietA.H.M. KuipersE.J. Pathogenesis of Helicobacter pylori infection.Clin. Microbiol. Rev.200619344949010.1128/CMR.00054‑05 16847081
    [Google Scholar]
  24. SgourasD.N. TrangT.T.H. YamaokaY. Pathogenesis of Helicobacter pylori infection.Helicobacter201520S181610.1111/hel.12251 26372819
    [Google Scholar]
  25. DunneC. DolanB. ClyneM. Factors that mediate colonization of the human stomach by Helicobacter pylori.World J. Gastroenterol.201420195610562410.3748/wjg.v20.i19.5610 24914320
    [Google Scholar]
  26. AnsariS. YamaokaY. Animal models and Helicobacter pylori infection.J. Clin. Med.20221111314110.3390/jcm11113141 35683528
    [Google Scholar]
  27. EstevesM.I. SchrenzelM.D. MariniR.P. TaylorN.S. XuS. HagenS. FengY. ShenZ. FoxJ.G. Helicobacter pylori gastritis in cats with long-term natural infection as a model of human disease.Am. J. Pathol.2000156270972110.1016/S0002‑9440(10)64774‑8 10666399
    [Google Scholar]
  28. SimpsonK.W. Strauss-AyaliD. StraubingerR.K. ScanzianiE. McDonoughP.L. StraubingerA.F. ChangY.F. EstevesM.I. FoxJ.G. DomeneghiniC. ArebiN. CalamJ. Helicobacter pylori infection in the cat: evaluation of gastric colonization, inflammation and function.Helicobacter20016111410.1046/j.1523‑5378.2001.00010.x 11328360
    [Google Scholar]
  29. HandtL.K. FoxJ.G. DewhirstF.E. FraserG.J. PasterB.J. YanL.L. RozmiarekH. RufoR. StalisI.H. Helicobacter pylori isolated from the domestic cat: Public health implications.Infect. Immun.19946262367237410.1128/iai.62.6.2367‑2374.1994 8188360
    [Google Scholar]
  30. FoxJ.G. BatchelderM. MariniR. YanL. HandtL. LiX. ShamesB. HaywardA. CampbellJ. MurphyJ.C. Helicobacter pylori-induced gastritis in the domestic cat.Infect. Immun.19956372674268110.1128/iai.63.7.2674‑2681.1995 7790084
    [Google Scholar]
  31. OttoG. HazellS.H. FoxJ.G. HowlettC.R. MurphyJ.C. O’RourkeJ.L. LeeA. Animal and public health implications of gastric colonization of cats by Helicobacter-like organisms.J. Clin. Microbiol.19943241043104910.1128/jcm.32.4.1043‑1049.1994 8027308
    [Google Scholar]
  32. FoxJ.G. PerkinsS. YanL. ShenZ. AttardoL. PappoJ. Local immune response in Helicobacter pylori‐ infected cats and identification of H. pylori in saliva, gastric fluid and faeces.Immunology199688340040610.1046/j.1365‑2567.1996.d01‑677.x 8774357
    [Google Scholar]
  33. NeigerR. DieterichC. BurnensA. WaldvogelA. Corthésy-TheulazI. HalterF. LauterburgB. SchmassmannA. Detection and prevalence of Helicobacter infection in pet cats.J. Clin. Microbiol.199836363463710.1128/JCM.36.3.634‑637.1998 9508286
    [Google Scholar]
  34. PerkinsS.E. FoxJ.G. MariniR.P. ShenZ. DanglerC.A. GeZ. Experimental infection in cats with a cagA+ human isolate of Helicobacter pylori.Helicobacter19983422523510.1046/j.1523‑5378.1998.08037.x 9844063
    [Google Scholar]
  35. D’CostaK. ChonwerawongM. TranL.S. FerreroR.L. Mouse models Of Helicobacter infection and gastric pathologies.J. Vis. Exp.20181405698510.3791/56985‑v 30394371
    [Google Scholar]
  36. MarchettiM. AricòB. BurroniD. FiguraN. RappuoliR. GhiaraP. Development of a mouse model of Helicobacter pylori infection that mimics human disease.Science199526752041655165810.1126/science.7886456 7886456
    [Google Scholar]
  37. DeyT.K. KarmakarB.C. SarkarA. PaulS. MukhopadhyayA.K. A mouse model of Helicobacter pylori infection.In: Helicobacter Pylori. SmithS.M. New YorkHumana202113115110.1007/978‑1‑0716‑1302‑3_14
    [Google Scholar]
  38. LeeA. O’RourkeJ. De UngriaM.C. RobertsonB. DaskalopoulosG. DixonM.F. A standardized mouse model of Helicobacter pylori infection: Introducing the Sydney strain.Gastroenterology199711241386139710.1016/S0016‑5085(97)70155‑0 9098027
    [Google Scholar]
  39. KonturekP.C. BrzozowskiT. KonturekS.J. StachuraJ. KarczewskaE. PajdoR. GhiaraP. HahnE.G. Mouse model of Helicobacter pylori infection: Studies of gastric function and ulcer healing.Aliment. Pharmacol. Ther.199913333334610.1046/j.1365‑2036.1999.00476.x 10102967
    [Google Scholar]
  40. HanS.U. KimY.B. JooH.J. HahmK.B. LeeW.H. ChoY.K. KimD.Y. KimM.W. Helicobacter pylori infection promotes gastric carcinogenesis in a mice model.J. Gastroenterol. Hepatol.200217325326110.1046/j.1440‑1746.2002.02684.x 11982694
    [Google Scholar]
  41. SakagamiT. DixonM. O’RourkeJ. HowlettR. AlderuccioF. VellaJ. ShimoyamaT. LeeA. Atrophic gastric changes in both Helicobacter felis and Helicobacter pylori infected mice are host dependent and separate from antral gastritis.Gut199639563964810.1136/gut.39.5.639 9026476
    [Google Scholar]
  42. CrabtreeJ.E. FerreroR.L. KustersJ.G. The mouse colonizing Helicobacter pylori strain SS1 may lack a functional cag pathogenicity island.Helicobacter20027213914010.1046/j.1083‑4389.2002.00071.x 11966874
    [Google Scholar]
  43. FerreroR.L. WilsonJ.E. SuttonP. Mouse models of Helicobacter-induced gastric cancer: Use of cocarcinogens.In: Helicobacter Species. HoughtonJ. Totowa, NJHumana Press201215317310.1007/978‑1‑62703‑005‑2_20
    [Google Scholar]
  44. KongL. SmithJ.G. BramhillD. AbruzzoG.K. BonfiglioC. CioffeC. FlatteryA.M. GillC.J. LynchL. ScottP.M. SilverL. ThompsonC. KroppH. BartizalK. A sensitive and specific PCR method to detect Helicobacter felis in a conventional mouse model.Clin. Diagn. Lab. Immunol.199631737810.1128/cdli.3.1.73‑78.1996 8770507
    [Google Scholar]
  45. MatsumotoS. WashizukaY. MatsumotoY. TawaraS. IkedaF. YokotaY. KaritaM. Induction of ulceration and severe gastritis in Mongolian gerbil by Helicobacter pylori infection.J. Med. Microbiol.199746539139710.1099/00222615‑46‑5‑391 9152034
    [Google Scholar]
  46. NotoJ.M. Romero-GalloJ. PiazueloM.B. PeekR.M. The Mongolian gerbil: A robust model of Helicobacter pylori-induced gastric inflammation and cancer.Methods Mol. Biol.2016142226328010.1007/978‑1‑4939‑3603‑8_24 27246040
    [Google Scholar]
  47. WatanabeT. TadaM. NagaiH. SasakiS. NakaoM. Helicobacter pylori infection induces gastric cancer in Mongolian gerbils.Gastroenterology1998115364264810.1016/S0016‑5085(98)70143‑X 9721161
    [Google Scholar]
  48. HondaS. FujiokaT. TokiedaM. SatohR. NishizonoA. NasuM. Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils.Cancer Res.1998581942554259 9766647
    [Google Scholar]
  49. OguraK. MaedaS. NakaoM. WatanabeT. TadaM. KyutokuT. YoshidaH. ShiratoriY. OmataM. Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil.J. Exp. Med.2000192111601161010.1084/jem.192.11.1601 11104802
    [Google Scholar]
  50. OhkusaT. OkayasuI. MiwaH. OhtakaK. EndoS. SatoN. Helicobacter pylori infection induces duodenitis and superficial duodenal ulcer in Mongolian gerbils.Gut200352679780310.1136/gut.52.6.797 12740333
    [Google Scholar]
  51. IkenoT. OtaH. SugiyamaA. IshidaK. KatsuyamaT. GentaR.M. KawasakiS. Helicobacter pylori-induced chronic active gastritis, intestinal metaplasia, and gastric ulcer in Mongolian gerbils.Am. J. Pathol.1999154395196010.1016/S0002‑9440(10)65343‑6 10079274
    [Google Scholar]
  52. NawaY. HoriiY. OkadaM. ArizonoN. Histochemical and cytological characterizations of mucosal and connective tissue mast cells of Mongolian gerbils (Meriones unguiculatus).Int. Arch. Allergy Immunol.1994104324925410.1159/000236673 8032236
    [Google Scholar]
  53. HirayamaF. Establishiment of gastric Helicobacter pylori infection model in the mongolian gerbils. The first meeting of the Japananese reserch society for Helicobacter pylori related gastroduodenal diseases, 199545
    [Google Scholar]
  54. RosbergK. HübinetteR. NygårdG. BerglindhT. RolfsenW. Studies of Helicobacter pylori in a gastric mucosa in vitro animal model.Scand. J. Gastroenterol.1991261434810.3109/00365529108996482 2006397
    [Google Scholar]
  55. KogaT. ShimadaY. SatoK. TakahashiK. KikuchiI. MiuraT. TakenouchiT. NaritaT. IwataM. Experimental Helicobacter pylori gastric infection in miniature pigs.J. Med. Microbiol.200251323824610.1099/0022‑1317‑51‑3‑238 11871619
    [Google Scholar]
  56. BertramT.A. KrakowkaS. MorganD.R. Gastritis associated with infection by Helicobacter pylori: Comparative pathology in humans and swine.Clin. Infect. Dis.199113Suppl. 8S714S72210.1093/clinids/13.Supplement_8.S714 1925315
    [Google Scholar]
  57. McColmA.A. Nonprimate animal models of H. pylori infection. In: Helicobacter pylori Protocols; Clayton, C.L.; Mobley, H.L.T., Eds.; Humana Press1997235251
    [Google Scholar]
  58. KronsteinerB. Bassaganya-RieraJ. PhilipsonC. ViladomiuM. CarboA. PedragosaM. VentoS. HontecillasR. Helicobacter pylori infection in a pig model is dominated by Th1 and cytotoxic CD8+ T cell responses.Infect. Immun.201381103803381310.1128/IAI.00660‑13 23897614
    [Google Scholar]
  59. KrakowkaS. MorganD.R. KraftW.G. LeunkR.D. Establishment of gastric Campylobacter pylori infection in the neonatal gnotobiotic piglet.Infect. Immun.198755112789279610.1128/iai.55.11.2789‑2796.1987 3666963
    [Google Scholar]
  60. LambertJ.R. BorromeoM. PinkardK.J. TurnerH. ChapmanC.B. SmithM.L. Colonization of gnotobiotic piglets with Campylobacter Pyloridis - An animal model?J. Infect. Dis.19871556134410.1093/infdis/155.6.1344 3572046
    [Google Scholar]
  61. LiH. KaliesI. MellgårdB. HelanderH.F. A rat model of chronic Helicobacter pylori infection. Studies of epithelial cell turnover and gastric ulcer healing.Scand. J. Gastroenterol.199833437037810.1080/00365529850170991 9605258
    [Google Scholar]
  62. NarkhedeK.P. SatapathyT. PanditB. Protective effect of cod liver oil in experimentally induced gastric ulceration in rats.Res. J. Pharma. Technol.201912151010.5958/0974‑360X.2019.00002.7
    [Google Scholar]
  63. WerawatganonD. Simple animal model of Helicobacter pylori infection.World J. Gastroenterol.201420216420642410.3748/wjg.v20.i21.6420 24914363
    [Google Scholar]
  64. Thong-NgamD. PrabjoneR. VidesopasN. ChatsuwanT. A simple rat model of chronic Helicobacter pylori infection for research study.Thai J. Gastroenterol.20056137
    [Google Scholar]
  65. FoxJ.G. LeeA. OttoG. TaylorN.S. MurphyJ.C. Helicobacter felis gastritis in gnotobiotic rats: An animal model of Helicobacter pylori gastritis.Infect. Immun.199159378579110.1128/iai.59.3.785‑791.1991 1997430
    [Google Scholar]
  66. ValadbeigiH. KhoshnoodS. NegahdariB. AbdullahM.A. HaddadiM.H. Antibacterial and immunoregulatory effects of metformin against Helicobacter pylori infection in rat model.BioMed Res. Int.202320231558328610.1155/2023/5583286 38192437
    [Google Scholar]
  67. Santhosh KumarB. TiwariS.K. SaikantR. ManojG. KunwarA. SivaramG. AbidZ. AhmadA. PriyadarsiniK.I. KhanA.A. Antibacterial and ulcer healing effects of organoselenium compounds in naproxen induced and Helicobacter pylori infected Wistar rat model.J. Trace Elem. Med. Biol.201024426327010.1016/j.jtemb.2010.04.003 20678908
    [Google Scholar]
  68. DuboisA. BergD.E. IncecikE.T. FialaN. Heman-AckahL.M. Perez-PerezG.I. BlaserM.J. Transient and persistent experimental infection of nonhuman primates with Helicobacter pylori: Implications for human disease.Infect. Immun.19966482885289110.1128/iai.64.8.2885‑2891.1996 8757808
    [Google Scholar]
  69. MysoreJ.V. WiggintonT. SimonP.M. ZopfD. Heman-AckahL.M. DuboisA. Treatment of Helicobacter pylori infection in rhesus monkeys using a novel antiadhesion compound.Gastroenterology199911761316132510.1016/S0016‑5085(99)70282‑9 10579973
    [Google Scholar]
  70. FukudaY. TamuraK. YamamotoI. KawauraA. TonokatsuY. TsuyuguchiT. OhnoT. SatomiM. ShimoyamaT. Inoculation of Rhesus Monkeys with human Helicobacter pylori: A long‐term investigation on gastric mucosa by endoscopy.Dig. Endosc.199241193010.1111/j.1443‑1661.1992.tb00222.x
    [Google Scholar]
  71. HornsbyM.J. HuffJ.L. KaysR.J. CanfieldD.R. BevinsC.L. SolnickJ.V. Helicobacter pylori induces an antimicrobial response in rhesus macaques in a cag pathogenicity island-dependent manner.Gastroenterology200813441049105710.1053/j.gastro.2008.01.018 18395086
    [Google Scholar]
  72. MattapallilJ.J. DandekarS. CanfieldD.R. SolnickJ.V. A predominant Th1 type of immune response is induced early during acute Helicobacter pylori infection in rhesus macaques.Gastroenterology2000118230731510.1016/S0016‑5085(00)70213‑7 10648459
    [Google Scholar]
  73. SolnickJ.V. CanfieldD.R. YangS. ParsonnetJ. Rhesus monkey (Macaca mulatta) model of Helicobacter pylori: Noninvasive detection and derivation of specific-pathogen-free monkeys.Lab. Anim. Sci.1999492197201 10331550
    [Google Scholar]
  74. HandtL.K. FoxJ.G. YanL.L. ShenZ. PouchW.J. NgaiD. MotzelS.L. NolanT.E. KleinH.J. Diagnosis of Helicobacter pylori infection in a colony of rhesus monkeys (Macaca mulatta).J. Clin. Microbiol.199735116516810.1128/jcm.35.1.165‑168.1997 8968900
    [Google Scholar]
  75. SiddalingamR. ChidambaramK. Helicobacter pylori — Current therapy and future therapeutic strategies.In: Trends in Helicobacter pylori Infection. RoeslerM. LondonIntechOpen201427930210.5772/58338
    [Google Scholar]
  76. SipponenP. HyvärinenH. Role of Helicobacter pylori in the pathogenesis of gastritis, peptic ulcer and gastric cancer.Scand. J. Gastroenterol. Suppl.19931963610.3109/00365529309098333
    [Google Scholar]
  77. de SouzaM.P.C. de CamargoB.A.F. SpósitoL. FortunatoG.C. CarvalhoG.C. MarenaG.D. MeneguinA.B. BauabT.M. ChorilliM. Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of Helicobacter pylori infections.Crit. Rev. Microbiol.202147443546010.1080/1040841X.2021.1895721 33725462
    [Google Scholar]
  78. XiongM.H. BaoY. YangX.Z. ZhuY.H. WangJ. Delivery of antibiotics with polymeric particles.Adv. Drug Deliv. Rev.201478637610.1016/j.addr.2014.02.002 24548540
    [Google Scholar]
  79. HearndenV. SankarV. HullK. JurasD.V. GreenbergM. KerrA.R. LockhartP.B. PattonL.L. PorterS. ThornhillM.H. New developments and opportunities in oral mucosal drug delivery for local and systemic disease.Adv. Drug Deliv. Rev.2012641162810.1016/j.addr.2011.02.008 21371513
    [Google Scholar]
  80. AamirM.N. AhmadM. Production and stability evaluation of modified-release microparticles for the delivery of drug combinations.AAPS PharmSciTech201011135135510.1208/s12249‑010‑9392‑1 20221719
    [Google Scholar]
  81. AbuhelwaA.Y. WilliamsD.B. UptonR.N. FosterD.J.R. Food, gastrointestinal pH, and models of oral drug absorption.Eur. J. Pharm. Biopharm.201711223424810.1016/j.ejpb.2016.11.034 27914234
    [Google Scholar]
  82. CunD. ZhangC. BeraH. YangM. Particle engineering principles and technologies for pharmaceutical biologics.Adv. Drug Deliv. Rev.202117414016710.1016/j.addr.2021.04.006 33845039
    [Google Scholar]
  83. LuoZ. PaunovićN. LerouxJ.C. Physical methods for enhancing drug absorption from the gastrointestinal tract.Adv. Drug Deliv. Rev.202117511381410.1016/j.addr.2021.05.024 34052229
    [Google Scholar]
  84. SatapathyT. PandaP.K. GoyalA.K. RathG. Evaluation of anti-GERD activity of gastro retentive drug delivery system of itopride hydrochloride.Artif. Cells Blood Substit. Immobil. Biotechnol.201038420020710.3109/10731191003776751 20515421
    [Google Scholar]
  85. AdebisiA.O. ConwayB.R. Modification of drug delivery to improve antibiotic targeting to the stomach.Ther. Deliv.20156674176210.4155/tde.15.35 26149788
    [Google Scholar]
  86. CarvalhoB.G. VitF.F. CarvalhoH.F. HanS.W. de la TorreL.G. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment.J. Mater. Chem. B Mater. Biol. Med.2021951208123710.1039/D0TB02168G 33393582
    [Google Scholar]
  87. SatapathyT. KaushikS. NetamA.K. PrasadJ. RaoS.P. SahuM.K. BaghelP. Nano delivery: A smart carrier for treatment of ovarian cancer.World J. Pharm. Res.20187951352310.20959/wjpr20189‑12137
    [Google Scholar]
  88. PopR. TăbăranA.F. UngurA.P. NegoescuA. CătoiC. Helicobacter Pylori-induced gastric infections: From pathogenesis to novel therapeutic approaches using silver nanoparticles.Pharmaceutics2022147146310.3390/pharmaceutics14071463 35890358
    [Google Scholar]
  89. ZhuX. SuT. WangS. ZhouH. ShiW. New advances in nano-drug delivery systems: Helicobacter pylori and gastric cancer.Front. Oncol.20221283493410.3389/fonc.2022.834934 35619913
    [Google Scholar]
  90. NavarreW.W. SchneewindO. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope.Microbiol. Mol. Biol. Rev.199963117422910.1128/MMBR.63.1.174‑229.1999 10066836
    [Google Scholar]
  91. EnsignL.M. ConeR. HanesJ. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers.Adv. Drug Deliv. Rev.201264655757010.1016/j.addr.2011.12.009 22212900
    [Google Scholar]
  92. HuangJ. ShuQ. WangL. WuH. WangA.Y. MaoH. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine.Biomaterials20153910511310.1016/j.biomaterials.2014.10.059 25477177
    [Google Scholar]
  93. LaiY. WeiW. DuY. GaoJ. LiZ. Biomaterials for Helicobacter pylori therapy: Therapeutic potential and future perspectives.Gut Microbes2022141212074710.1080/19490976.2022.2120747 36070564
    [Google Scholar]
  94. BialerM. Extended-release formulations for the treatment of epilepsy.CNS Drugs200721976577410.2165/00023210‑200721090‑00005 17696575
    [Google Scholar]
  95. YuanH. ChenC.Y. ChaiG. DuY.Z. HuF.Q. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles.Mol. Pharm.20131051865187310.1021/mp300649z 23495754
    [Google Scholar]
  96. NgV.W.L. KeX. LeeA.L.Z. HedrickJ.L. YangY.Y. Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria.Adv. Mater.201325466730673610.1002/adma.201302952 24018824
    [Google Scholar]
  97. KamankeshM. YadegarA. Llopis-LorenteA. LiuC. HaririanI. AghdaeiH.A. ShokrgozarM.A. ZaliM.R. MiriA.H. Rad-MalekshahiM. HamblinM.R. WackerM.G. Future nanotechnology‐based strategies for improved management of Helicobacter pylori infection.Small2024203230253210.1002/smll.202302532 37697021
    [Google Scholar]
  98. FortinaP. KrickaL.J. GravesD.J. ParkJ. HyslopT. TamF. HalasN. SurreyS. WaldmanS.A. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer.Trends Biotechnol.200725414515210.1016/j.tibtech.2007.02.005 17316852
    [Google Scholar]
  99. EgusquiaguirreS.P. IgartuaM. HernándezR.M. PedrazJ.L. Nanoparticle delivery systems for cancer therapy: Advances in clinical and preclinical research.Clin. Transl. Oncol.2012142839310.1007/s12094‑012‑0766‑6 22301396
    [Google Scholar]
/content/journals/mns/10.2174/0118764029337470241015100428
Loading
/content/journals/mns/10.2174/0118764029337470241015100428
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test