Skip to content
2000
Volume 17, Issue 3
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Spanlastics belong to a newly established class of nanovesicular carriers, critical in contemporary systems used to deliver active pharmaceutical ingredients, alleviating most of the drawbacks of conventional delivery techniques. The principal components include non-ionic surfactants and edge activators. Owing to their high deformability, spanlastics will be able to encapsulate various therapeutic molecules, from hydrophilic to lipophilic ones, which will enable them to deliver to all kinds of biological membranes. This unique property makes them an ideal candidate for several routes of administration, such as topical, transdermal, and ocular applications. As an example, formulation techniques include the optimization of thin film hydration and ethanol injection to improve the encapsulation of drugs and the stability of vesicles. The basis of their efficacy lies in critical physicochemical parameters, such as vesicle size, zeta potential, and drug entrapment efficiency. Informatics in spanlastics research has emerged as a promising way to improving the bioavailability of peptides, proteins, and vaccines, thereby improving the critical challenges in drug delivery systems. This review provides an overview of their formulation processes, diverse applications, and contributions to advancing pharmaceutical and biomedical sciences. This review also emphasizes the role of spanlastics in dermatological therapy.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029343409241217043736
2024-12-30
2025-10-29
Loading full text...

Full text loading...

References

  1. SahuT. RatreY.K. ChauhanS. BhaskarL.V.K.S. NairM.P. VermaH.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science.J. Drug Deliv. Sci. Technol.20216310248710.1016/j.jddst.2021.102487
    [Google Scholar]
  2. WitikaB.A. MweetwaL.L. TshiamoK.O. EdlerK. MatafwaliS.K. NtemiP.V. ChikukwaM.T.R. MakoniP.A. Vesicular drug delivery for the treatment of topical disorders: Current and future perspectives.J. Pharm. Pharmacol.202173111427144110.1093/jpp/rgab082 34132342
    [Google Scholar]
  3. PattnaikS. SwainK. SinghS.P. SirbaiyaA.K. Lipid vesicles: Potentials as drug delivery systems.In: Nanoengineered Biomaterials for Advanced Drug Delivery.Elsevier202016318010.1016/B978‑0‑08‑102985‑5.00008‑5
    [Google Scholar]
  4. MbahC.C. BuildersP.F. AttamaA.A. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus.Expert Opin. Drug Deliv.2014111455910.1517/17425247.2013.860130 24294974
    [Google Scholar]
  5. CevcG. ChopraA. Deformable (Transfersome®) vesicles for improved drug delivery into and through the skin.In: Percutaneous penetration enhancers chemical methods in penetration enhancement: Nanocarriers.Springer2016395910.1007/978‑3‑662‑47862‑2_3
    [Google Scholar]
  6. KhanA. VarshneyC. ChaudharyT. SinghB. NagarajanK. Spanlastics: An innovative formulation strategy in pharmaceutical drug delivery.World J. Pharm. Res.2023122021923410.20959/wjpr202320‑30212
    [Google Scholar]
  7. BukharyH.A. HosnyK.M. RizgW.Y. AlahmadiA.A. MurshidS.S.A. AlalmaieA. AlamoudiA.J. BadrM.Y. KhallafR.A. Development, optimization, in-vitro, and in-vivo evaluation of chitosan-inlayed nano-spanlastics encompassing lercanidipine HCl for enhancement of bioavailability.J. Drug Deliv. Sci. Technol.20249610567710.1016/j.jddst.2024.105677
    [Google Scholar]
  8. KakkarS. KaurI.P. Spanlastics—A novel nanovesicular carrier system for ocular delivery.Int. J. Pharm.20114131-220221010.1016/j.ijpharm.2011.04.027 21540093
    [Google Scholar]
  9. SaroliaJ. BaldhaR. ChakraborthyG.S. RathodS. The effect of edge activator on the evolution and application of a nonionic surfactant: The elastic vesicular system.J. Surfactants Deterg.202326674775910.1002/jsde.12694
    [Google Scholar]
  10. JainA.K. KumarF. Transfersomes: Ultradeformable vesicles for transdermal drug delivery.Asian J. Biomater Res.2017313
    [Google Scholar]
  11. GentileL. BehrensM.A. PorcarL. ButlerP. WagnerN.J. OlssonU. Multilamellar vesicle formation from a planar lamellar phase under shear flow.Langmuir201430288316832510.1021/la501071s 24983325
    [Google Scholar]
  12. KulkarniS. PrabhakarB. ShendeP. Stabilization of lipid vesicles: Upcoming strategic insights for product development.J. Mol. Liq.202234811843010.1016/j.molliq.2021.118430
    [Google Scholar]
  13. MuiB. HopeM.J. Formation of large unilamellar vesicles by extrusion.In: Liposome technology.CRC Press20187788
    [Google Scholar]
  14. YadavR. ChananaA. ChawraH.S. PalR. Recent advances in niosomal drug delivery: A review.Int. J. Multidiscip. Res.20235111010.36948/ijfmr.2023.v05i01.1324
    [Google Scholar]
  15. NairK.S. BajajH. Advances in giant unilamellar vesicle preparation techniques and applications.Adv. Colloid Interface Sci.202331810293510.1016/j.cis.2023.102935 37320960
    [Google Scholar]
  16. SainiH. RapoluY. RazdanK. Nirmala; Sinha, V.R. Spanlastics: A novel elastic drug delivery system with potential applications via multifarious routes of administration.J. Drug Target.20233110999101210.1080/1061186X.2023.2274805 37926975
    [Google Scholar]
  17. WaldeP. IchikawaS. Lipid vesicles and other polymolecular aggregates—from basic studies of polar lipids to innovative applications.Appl. Sci.202111211034510.3390/app112110345
    [Google Scholar]
  18. AkhtarS. ShahzadS. ZaheerA. UllahH.S. KilicH. GonoR. JasińskiM. LeonowiczZ. Short-term load forecasting models: A review of challenges, progress, and the road ahead.Energies20231610406010.3390/en16104060
    [Google Scholar]
  19. WagdiM.A. SalamaA. El-LiethyM.A. ShalabyE.S. Comparative study of niosomes and spanlastics as a promising approach for enhancing benzalkonium chloride topical wound healing: In-vitro and in-vivo studies.J. Drug Deliv. Sci. Technol.20238410445610.1016/j.jddst.2023.104456
    [Google Scholar]
  20. MassarwehO. AbushaikhaA.S. The use of surfactants in enhanced oil recovery: A review of recent advances.Energy Rep.202063150317810.1016/j.egyr.2020.11.009
    [Google Scholar]
  21. CortésH. Hernández-ParraH. Bernal-ChávezS.A. Prado-AudeloM.L.D. Caballero-FloránI.H. Borbolla-JiménezF.V. González-TorresM. MagañaJ.J. Leyva-GómezG. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses.Materials20211412319710.3390/ma14123197 34200640
    [Google Scholar]
  22. HakeimO. FanQ. KimY. Preparation and characterization of nanoscale organic pigments.AATCC Rev.2010105158
    [Google Scholar]
  23. CamiloC.J.J. LeiteD.O.D. SilvaA.R.A. MenezesI.R.A. CoutinhoH.D.M. CostaJ.G.M. Lipid vesicles: Applications, principal components and methods used in their formulations: A review.Acta Biol. Colomb.202025233935210.15446/abc.v25n2.74830
    [Google Scholar]
  24. Arul PackiadhasY. Formulation and evaluation of melphalan loaded niosome for cancer treatment. College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences.2021Available fromhttps://core.ac.uk/download/542706528.pdf
    [Google Scholar]
  25. JayasankarG. KoilpillaiJ. NarayanasamyD. Novel vesicular drug delivery: A panoptic perspective on the preparation, usage, and clinical application of proniosomes.BioGecko202312112511275
    [Google Scholar]
  26. ElsaiedE.H. DawabaH.M. El SherbiniA.I. AfounaM.I. Effect of pegylated edge activator on span 60 based-nanovesicles: Comparison between myrj 52 and myrj 59. Univ J. Pharm. Res.,2019
    [Google Scholar]
  27. AmmarH.O. IbrahimM. MahmoudA.A. ShammaR.N. El HoffyN.M. Non-ionic surfactant based in situ forming vesicles as controlled parenteral delivery systems.AAPS PharmSciTech20181931001101010.1208/s12249‑017‑0897‑8 29110291
    [Google Scholar]
  28. DaoT.P.T. FauquignonM. FernandesF. IbarboureE. VaxA. PrietoM. Le MeinsJ.F. Membrane properties of giant polymer and lipid vesicles obtained by electroformation and pva gel-assisted hydration methods.Colloids Surf. A Physicochem. Eng. Asp.201753334735310.1016/j.colsurfa.2017.09.005
    [Google Scholar]
  29. KassemA.A. Abd El-AlimS.H. Vesicular nanocarriers: A potential platform for dermal and transdermal drug delivery.Nanopharmaceuticals. Environ. Chem. Sustain. World20214715520910.1007/978‑3‑030‑44921‑6_5
    [Google Scholar]
  30. ChenS. HanningS. FalconerJ. LockeM. WenJ. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications.Eur. J. Pharm. Biopharm.2019144183910.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  31. OtzenD.E. Biosurfactants and surfactants interacting with membranes and proteins: Same but different?Biochim. Biophys. Acta Biomembr.20171859463964910.1016/j.bbamem.2016.09.024 27693345
    [Google Scholar]
  32. MorillaM.J. RomeroE.L. Ultradeformable phospholipid vesicles as a drug delivery system: A review.Res. Rep. Transderm. Drug Deliv.201545569
    [Google Scholar]
  33. VettoratoE. FiordelisiM. FerroS. ZaninD. FranceschinisE. MarzaroG. RealdonN. Deformable vesicles with edge activators for the transdermal delivery of non-psychoactive cannabinoids.Curr. Pharm. Des.2024301292193410.2174/0113816128289593240226071813 38482628
    [Google Scholar]
  34. AnsariM.D. SaifiZ. PanditJ. KhanI. SolankiP. SultanaY. AqilM. Spanlastics a novel nanovesicular carrier: Its potential application and emerging trends in therapeutic delivery.AAPS PharmSciTech202223411210.1208/s12249‑022‑02217‑9 35411425
    [Google Scholar]
  35. VermaS. UtrejaP. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy.Asian J. Pharm. Sci.201914211712910.1016/j.ajps.2018.05.007 32104444
    [Google Scholar]
  36. AbbasH. KamelR. Potential role of resveratrol-loaded elastic sorbitan monostearate nanovesicles for the prevention of UV-induced skin damage.J. Liposome Res.2020301455310.1080/08982104.2019.1580721 30741053
    [Google Scholar]
  37. FadaeiM.S. FadaeiM.R. KheiriehA.E. Rahmanian-DevinP. DabbaghiM.M. Nazari TavallaeiK. ShafaghiA. HatamiH. Baradaran RahimiV. NokhodchiA. AskariV.R. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds.EXCLI J.202423212263 38487088
    [Google Scholar]
  38. ArshadA. ArshadS. Alamgeer; Mahmood, A.; Hussain Asim, M.; Ijaz, M.; Muhammad Irfan, H.; Rubab, M.; Ali, S.; Raza Hashmi, A. Zeta potential changing self-nanoemulsifying drug delivery systems: A newfangled approach for enhancing oral bioavailability of poorly soluble drugs.Int. J. Pharm.202465512399810.1016/j.ijpharm.2024.123998 38490401
    [Google Scholar]
  39. RathodS. AryaS. ShuklaR. RayD. AswalV.K. BahadurP. TiwariS. Investigations on the role of edge activator upon structural transitions in Span vesicles.Colloids Surf. A Physicochem. Eng. Asp.202162712724610.1016/j.colsurfa.2021.127246
    [Google Scholar]
  40. PickH. AlvesA.C. VogelH. Single-vesicle assays using liposomes and cell-derived vesicles: From modeling complex membrane processes to synthetic biology and biomedical applications.Chem. Rev.2018118188598865410.1021/acs.chemrev.7b00777 30153012
    [Google Scholar]
  41. JainS. PatelN. ShahM.K. KhatriP. VoraN. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application.J. Pharm. Sci.2017106242344510.1016/j.xphs.2016.10.001 27865609
    [Google Scholar]
  42. Rufino-RamosD. AlbuquerqueP.R. CarmonaV. PerfeitoR. NobreR.J. Pereira de AlmeidaL. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases.J. Control. Release201726224725810.1016/j.jconrel.2017.07.001 28687495
    [Google Scholar]
  43. CevcG. GebauerD. Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier.Biophys. J.20038421010102410.1016/S0006‑3495(03)74917‑0 12547782
    [Google Scholar]
  44. PerrierD.L. RemsL. BoukanyP.E. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications.Adv. Colloid Interface Sci.201724924827110.1016/j.cis.2017.04.016 28499600
    [Google Scholar]
  45. NatshehH. TouitouE. Phospholipid vesicles for dermal/transdermal and nasal administration of active molecules: The effect of surfactants and alcohols on the fluidity of their lipid bilayers and penetration enhancement properties.Molecules20202513295910.3390/molecules25132959 32605117
    [Google Scholar]
  46. GadS. HannaP. IbrahemH. MortagiY. Surfactants’ role in nanovesicles drug delivery system.Rec. Pharm. Biomed. Sci.20237314014910.21608/rpbs.2023.219887.1238
    [Google Scholar]
  47. IbrahimS.S. Abd-allahH. Spanlastic nanovesicles for enhanced ocular delivery of vanillic acid: Design, in vitro characterization, and in vivo anti-inflammatory evaluation.Int. J. Pharm.202262512206810.1016/j.ijpharm.2022.122068 35926753
    [Google Scholar]
  48. GaafarP.M.E. AbdallahO.Y. FaridR.M. AbdelkaderH. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone.J. Liposome Res.201424320421510.3109/08982104.2014.881850 24484536
    [Google Scholar]
  49. AliM.M. ShoukriR.A. YousryC. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation.Drug Deliv. Transl. Res.20231341153116810.1007/s13346‑022‑01285‑5 36585559
    [Google Scholar]
  50. ShepherdS.J. WarzechaC.C. YadavaliS. El-MaytaR. AlamehM.G. WangL. WeissmanD. WilsonJ.M. IssadoreD. MitchellM.J. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device.Nano Lett.202121135671568010.1021/acs.nanolett.1c01353 34189917
    [Google Scholar]
  51. van den BerghB.A.I. BouwstraJ.A. JungingerH.E. WertzP.W. Elasticity of vesicles affects hairless mouse skin structure and permeability.J. Control. Release199962336737910.1016/S0168‑3659(99)00168‑6 10528074
    [Google Scholar]
  52. AbdelbariM.A. El-mancyS.S. ElshafeeyA.H. AbdelbaryA.A. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study.Int. J. Nanomedicine2021166249626110.2147/IJN.S319348 34531656
    [Google Scholar]
  53. MohantaP. PandeyN. KapoorD.N. SinghS.K. SarviY. SharmaP. Development of surfactant-based nanocarrier system for delivery of an antifungal drug.J. Pharm. Res.20171191153
    [Google Scholar]
  54. YassinG.E. AmerR.I. FayezA.M. Carbamazepine loaded vesicular structures for enhanced brain targeting via intranasal route: Optimization, in vitro evaluation, and in vivo study.Int. J. App Pharm.2019114264274
    [Google Scholar]
  55. FraileR. GeantaR.M. EscuderoI. BenitoJ.M. RuizM.O. Formulation of Span 80 niosomes modified with SDS for lactic acid entrapment.Desalination Water Treat.201556133463347510.1080/19443994.2014.993726
    [Google Scholar]
  56. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  57. El-KayalM. HatemS. A comparative study between nanostructured lipid carriers and invasomes for the topical delivery of luteolin: Design, optimization and pre-clinical investigations for psoriasis treatment.J. Drug Deliv. Sci. Technol.20249710574010.1016/j.jddst.2024.105740
    [Google Scholar]
  58. HasC. PanS. Vesicle formation mechanisms: An overview.J. Liposome Res.20213119011110.1080/08982104.2020.1730401 32066297
    [Google Scholar]
  59. ArunothayanunP. Studies on polyhedral niosomes. The School of Pharmacy University of London, UK, 1998. Available from:https://discovery.ucl.ac.uk/id/eprint/10105133/1/Studies_on_polyhedral_niosomes.pdf
    [Google Scholar]
  60. KeshavJ. Niosomes as apotential carrier system: A review.Int. J. Pharm. Chem. Biol. Sci.201554
    [Google Scholar]
  61. FahmyA.M. El-SetouhyD.A. HabibB.A. TayelS.A. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: Entrapment efficiency vs. particle size.AAPS PharmSciTech20192039510.1208/s12249‑019‑1306‑2 30694404
    [Google Scholar]
  62. KassemM.A. MegahedM.A. Abu ElyazidS.K. Abd-AllahF.I. AbdelghanyT.M. Al-AbdA.M. El-SayK.M. Enhancing the therapeutic efficacy of tamoxifen citrate loaded span-based nano-vesicles on human breast adenocarcinoma cells.AAPS PharmSciTech20181941529154310.1208/s12249‑018‑0962‑y 29470829
    [Google Scholar]
  63. RaffertyJ. NagarajH. McCloskeyA.P. HuwaitatR. PorterS. AlbadrA. LavertyG. Peptide therapeutics and the pharmaceutical industry: Barriers encountered translating from the laboratory to patients.Curr. Med. Chem.201623374231425910.2174/0929867323666160909155222 27633684
    [Google Scholar]
  64. AbdulkafiA. Abdal-HammidS. Alhammid, Abd. A modern method for the delivery of nanovesicular drugs, spanlastics.J. Pharm.2023411110.47310/iarjp.2023.v04i06.001
    [Google Scholar]
  65. GuptaR. SalaveS. RanaD. KarunakaranB. ButreddyA. BenivalD. KommineniN. Versatility of liposomes for antisense oligonucleotide delivery: A special focus on various therapeutic areas.Pharmaceutics2023155143510.3390/pharmaceutics15051435 37242677
    [Google Scholar]
  66. FadaeiM.R. MohammadiM. FadaeiM.S. JaafariM.R. The crossroad of nanovesicles and oral delivery of insulin.Expert Opin. Drug Deliv.202320101387141310.1080/17425247.2023.2266992 37791986
    [Google Scholar]
  67. SoltaniF. ParhizH. MokhtarzadehA. RamezaniM. Synthetic and biological vesicular nano-carriers designed for gene delivery.Curr. Pharm. Des.201521426214623510.2174/1381612821666151027153410 26503143
    [Google Scholar]
  68. MoniS. AbdelwahabS. JabeenA. ElmobarkM. AqailiD. GohalG. OraibiB. FarasaniA. JerahA. AlnajaiM. Mohammad AlowayniA. Advancements in vaccine adjuvants: The journey from alum to nano formulations.Vaccines20231111170410.3390/vaccines11111704 38006036
    [Google Scholar]
  69. PardakhtyA. Non-ionic surfactant vesicles (Niosomes) as new drug delivery systems.Pharm. Sci. Breakthroughs Res. Pract.2017154184
    [Google Scholar]
  70. El MenshaweS.F. NafadyM.M. AboudH.M. KharshoumR.M. ElkelawyA.M.M.H. HamadD.S. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: Mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway.Drug Deliv.20192611140115410.1080/10717544.2019.1686087 31736366
    [Google Scholar]
  71. MarquesS.M. ChavanD.U. BhideP.J. JoshiM. KumarL. ShirodkarR.K. Novel luliconazole spanlastic nanocarriers: Development and characterisation.Curr. Drug Deliv.202320679280610.2174/1567201819666220516155048 35578877
    [Google Scholar]
  72. AlaaeldinE. MostafaM. MansourH.F. SolimanG.M. Spanlastics as an efficient delivery system for the enhancement of thymoquinone anticancer efficacy: Fabrication and cytotoxic studies against breast cancer cell lines.J. Drug Deliv. Sci. Technol.20216510272510.1016/j.jddst.2021.102725
    [Google Scholar]
  73. ElhabakM. IbrahimS. AbouelattaS.M. Topical delivery of l -ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin.Drug Deliv.202128144545310.1080/10717544.2021.1886377 33620008
    [Google Scholar]
  74. AbdelrahmanF.E. ElsayedI. GadM.K. ElshafeeyA.H. MohamedM.I. Response surface optimization, ex vivo and in vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone.Int. J. Pharm.20175301-211110.1016/j.ijpharm.2017.07.050 28733244
    [Google Scholar]
  75. ChauhanM.K. VermaA. Spanlastics-future of drug delivery and targeting.World J. Pharm. Res.202061242944610.20959/wjpr201712‑9726
    [Google Scholar]
  76. Al-mahallawiA.M. KhowessahO.M. ShoukriR.A. Enhanced non invasive trans -tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies.Int. J. Pharm.20175221-215716410.1016/j.ijpharm.2017.03.005 28279741
    [Google Scholar]
  77. SallamN.M. SanadR.A.B. AhmedM.M. KhafagyE.L.S. GhorabM. GadS. Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models.Drug Deliv. Transl. Res.20211131009103610.1007/s13346‑020‑00814‑4 32607938
    [Google Scholar]
  78. SantusoE. SoeratriW. PurwantiT.J.P. Characterization of spanlastic system loaded green tea extract as antioxidant for skin.J. Farm Ilmu Kefarm Indones2023101303710.20473/jfiki.v10i12023.30‑37
    [Google Scholar]
  79. ImamS.S. The future of non-invasive ways to treat cancer.Int. J. Pharm. Sci. Res.20211284684469610.13040/IJPSR.0975‑8232.12(9).4684‑96
    [Google Scholar]
  80. MuzammilS. MazharA. YeniD.K. AndleebR. AshrafA. ShehzadM.I. Nanospanlastic as a Promising Nanovesicle for Drug Delivery Systems of Nanovesicular Drug Delivery.Elsevier2022337352
    [Google Scholar]
  81. Altay BenettiA. TarboxT. BenettiC. Current insights into the formulation and delivery of therapeutic and cosmeceutical agents for aging skin.Cosmetics20231025410.3390/cosmetics10020054
    [Google Scholar]
  82. ShammaR.N. SayedS. SabryN.A. El-SamanoudyS.I. Enhanced skin targeting of retinoic acid spanlastics: In vitro characterization and clinical evaluation in acne patients.J. Liposome Res.201929328329010.1080/08982104.2018.1552706
    [Google Scholar]
  83. GodwinD.A. KimN.H. FeltonL.A. Influence of Transcutol CG on the skin accumulation and transdermal permeation of ultraviolet absorbers.Eur. J. Pharm. Biopharm.2002531232710.1016/s0939‑6411(01)00215‑6 11777749
    [Google Scholar]
  84. DesaiP. PatlollaR.R. SinghM. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery.Mol. Membr. Biol.201027724725910.3109/09687688.2010.522203 21028936
    [Google Scholar]
  85. RathiS. Acne vulgaris treatment: The current scenario.Indian J. Dermatol.201156171310.4103/0019‑5154.77543 21572783
    [Google Scholar]
  86. ManconiM. SinicoC. CaddeoC. VilaA.O. ValentiD. FaddaA.M. Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin.Int. J. Pharm.20114121-2374610.1016/j.ijpharm.2011.03.068 21530626
    [Google Scholar]
  87. DuangjitS. OpanasopitP. RojanarataT. NgawhirunpatT. Characterization and in vitro skin permeation of meloxicam‐loaded liposomes versus transfersomes.J. Drug Deliv.2011201111910.1155/2011/418316 21490750
    [Google Scholar]
  88. AmerS.S. NasrM. Abdel-AzizR.T.A. MoftahN.H. El ShaerA. PolycarpouE. MamdouhW. SammourO. Cosm-nutraceutical nanovesicles for acne treatment: Physicochemical characterization and exploratory clinical experimentation.Int. J. Pharm.202057711909210.1016/j.ijpharm.2020.119092 32004681
    [Google Scholar]
  89. El-KayalM. NasrM. ElkheshenS. MortadaN. Colloidal (-)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: A comprehensive experimental study with preclinical investigation.Eur. J. Pharm. Sci.201913710497210.1016/j.ejps.2019.104972 31252049
    [Google Scholar]
  90. AmerS.S. NasrM. MamdouhW. SammourO. Insights on the use of nanocarriers for acne alleviation.Curr. Drug Deliv.2018161182510.2174/1567201815666180913144145 30210000
    [Google Scholar]
  91. DragicevicN. MaibachH.I. Liposomes and other nanocarriers for the treatment of acne vulgaris: Improved therapeutic efficacy and skin tolerability.Pharmaceutics202416330910.3390/pharmaceutics16030309
    [Google Scholar]
  92. IbrahimM.S. ElkadyO.A. AmerM.A. NoshiS.H. Exploiting response surface D-optimal design study for preparation and optimization of spanlastics loaded with miconazole nitrate as a model antifungal drug for topical application.J. Pharm. Innov.20231842402241810.1007/s12247‑023‑09800‑y
    [Google Scholar]
  93. AhmedS. AminM.M. SayedS. A comprehensive review on recent nanosystems for enhancing antifungal activity of fenticonazole nitrate from different routes of administration.Drug Deliv.2023301217912910.1080/10717544.2023.2179129 36788709
    [Google Scholar]
  94. FiroozA. NamdarR. NafisiS. MaibachH.I. Nano-sized tech nologies for miconazole skin delivery.Curr. Pharm. Biotechnol.201617652453110.2174/1389201017666160301102459 26927217
    [Google Scholar]
  95. Al-MaghrabiP.M. KhafagyE.S. GhorabM.M. GadS. Influence of formulation variables on miconazole nitrate–loaded lipid based nanocarrier for topical delivery.Colloids Surf. B Biointerfaces202019311104610.1016/j.colsurfb.2020.111046 32416518
    [Google Scholar]
  96. BabuC.K. Shubhra; Ghouse, S.M.; Singh, P.K.; Khatri, D.K.; Nanduri, S.; Singh, S.B.; Madan, J. Luliconazole topical dermal drug delivery for superficial fungal infections: Penetration hurdles and role of functional nanomaterials.Curr. Pharm. Des.202228201611162010.2174/1381612828666220623095743
    [Google Scholar]
  97. GharaghaniM. HivaryS. TaghipourS. Zarei-MahmoudabadiA. Luliconazole, a highly effective imidazole, against Fusarium species complexes.Med. Microbiol. Immunol.2020209560361210.1007/s00430‑020‑00672‑4 32253502
    [Google Scholar]
/content/journals/mns/10.2174/0118764029343409241217043736
Loading
/content/journals/mns/10.2174/0118764029343409241217043736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test