Skip to content
2000
Volume 22, Issue 10
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The present article describes a theoretical study of the reaction mechanism involved in the conversion of cholest-4-en-3-one to 5α-cholest-3-eno-[3,4-b] quinoxaline. In this study, the reaction proceeded condensation, cyclization, and oxidation. The reaction pathway was characterized using Frontier Molecular Orbital analysis and a comparison of relative energies, which were computed using the theoretical approach of Density Functional Theory with the B3LYP/6-31G(d) method. The reaction involved a total of six intermediates and three transition states. The energy barriers of the transition states were also reported. It was determined that, overall, the reaction was an endothermic reaction. The stability of all the structures was confirmed by calculating their respective fundamental frequencies and energy minima. Moreover, these findings have implications for the design of novel steroid derivatives and may aid in the development of synthetic routes for biologically active molecules involving quinoxaline frameworks.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786370421250422061154
2025-10-01
2025-11-13
Loading full text...

Full text loading...

References

  1. TariqS. SomakalaK. AmirM. Eur. J. Med. Chem.201814354255710.1016/j.ejmech.2017.11.064 29207337
    [Google Scholar]
  2. RaphokoL.A. LekgauK. LebepeC.M. LebohoT.C. MatsebatlelaT.M. NxumaloW. Bioorg. Med. Chem. Lett.20213512778410.1016/j.bmcl.2021.127784 33422606
    [Google Scholar]
  3. SharmaB.K. SinghP. J. Enzyme Inhib. Med. Chem.200722216516910.1080/14756360601051290 17518342
    [Google Scholar]
  4. MasaretG.S. FarghalyT.A. Al-HussainS.A. ZakiM.E.A. AlsaediA.M.R. MuhammadZ.A. Polycycl. Aromat. Compd.20234387110712610.1080/10406638.2022.2130371
    [Google Scholar]
  5. ShamraizU. HussainH. Ur RehmanN. Al-ShidhaniS. SaeedA. KhanH.Y. KhanA. FischerL. CsukR. BadshahA. Al-RawahiA. HussainJ. Al-HarrasiA. Nat. Prod. Res.202034131845185210.1080/14786419.2018.1564295 30691289
    [Google Scholar]
  6. DebbertS.L. HintzM.J. BellC.J. EarlK.R. ForsytheG.E. HäberliC. KeiserJ. Antimicrob. Agents Chemother.2021653013702010.1128/aac 33257453
    [Google Scholar]
  7. ZayedM.F. Chemistry2023525662587
    [Google Scholar]
  8. FahmiM.A. Adv. Environ.Life Sci.202351425310.21608/aels.2023.242972.1042
    [Google Scholar]
  9. DianyR. KerrajS. AboulouardA. SyedA. ZeroualA. BahkaliA.H. El IdrissiM. SalahM. TounsiA. J. Comput. Electron.202423114
    [Google Scholar]
  10. LiuH. GengY. XiaoZ. DingL. DuJ. TangA. ZhouE. Adv. Mater.20243633e2404660 38890789
    [Google Scholar]
  11. LaventureA. BrixiS. WelchG.C. LessardB.H. Can. J. Chem. Eng.20241021241294136
    [Google Scholar]
  12. ErrahmanyN. HamoucheF. NounahM. SaberI. YaqoutiS. NounahA. TazoutiA. RbaaM. FakhreddineR. TouirR. Moroc.J. Chem.2024121707173010.48317/IMIST.PRSM/morjchem‑v12i4.50566
    [Google Scholar]
  13. ChenP. ZhangD. LiM. WuQ. LamY.P.Y. GuoY. ChenC. BaiN. MalhotraS. LiW. O’ConnorP.B. FuH. Eur. J. Med. Chem.201918311172210.1016/j.ejmech.2019.111722 31563807
    [Google Scholar]
  14. WangS. YuanX. QianH. LiN. WangJ. Int. J. Mol. Sci.2020215166510.3390/ijms21051665 32121303
    [Google Scholar]
  15. ZhangY.C. ShenQ. ZhuM.W. WangJ. DuY. WuJ. LiJ.X. ChemistrySelect2020541526153310.1002/slct.201904521
    [Google Scholar]
  16. KhanS.A. AsiriA.M. Arab. J. Chem.2011434935410.1016/j.arabjc.2010.06.058
    [Google Scholar]
  17. TalbotA. MaltaisR. KenmogneL.C. RoyJ. PoirierD. Steroids2016107556410.1016/j.steroids.2015.12.019 26742630
    [Google Scholar]
  18. TsunedaT. TsunedaT. Quantum chemistry.ChamSpringer2014
    [Google Scholar]
  19. van MourikT. BühlM. GaigeotM-P. Philos. Trans- Royal Soc., Math. Phys. Eng. Sci.2014372201120120488 24516181
    [Google Scholar]
  20. MorokumaK. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.200985516718210.2183/pjab.85.167 19444009
    [Google Scholar]
  21. BeckeA.D. J. Chem. Phys.1993985648565210.1063/1.464913
    [Google Scholar]
  22. AhnS. HongM. SundararajanM. EssD.H. BaikM-H. Chem. Rev.20191191165096560 31066549
    [Google Scholar]
  23. KhanS.A. SaleemK. KhanZ. Eur. J. Med. Chem.200843102257226110.1016/j.ejmech.2007.09.022 18440096
    [Google Scholar]
  24. MehmoodR. RashidN. UllahS. AmaldossM.J.N. SorrellC.C. Chemistry2021340241010.3390/chemistry3010030
    [Google Scholar]
  25. KumarH. SharmaK. Steroids202319610924310.1016/j.steroids.2023.109243 37116637
    [Google Scholar]
  26. SharmaK. KumarH. Priyanka.Steroids202319110917110.1016/j.steroids.2022.109171 36581085
    [Google Scholar]
  27. KumarH. SharmaK. Lett. Org. Chem.202421909915
    [Google Scholar]
  28. SharmaK. Priyanka.Steroids202521610957510.1016/j.steroids.2025.109575 40032071
    [Google Scholar]
  29. SharmaK. Lett. Org. Chem.202219972573010.2174/1570178619666220105151953
    [Google Scholar]
  30. ZhuY. AlqahtaniS. HuX. Molecules202429230410.3390/molecules29020304 38257217
    [Google Scholar]
  31. MdhluliB.K. NxumaloW. CukrowskiI. Molecules20212661570 33809294
    [Google Scholar]
  32. ProP.S. Wavefunction Inc.USAVon Karman Avenue202018
    [Google Scholar]
  33. BeckeA.D. J. Chem. Phys.19929621552160
    [Google Scholar]
  34. KhanS.A. AsiriA.M. Al-GhamdiN.S.M. AsadM. ZayedM.E. ElrobyS.A. AqlanF.M. WaniM.Y. SharmaK. J. Mol. Struct.20191190778510.1016/j.molstruc.2019.04.046
    [Google Scholar]
  35. BurschM. MewesJ.M. HansenA. GrimmeS. Angew. Chem. Int. Ed.20226142e20220573510.1002/anie.202205735 36103607
    [Google Scholar]
/content/journals/loc/10.2174/0115701786370421250422061154
Loading
/content/journals/loc/10.2174/0115701786370421250422061154
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test