Skip to content
2000
Volume 22, Issue 10
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

This study specifically aimed to identify the presence of non-permitted food colorings in spices and evaluate a novel method for reducing them using silver nanoparticles. Spices, known for their aromatic and pungent qualities, play a crucial role in enhancing the flavor of food and beverages. However, the adulteration of spices presents a serious threat to human health, making it imperative to detect harmful substances. Asparagine-capped silver nanoparticles (Asp-AgNPs) demonstrated remarkable efficacy and could photo-catalytically reduce metanil yellow dye. To assess real-world implications, four samples of turmeric powder were collected from local markets in Agra. The focus was on testing for adulteration with metal yellow, one of the most widely used but prohibited food colorants. The investigation involved carefully observing color changes in the test samples. The results revealed that two out of the four turmeric powder samples contained metanil yellow dye, highlighting a concerning prevalence of adulteration in commonly consumed spices. Asparagine-capped silver nanoparticles (Asp-AgNPs) demonstrated remarkable efficacy, capable of photo-catalytically reducing approximately 95.4% of the adulterant dye within 60 minutes when in contact with the prepared catalyst under optimized conditions. Our findings revealed that the asparagine-capped silver nanoparticles (Asp-AgNPs) performed exceptionally well as catalysts, facilitating a remarkable reduction of metal yellow dye, thus achieving an impressive 95.4% reduction rate. This research suggests that asparagine-capped silver nanoparticles could be significant catalysts for effectively degrading toxic dyes in various applications.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786369895250401183100
2025-04-16
2025-11-13
Loading full text...

Full text loading...

References

  1. JaiswalS. YadavD.S. MishraM.K. GuptaA.K. Int. J. Dev. Res.201660888248827
    [Google Scholar]
  2. ChandilaJ. PuriD. Int. J. Health Sci. Res.201998399405
    [Google Scholar]
  3. RaoP. BhatR.V. SudershanR.V. Prasanna KrishnaT. Br. Food J.2005107527628410.1108/00070700510596875
    [Google Scholar]
  4. SarkarR. GhoshA.R. Pollut. Res.2010293453460
    [Google Scholar]
  5. ChandroS.S. NagarajaT. Med. J. Armed Forces India1987434291293
    [Google Scholar]
  6. DownhamA. CollinsP. Int. J. food Sci. \&.Technol.2000351522
    [Google Scholar]
  7. KhannaS.K. J. Sci. Ind. Res.199150965974
    [Google Scholar]
  8. AlvesS.P. BrumD.M. Branco de AndradeÉ.C. Pereira NettoA.D. Food Chem.2008107148949610.1016/j.foodchem.2007.07.054
    [Google Scholar]
  9. ChoiH. J. Food Nutr. Res.20125111322
    [Google Scholar]
  10. RajapakshaG.K.M. WansapalaM.A.J. SilvaA.B.G. Int. J. Sci. Res.20176801808
    [Google Scholar]
  11. AggarwalB.B. HarikumarK.B. Int. J. Biochem. Cell Biol.20094114059
    [Google Scholar]
  12. SasikumarB. SyamkumarS. RemyaR. John ZachariahT. Food Biotechnol.200418329930610.1081/FBT‑200035022
    [Google Scholar]
  13. AhmedM.A. MessihM.F.A. El-SherbenyE.F. El-HafezS.F. KhalifaA.M.M. J. Photochem. Photobiol. Chem.2017346778810.1016/j.jphotochem.2017.05.048
    [Google Scholar]
  14. BaruahD. GoswamiM. YadavR.N.S. YadavA. DasA.M. J. Photochem. Photobiol. B2018186515810.1016/j.jphotobiol.2018.07.002 30015060
    [Google Scholar]
  15. DengY. ZhaoR. Curr. Pollut. Rep.20151316717610.1007/s40726‑015‑0015‑z
    [Google Scholar]
  16. VieiraG.B. JoséH.J. PetersonM. BaldissarelliV.Z. AlvarezP. de Fátima Peralta Muniz MoreiraR. J. Photochem. Photobiol. Chem.201835332533610.1016/j.jphotochem.2017.11.045
    [Google Scholar]
  17. LeongK.H. AzizA.A. SimL.C. SaravananP. JangM. BahnemannD. Beilstein J. Nanotechnol.20189162864810.3762/bjnano.9.59 29527438
    [Google Scholar]
  18. GolaD. kriti, A.; Bhatt, N.; Bajpai, M.; Singh, A.; Arya, A.; Chauhan, N.; Srivastava, S.K.; Tyagi, P.K.; Agrawal, Y.Curr. Res. Green Sustain. Chem.2021410013210.1016/j.crgsc.2021.100132
    [Google Scholar]
  19. MarimuthuS. AntonisamyA.J. MalayandiS. RajendranK. TsaiP.C. PugazhendhiA. PonnusamyV.K. J. Photochem. Photobiol. B202020511182310.1016/j.jphotobiol.2020.111823 32120184
    [Google Scholar]
  20. RajkumarR. EzhumalaiG. GnanadesiganM. Environ. Technol. \&.Innov.202121101282
    [Google Scholar]
  21. JaastS. GrewalA. Curr. Res. Green Sustain. Chem.2021410019510.1016/j.crgsc.2021.100195
    [Google Scholar]
  22. SinghJ. DhaliwalA.S. Environ. Technol.202041121520153410.1080/09593330.2018.1540663 30355244
    [Google Scholar]
  23. ElbadawyH.A. ElhusseinyA.F. HusseinS.M. SadikW.A. Sci. Rep.2023131230210.1038/s41598‑023‑29507‑x 36759696
    [Google Scholar]
  24. IqbalS. ZahoorC. MusaddiqS. HussainM. BegumR. IrfanA. AzamM. FarooqiZ.H. Ecotoxicol. Environ. Saf.202020211092410.1016/j.ecoenv.2020.110924 32800211
    [Google Scholar]
  25. Bustos-GuadarramaS. Nieto-MaldonadoA. Flores-LópezL.Z. Espinoza-GomezH. Alonso-NuñezG. J. Taiwan Inst. Chem. Eng.202314210466310.1016/j.jtice.2022.104663
    [Google Scholar]
  26. SharmaD. KumarA. SinghN. Biomass Convers. Biorefin.20241413135631359410.1007/s13399‑022‑03560‑4
    [Google Scholar]
  27. KaushikA. GolaD. RaghavJ. GuptaD. KumarA. AgarwalM. ChauhanN. SrivastavaS.K. TyagiP.K. Biointerface Res. Appl. Chem.202212223612372
    [Google Scholar]
  28. ReverberiA.P. KuznetsovN.T. MeshalkinV.P. SalernoM. FabianoB. Theor. Found. Chem. Eng.2016501596610.1134/S0040579516010127
    [Google Scholar]
  29. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Int. J. Mol. Sci.2016179153410.3390/ijms17091534 27649147
    [Google Scholar]
  30. BhatS.K. VermaA. SahaS.J. Ayurveda202216213413910.4103/joa.joa_77_21
    [Google Scholar]
  31. SönnichsenC. FranzlT. WilkT. PlessenG. FeldmannJ. New J. Phys.2002419310.1088/1367‑2630/4/1/393
    [Google Scholar]
  32. HeathJ.R. Phys. Rev. B Condens. Matter198940149982998510.1103/PhysRevB.40.9982 9991532
    [Google Scholar]
  33. HaoE. SchatzG.C. J. Chem. Phys.2004120135736610.1063/1.1629280 15267296
    [Google Scholar]
  34. ShankarS. ChorachooJ. JaiswalL. VoravuthikunchaiS.P. Mater. Lett.201413716016310.1016/j.matlet.2014.08.100
    [Google Scholar]
  35. ShankarS. PrasadR.G.S.V. SelvakannanP.R. JaiswalL. LaxmanR.S. Mater. Express20155216517010.1166/mex.2015.1221
    [Google Scholar]
  36. ChenS. CarrollD.L. Nano Lett.2002291003100710.1021/nl025674h
    [Google Scholar]
  37. YangJ. LuL. WangH. ShiW. ZhangH. Cryst. Growth Des.20066921552158
    [Google Scholar]
  38. BirksL.S. FriedmanH. J. Appl. Phys.194617868769210.1063/1.1707771
    [Google Scholar]
  39. ChathaS.H. KiranS. GulzarT. KamalS. GhaffarA. ChathaM.N. Oxid. Commun.2016392
    [Google Scholar]
  40. KaleR.D. KaneP.B. Textiles Clothing Sustain.201721410.1186/s40689‑016‑0015‑4
    [Google Scholar]
  41. KiranS. NosheenS. IqbalS. AbrarS. JalalF. GulzarT. MukhtarA. MaqsoodS. AhmadW. NaseerN. Chiang Mai J. Sci.201845727302739
    [Google Scholar]
  42. SleimanM. VildozoD. FerronatoC. ChovelonJ.M. Appl. Catal. B2007771-211110.1016/j.apcatb.2007.06.015
    [Google Scholar]
  43. BaruahS. JaisaiM. ImaniR. NazhadM.M. Dutta.J. Sci. Technol. Adv. Mater.201011505500210.1088/1468‑6996/11/5/055002 27877367
    [Google Scholar]
  44. FosterS.L. EstoqueK. VoecksM. RentzN. GreenleeL.F. J. Nanomater.20192019111210.1155/2019/9807605
    [Google Scholar]
  45. KiranS. HumaT. JalalF. FarooqT. HameedA. GulzarT. BashirA. RahmatM. RahmatR. RafiqueM. Pol. J. Environ. Stud.20192831749175710.15244/pjoes/89575
    [Google Scholar]
  46. MohammadE.J. LaftaA.J. KahdimS.H. Pol. J. Chem. Technol.20161831910.1515/pjct‑2016‑0041
    [Google Scholar]
  47. da SilvaB.C. ZanuttoA. PietrobelliJ.M.T.A. Adsorpt. Sci. Technol.2019373–4236259
    [Google Scholar]
  48. YaseenD.A. ScholzM. Int. J. Environ. Res.201913236738510.1007/s41742‑019‑00180‑1
    [Google Scholar]
  49. SatarR. HusainQ. Environ. Technol.200930141519152710.1080/09593330903246432 20183996
    [Google Scholar]
  50. YasminS. NourenS. BhattiH.N. IqbalD.N. IftikharS. MajeedJ. MustafaR. NisarN. NisarJ. NazirA. IqbalM. RizviH. Green Process. Synth.202091879610.1515/gps‑2020‑0010
    [Google Scholar]
  51. ShiT. WeiQ. WangZ. ZhangG. SunX. HeQ.Y. MSphere201943e00175e1910.1128/mSphere.00175‑19 31043515
    [Google Scholar]
  52. ChenX. ZhengZ. KeX. JaatinenE. XieT. WangD. GuoC. ZhaoJ. ZhuH. Green Chem.201012341441910.1039/b921696k
    [Google Scholar]
  53. SinghM.K. MehataM.S. Optik201919316301110.1016/j.ijleo.2019.163011
    [Google Scholar]
  54. KoppM. KollendaS. EppleM. Acc. Chem. Res.20175061383139010.1021/acs.accounts.7b00051 28480714
    [Google Scholar]
  55. SaptarshiS.R. DuschlA. LopataA.L. J. Nanobiotechnology20131112610.1186/1477‑3155‑11‑26 23870291
    [Google Scholar]
  56. SelvakannanP. SwamiA. SrisathiyanarayananD. ShirudeP.S. PasrichaR. MandaleA.B. SastryM. Langmuir200420187825783610.1021/la049258j 15323537
    [Google Scholar]
/content/journals/loc/10.2174/0115701786369895250401183100
Loading
/content/journals/loc/10.2174/0115701786369895250401183100
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test