Skip to content
2000
image of Asparagine-Capped Silver Nanoparticles for the Photocatalytic 
Degradation of Metanil Yellow Dye: An Adulterant in Turmeric Powder

Abstract

This study specifically aimed to identify the presence of non-permitted food colorings in spices and evaluate a novel method for reducing them using silver nanoparticles. Spices, known for their aromatic and pungent qualities, play a crucial role in enhancing the flavor of food and beverages. However, the adulteration of spices presents a serious threat to human health, making it imperative to detect harmful substances. Asparagine-capped silver nanoparticles (Asp-AgNPs) demonstrated remarkable efficacy and could photo-catalytically reduce metanil yellow dye. To assess real-world implications, four samples of turmeric powder were collected from local markets in Agra. The focus was on testing for adulteration with metal yellow, one of the most widely used but prohibited food colorants. The investigation involved carefully observing color changes in the test samples. The results revealed that two out of the four turmeric powder samples contained metanil yellow dye, highlighting a concerning prevalence of adulteration in commonly consumed spices. Asparagine-capped silver nanoparticles (Asp-AgNPs) demonstrated remarkable efficacy, capable of photo-catalytically reducing approximately 95.4% of the adulterant dye within 60 minutes when in contact with the prepared catalyst under optimized conditions. Our findings revealed that the asparagine-capped silver nanoparticles (Asp-AgNPs) performed exceptionally well as catalysts, facilitating a remarkable reduction of metal yellow dye, thus achieving an impressive 95.4% reduction rate. This research suggests that asparagine-capped silver nanoparticles could be significant catalysts for effectively degrading toxic dyes in various applications.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786369895250401183100
2025-04-16
2025-09-18
Loading full text...

Full text loading...

References

  1. Jaiswal S. Yadav D.S. Mishra M.K. Gupta A.K. Int. J. Dev. Res. 2016 6 08 8824 8827
    [Google Scholar]
  2. Chandila J. Puri D. Int. J. Health Sci. Res. 2019 9 8 399 405
    [Google Scholar]
  3. Rao P. Bhat R.V. Sudershan R.V. Prasanna Krishna T. Br. Food J. 2005 107 5 276 284 10.1108/00070700510596875
    [Google Scholar]
  4. Sarkar R. Ghosh A.R. Pollut. Res. 2010 29 3 453 460
    [Google Scholar]
  5. Chandro S.S. Nagaraja T. Med. J. Armed Forces India 1987 43 4 291 293
    [Google Scholar]
  6. Downham A. Collins P. Int. J. food Sci. \& Technol. 2000 35 1 5 22
    [Google Scholar]
  7. Khanna S.K. J. Sci. Ind. Res. 1991 50 965 974
    [Google Scholar]
  8. Alves S.P. Brum D.M. Branco de Andrade É.C. Pereira Netto A.D. Food Chem. 2008 107 1 489 496 10.1016/j.foodchem.2007.07.054
    [Google Scholar]
  9. Choi H. J. Food Nutr. Res. 2012 51 1 13 22
    [Google Scholar]
  10. Rajapaksha G.K.M. Wansapala M.A.J. Silva A.B.G. Int. J. Sci. Res. 2017 6 801 808
    [Google Scholar]
  11. Aggarwal B. B. Harikumar K. B. Int. J. Biochem. & Cell Biol. 2009 41 1 40 59
    [Google Scholar]
  12. Sasikumar B. Syamkumar S. Remya R. John Zachariah T. Food Biotechnol. 2004 18 3 299 306 10.1081/FBT‑200035022
    [Google Scholar]
  13. Ahmed M.A. Messih M.F.A. El-Sherbeny E.F. El-Hafez S.F. Khalifa A.M.M. J. Photochem. Photobiol. Chem. 2017 346 77 88 10.1016/j.jphotochem.2017.05.048
    [Google Scholar]
  14. Baruah D. Goswami M. Yadav R.N.S. Yadav A. Das A.M. J. Photochem. Photobiol. B 2018 186 51 58 10.1016/j.jphotobiol.2018.07.002 30015060
    [Google Scholar]
  15. Deng Y. Zhao R. Curr. Pollut. Rep. 2015 1 3 167 176 10.1007/s40726‑015‑0015‑z
    [Google Scholar]
  16. Vieira G.B. José H.J. Peterson M. Baldissarelli V.Z. Alvarez P. de Fátima Peralta Muniz Moreira R. J. Photochem. Photobiol. Chem. 2018 353 325 336 10.1016/j.jphotochem.2017.11.045
    [Google Scholar]
  17. Leong K.H. Aziz A.A. Sim L.C. Saravanan P. Jang M. Bahnemann D. Beilstein J. Nanotechnol. 2018 9 1 628 648 10.3762/bjnano.9.59 29527438
    [Google Scholar]
  18. Gola D. kriti A. Bhatt N. Bajpai M. Singh A. Arya A. Chauhan N. Srivastava S.K. Tyagi P.K. Agrawal Y. Curr. Res. Green Sustain. Chem. 2021 4 100132 10.1016/j.crgsc.2021.100132
    [Google Scholar]
  19. Marimuthu S. Antonisamy A.J. Malayandi S. Rajendran K. Tsai P.C. Pugazhendhi A. Ponnusamy V.K. J. Photochem. Photobiol. B 2020 205 111823 10.1016/j.jphotobiol.2020.111823 32120184
    [Google Scholar]
  20. Rajkumar R. Ezhumalai G. Gnanadesigan M. Environ. Technol. \& Innov. 2021 21 101282
    [Google Scholar]
  21. Jaast S. Grewal A. Curr. Res. Green Sustain. Chem. 2021 4 100195 10.1016/j.crgsc.2021.100195
    [Google Scholar]
  22. Singh J. Dhaliwal A.S. Environ. Technol. 2020 41 12 1520 1534 10.1080/09593330.2018.1540663 30355244
    [Google Scholar]
  23. Elbadawy H.A. Elhusseiny A.F. Hussein S.M. Sadik W.A. Sci. Rep. 2023 13 1 2302 10.1038/s41598‑023‑29507‑x 36759696
    [Google Scholar]
  24. Iqbal S. Zahoor C. Musaddiq S. Hussain M. Begum R. Irfan A. Azam M. Farooqi Z.H. Ecotoxicol. Environ. Saf. 2020 202 110924 10.1016/j.ecoenv.2020.110924 32800211
    [Google Scholar]
  25. Bustos-Guadarrama S. Nieto-Maldonado A. Flores-López L.Z. Espinoza-Gomez H. Alonso-Nuñez G. J. Taiwan Inst. Chem. Eng. 2023 142 104663 10.1016/j.jtice.2022.104663
    [Google Scholar]
  26. Sharma D. Kumar A. Singh N. Biomass Convers. Biorefin. 2024 14 13 13563 13594 10.1007/s13399‑022‑03560‑4
    [Google Scholar]
  27. Kaushik A. Gola D. Raghav J. Gupta D. Kumar A. Agarwal M. Chauhan N. Srivastava S.K. Tyagi P.K. Biointerface Res. Appl. Chem. 2022 12 2 2361 2372
    [Google Scholar]
  28. Reverberi A.P. Kuznetsov N.T. Meshalkin V.P. Salerno M. Fabiano B. Theor. Found. Chem. Eng. 2016 50 1 59 66 10.1134/S0040579516010127
    [Google Scholar]
  29. Zhang X.F. Liu Z.G. Shen W. Gurunathan S. Int. J. Mol. Sci. 2016 17 9 1534 10.3390/ijms17091534 27649147
    [Google Scholar]
  30. Bhat S.K. Verma A. Saha S. J. Ayurveda 2022 16 2 134 139 10.4103/joa.joa_77_21
    [Google Scholar]
  31. Sönnichsen C. Franzl T. Wilk T. Plessen G. Feldmann J. New J. Phys. 2002 4 1 93 10.1088/1367‑2630/4/1/393
    [Google Scholar]
  32. Heath J.R. Phys. Rev. B Condens. Matter 1989 40 14 9982 9985 10.1103/PhysRevB.40.9982 9991532
    [Google Scholar]
  33. Hao E. Schatz G.C. J. Chem. Phys. 2004 120 1 357 366 10.1063/1.1629280 15267296
    [Google Scholar]
  34. Shankar S. Chorachoo J. Jaiswal L. Voravuthikunchai S.P. Mater. Lett. 2014 137 160 163 10.1016/j.matlet.2014.08.100
    [Google Scholar]
  35. Shankar S. Prasad R.G.S.V. Selvakannan P.R. Jaiswal L. Laxman R.S. Mater. Express 2015 5 2 165 170 10.1166/mex.2015.1221
    [Google Scholar]
  36. Chen S. Carroll D.L. Nano Lett. 2002 2 9 1003 1007 10.1021/nl025674h
    [Google Scholar]
  37. Yang J. Lu L. Wang H. Shi W. Zhang H. Cryst. Growth Des. 2006 6 9 2155 2158
    [Google Scholar]
  38. Birks L.S. Friedman H. J. Appl. Phys. 1946 17 8 687 692 10.1063/1.1707771
    [Google Scholar]
  39. Chatha S.H. Kiran S. Gulzar T. Kamal S. Ghaffar A. Chatha M.N. Oxid. Commun. 2016 39 2
    [Google Scholar]
  40. Kale R.D. Kane P.B. Textiles Clothing Sustain. 2017 2 1 4 10.1186/s40689‑016‑0015‑4
    [Google Scholar]
  41. Kiran S. Nosheen S. Iqbal S. Abrar S. Jalal F. Gulzar T. Mukhtar A. Maqsood S. Ahmad W. Naseer N. Chiang Mai J. Sci. 2018 45 7 2730 2739
    [Google Scholar]
  42. Sleiman M. Vildozo D. Ferronato C. Chovelon J.M. Appl. Catal. B 2007 77 1-2 1 11 10.1016/j.apcatb.2007.06.015
    [Google Scholar]
  43. Baruah S. Jaisai M. Imani R. Nazhad M.M. Dutta J. Sci. Technol. Adv. Mater. 2010 11 5 055002 10.1088/1468‑6996/11/5/055002 27877367
    [Google Scholar]
  44. Foster S.L. Estoque K. Voecks M. Rentz N. Greenlee L.F. J. Nanomater. 2019 2019 1 1 12 10.1155/2019/9807605
    [Google Scholar]
  45. Kiran S. Huma T. Jalal F. Farooq T. Hameed A. Gulzar T. Bashir A. Rahmat M. Rahmat R. Rafique M. Pol. J. Environ. Stud. 2019 28 3 1749 1757 10.15244/pjoes/89575
    [Google Scholar]
  46. Mohammad E.J. Lafta A.J. Kahdim S.H. Pol. J. Chem. Technol. 2016 18 3 1 9 10.1515/pjct‑2016‑0041
    [Google Scholar]
  47. da Silva B.C. Zanutto A. Pietrobelli J.M.T.A. Adsorpt. Sci. Technol. 2019 37 3–4 236 259
    [Google Scholar]
  48. Yaseen D.A. Scholz M. Int. J. Environ. Res. 2019 13 2 367 385 10.1007/s41742‑019‑00180‑1
    [Google Scholar]
  49. Satar R. Husain Q. Environ. Technol. 2009 30 14 1519 1527 10.1080/09593330903246432 20183996
    [Google Scholar]
  50. Yasmin S. Nouren S. Bhatti H.N. Iqbal D.N. Iftikhar S. Majeed J. Mustafa R. Nisar N. Nisar J. Nazir A. Iqbal M. Rizvi H. Green Process. Synth. 2020 9 1 87 96 10.1515/gps‑2020‑0010
    [Google Scholar]
  51. Shi T. Wei Q. Wang Z. Zhang G. Sun X. He Q.Y. MSphere 2019 4 3 e00175-19 10.1128/mSphere.00175‑19 31043515
    [Google Scholar]
  52. Chen X. Zheng Z. Ke X. Jaatinen E. Xie T. Wang D. Guo C. Zhao J. Zhu H. Green Chem. 2010 12 3 414 419 10.1039/b921696k
    [Google Scholar]
  53. Singh M.K. Mehata M.S. Optik 2019 193 163011 10.1016/j.ijleo.2019.163011
    [Google Scholar]
  54. Kopp M. Kollenda S. Epple M. Acc. Chem. Res. 2017 50 6 1383 1390 10.1021/acs.accounts.7b00051 28480714
    [Google Scholar]
  55. Saptarshi S.R. Duschl A. Lopata A.L. J. Nanobiotechnology 2013 11 1 26 10.1186/1477‑3155‑11‑26 23870291
    [Google Scholar]
  56. Selvakannan P. Swami A. Srisathiyanarayanan D. Shirude P.S. Pasricha R. Mandale A.B. Sastry M. Langmuir 2004 20 18 7825 7836 10.1021/la049258j 15323537
    [Google Scholar]
/content/journals/loc/10.2174/0115701786369895250401183100
Loading
/content/journals/loc/10.2174/0115701786369895250401183100
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Asparagine ; turmeric ; silver nanoparticles ; metanil yellow dye ; degradation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test