Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

A palladium-catalyzed Heck cyclization/reductive aminocarbonylation was developed for alkene-tethered carbamoyl chlorides with nitroarenes using Mo(CO) as a convenient CO surrogate and reductant. This process constructed one C–N bond and two C–C bonds, yielding a variety of amidated oxindoles/γ-lactams with an all-carbon quaternary stereocenter under gas-free conditions. The transformation exhibited a wide range of substrate compatibility and exceptional functional group tolerance.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786367852250207102915
2025-02-11
2025-09-03
Loading full text...

Full text loading...

References

  1. (a DhokneP. SaklaA.P. ShankaraiahN. Eur. J. Med. Chem.202121611333410.1016/j.ejmech.2021.11333433721669
    [Google Scholar]
  2. (b KhetmalisY.M. ShivaniM. MurugesanS. Chandra SekharK.V.G. Biomed. Pharmacother.202114111184211185910.1016/j.biopha.2021.11184234174506
    [Google Scholar]
  3. (c KaurM. SinghM. ChadhaN. SilakariO. Eur. J. Med. Chem.201612385889410.1016/j.ejmech.2016.08.01127543880
    [Google Scholar]
  4. (d YeN. ChenH. WoldE.A. ShiP.Y. ZhouJ. ACS Infect. Dis.20162638239210.1021/acsinfecdis.6b0004127627626
    [Google Scholar]
  5. (e SaraswatP. JeyabalanG. HassanM.Z. RahmanM.U. NyolaN.K. Synth. Commun.201646201643166410.1080/00397911.2016.1211704
    [Google Scholar]
  6. (a HutersA.D. StyduharE.D. GargN.K. Angew. Chem. Int. Ed.201251163758376510.1002/anie.20110756722415889
    [Google Scholar]
  7. (b TrostB. BrennanM. Synthesis20092009183003302510.1055/s‑0029‑1216975
    [Google Scholar]
  8. (c MaY.T. YangY. CaiP. SunD.Y. Sánchez-MurciaP.A. ZhangX.Y. JiaW.Q. LeiL. GuoM. GagoF. WangH. FangW.S. J. Nat. Prod.201881352453310.1021/acs.jnatprod.7b0085729359935
    [Google Scholar]
  9. (d LiuR. HeissE.H. SchachnerD. JiangB. LiuW. BreussJ.M. DirschV.M. AtanasovA.G. J. Nat. Prod.20178072146215010.1021/acs.jnatprod.7b0026828627872
    [Google Scholar]
  10. (e DaiS.J. XiaoK. ZhangL. HanQ.T. J. Asian Nat. Prod. Res.201618545646110.1080/10286020.2015.113270726757611
    [Google Scholar]
  11. (a VlaarT. RuijterE. OrruR.V.A. Adv. Synth. Catal.2011353680984110.1002/adsc.201000979
    [Google Scholar]
  12. (b PingY. LiY. ZhuJ. KongW. Angew. Chem. Int. Ed.20195861562157310.1002/anie.20180608829959826
    [Google Scholar]
  13. (c ChenC. ZhaoJ. ShiX. LiuL. ZhuY.P. SunW. ZhuB. Org. Chem. Front.20207141948196910.1039/D0QO00397B
    [Google Scholar]
  14. (d ZhangZ.M. XuB. WuL. WuY. QianY. ZhouL. LiuY. ZhangJ. Angew. Chem. Int. Ed.20195841146531465910.1002/anie.20190784031420928
    [Google Scholar]
  15. (e LiuM. WangX. GuoZ. LiH. HuangW. XuH. DaiH.X. Org. Lett.202123166299630410.1021/acs.orglett.1c0209334350756
    [Google Scholar]
  16. (f KongW. WangQ. ZhuJ. Angew. Chem. Int. Ed.201756143987399110.1002/anie.20170019528272769
    [Google Scholar]
  17. (g WeiW.X. ChenS. XiaY. LiM. LiX.S. HanY.P. WangC.T. LiangY.M. ChemCatChem201911235754575710.1002/cctc.201900303
    [Google Scholar]
  18. (h PanX.F. BaoX. XuR.R. QiX. WuX.F. Org. Biomol. Chem.202321306107611010.1039/D3OB01004J37461849
    [Google Scholar]
  19. (i ZhangZ.M. XuB. QianY. WuL. WuY. ZhouL. LiuY. ZhangJ. Angew. Chem. Int. Ed.20185732103731037710.1002/anie.20180637229923656
    [Google Scholar]
  20. (a ShresthaM. WuX. HuangW. QuJ. ChenY. Org. Chem. Front.20218144024404510.1039/D0QO01648A
    [Google Scholar]
  21. (b LiP-P. YuanB. FangS-C. XiaoH-X. CaiS-Q. PanB. LiangW. DuF. ACS Catal.20231322152031521110.1021/acscatal.3c04122
    [Google Scholar]
  22. (c WangL.L. LiuX.F. ZhangW-Z. WangH. TaoL. HuangJ. RenW-M. LuX-B. Synthesis202355182951295810.1055/s‑0041‑1738439
    [Google Scholar]
  23. YasuiY. KamisakiH. TakemotoY. Org. Lett.200810153303330610.1021/ol801168j18582078
    [Google Scholar]
  24. FengZ. LiQ. ChenL. YaoH. LinA. Sci. China Chem.20216481367137110.1007/s11426‑021‑9992‑2
    [Google Scholar]
  25. (a TongS. LimouniA. WangQ. WangM.X. ZhuJ. Angew. Chem. Int. Ed.20175645141921419610.1002/anie.20170913328922533
    [Google Scholar]
  26. (b ZeidanN. BeiselT. RossR. LautensM. Org. Lett.201820227332733510.1021/acs.orglett.8b0331030403354
    [Google Scholar]
  27. WuJ. WangC. Org. Lett.202123166407641110.1021/acs.orglett.1c0222334347502
    [Google Scholar]
  28. WhyteA. BurtonK.I. ZhangJ. LautensM. Angew. Chem. Int. Ed.20185742139271393010.1002/anie.20180846030160825
    [Google Scholar]
  29. SunW. ChenC. QiY. ZhaoJ. BaoY. ZhuB. Org. Biomol. Chem.201917368358836310.1039/C9OB01672D31465083
    [Google Scholar]
  30. ChenC. SunW. LiuL. ZhaoJ. HuangY. ShiX. DingJ. JiaoD. ZhuB. Org. Chem. Front.20218102250225510.1039/D1QO00221J
    [Google Scholar]
  31. ChenC. SunW. YanY. YangF. WangY. ZhuY.P. LiuL. ZhuB. Adv. Synth. Catal.2020362142970297510.1002/adsc.202000337
    [Google Scholar]
  32. SunW. ShiX. ChenC. ZhuY.P. LiuZ. ZhuB. Asian J. Org. Chem.20209457557810.1002/ajoc.202000033
    [Google Scholar]
  33. (a ChenC. HuJ. SuJ. TongX. Tetrahedron Lett.201455213229323110.1016/j.tetlet.2014.04.019
    [Google Scholar]
  34. (b WuX. QuJ. ChenY. J. Am. Chem. Soc.202014237156541566010.1021/jacs.0c0712632845137
    [Google Scholar]
  35. (c MarcheseA.D. WollenburgM. MirabiB. Abel-SnapeX. WhyteA. GloriusF. LautensM. ACS Catal.20201084780478510.1021/acscatal.0c00841
    [Google Scholar]
  36. ChenC. LiuL. LiuJ.P. DingJ. NiC. NiC. ZhuB. Org. Biomol. Chem.202321357129713510.1039/D3OB01149F37602718
    [Google Scholar]
  37. (a FengB. YangY. YouJ. Chem. Commun. (Camb.)202056579079310.1039/C9CC08663C31845938
    [Google Scholar]
  38. (b PengJ.B. GengH.Q. LiD. QiX. YingJ. WuX.F. Org. Lett.201820164988499310.1021/acs.orglett.8b0210930067026
    [Google Scholar]
  39. (c ZhangQ. BuJ. WangJ. SunC. ZhaoD. ShengG. XieX. SunM. YuL. ACS Catal.20201018103501036310.1021/acscatal.0c02730
    [Google Scholar]
  40. (d XiaoF. LiuY. TangC. DengG.J. Org. Lett.201214498498710.1021/ol203211k22292907
    [Google Scholar]
  41. (a PengJ.B. LiD. GengH.Q. WuX.F. Org. Lett.201921124878488110.1021/acs.orglett.9b0177231184198
    [Google Scholar]
  42. (b WangL.C. ZhangY. ChenZ. WuX.F. Adv. Synth. Catal.202136351417142610.1002/adsc.202001502
    [Google Scholar]
  43. (c HeL. SharifM. NeumannH. BellerM. WuX.F. Green Chem.20141683763376710.1039/C4GC00801D
    [Google Scholar]
  44. (d PengJ.B. GengH.Q. WuF.P. LiD. WuX.F. J. Catal.201937551952310.1016/j.jcat.2019.05.034
    [Google Scholar]
  45. (e GengH.Q. PengJ.B. WuX.F. Org. Lett.201921208215821810.1021/acs.orglett.9b0292531565941
    [Google Scholar]
  46. (f PengJ.B. GengH.Q. WangW. QiX. YingJ. WuX.F. J. Catal.2018365101310.1016/j.jcat.2018.06.007
    [Google Scholar]
  47. (a YangF. SunW. MengH. ChenM. ChenC. ZhuB. Org. Chem. Front.20218228328710.1039/D0QO01166E
    [Google Scholar]
  48. (b ChenC. LiuL. SunW. ZhuB. ChemistrySelect20216256464646710.1002/slct.202101985
    [Google Scholar]
  49. (c ChenC. NiC. SongJ.H. DingL.Y. ZhangX.X. GuoH. WangK. ChenZ. ZhuB. ACS Catal.20241416121811219110.1021/acscatal.4c03757
    [Google Scholar]
/content/journals/loc/10.2174/0115701786367852250207102915
Loading
/content/journals/loc/10.2174/0115701786367852250207102915
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test