Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

Dibenzocarbazoles are a class of important materials used in optoelectronic devices. Their simple and practical construction, therefore, holds great potential from both academic and industrial application aspects. However, the conventional synthetic methods for these compounds often suffer the inadequacies, such as tedious synthetic processes, harsh reaction conditions, limited substrate scope, and high cost. Considering the advantage of the rapid development of photochemistry in organic synthesis, we report a concise and efficient synthetic method for these dibenzo[]carbazole compounds under visible light irradiation. This new protocol enables the reaction to proceed under ambient temperature without any catalyst or metal additives, representing a highly efficient and cost-effective pattern. The results infer that the synthesis takes place 6π electrocyclization and the consequent dehydrogenation in one pot under mild reaction conditions. Starting from the easily available -tetralone and arylamine, a variety of substrates bearing diverse substituents are smoothly converted into the corresponding dibenzo[]carbazoles with moderate to good yields. It is concluded that the electronic properties of the substituents could not exert a significant influence on the product yield, but the steric hindrance showed an obvious negative effect. This newly developed protocol features the easy availability of starting materials and high cost-efficiency, providing a good alternative for the efficient synthesis of dibenzocarbazoles and their derivatives.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786365977250129044853
2025-02-04
2025-09-08
Loading full text...

Full text loading...

References

  1. GrazuleviciusJ.V. StrohrieglP. PielichowskiJ. PielichowskiK. Prog. Polym. Sci.20032891297135310.1016/S0079‑6700(03)00036‑4
    [Google Scholar]
  2. SigwaltP. WegnerG. MorinJ-F. LeclercM. AdesD. SioveA. Macromol. Rapid Commun.20052676110.1002/marc.200500096
    [Google Scholar]
  3. BlouinN. LeclercM. Acc. Chem. Res.20084191110111910.1021/ar800057k18656967
    [Google Scholar]
  4. BoudreaultP-L.T. BeaupreS. LeclercM. Polym. Chem.-UK20101127
    [Google Scholar]
  5. LedwonP. Org. Electron.20197510542210.1016/j.orgel.2019.105422
    [Google Scholar]
  6. NaikP. PlanchatA. PellegrinY. OdobelF. Vasudeva AdhikariA. Sol. Energy20171571064107310.1016/j.solener.2017.09.024
    [Google Scholar]
  7. DaskevicieneM. PaekS. WangZ. MalinauskasT. JokubauskaiteG. RakstysK. ChoK.T. MagomedovA. JankauskasV. AhmadS. SnaithH.J. GetautisV. NazeeruddinM.K. Nano Energy20173255155710.1016/j.nanoen.2017.01.015
    [Google Scholar]
  8. DasB.P. Int. Pest. Control198931144
    [Google Scholar]
  9. KnoelkerH-J. ReddyK.R. Chem. Rev.2002102430310.1021/cr020059j12428991
    [Google Scholar]
  10. DingY-Y. ZhouH. DengP. ZhangB-Q. ZhangZ-J. WangG-H. ZhangS-Y. WuZ-R. WangY-R. LiuY-Q. Eur. J. Med. Chem.202325911562710.1016/j.ejmech.2023.11562737467619
    [Google Scholar]
  11. WangG. SunS. GuoH. Eur. J. Med. Chem.202222911399910.1016/j.ejmech.2021.11399934838335
    [Google Scholar]
  12. SchmidtA.W. ReddyK.R. KnölkerH. J. Chem. Rev.201211263193332810.1021/cr200447s22480243
    [Google Scholar]
  13. GłuszyńskaA. Eur. J. Med. Chem.20159440542610.1016/j.ejmech.2015.02.05925794500
    [Google Scholar]
  14. ThevissenK. MarchandA. ChaltinP. MeertE. CammueB. Curr. Med. Chem.200916172205221110.2174/09298670978861270119519387
    [Google Scholar]
  15. CarusoA. CeramellaJ. IacopettaD. SaturninoC. MauroM.V. BrunoR. AquaroS. SinicropiM.S. Molecules20192410191210.3390/molecules2410191231109016
    [Google Scholar]
  16. TsutsumiL. Curr. Top. Med. Chem.201616129026369811
    [Google Scholar]
  17. ChoiT.A. CzerwonkaR. ForkeR. JägerA. KnöllJ. KrahlM.P. KrauseT. ReddyK.R. FranzblauS.G. KnölkerH-J. Med. Chem. Res.2008172-737438510.1007/s00044‑007‑9073‑0
    [Google Scholar]
  18. NandyB.C. GuptaA.K. MittalA. VyasV. J. Biomed. Pharm. Res.2014342
    [Google Scholar]
  19. GrandaM. MenéndezR. MoineloS.R. BermejoJ. SnapeC.E. Fuel1993721192310.1016/0016‑2361(93)90370‑H
    [Google Scholar]
  20. NiH. XuC. WangR. GuoX. LongY. MaC. YanL. LiuX. ShiQ. Energy Fuels20183233077308410.1021/acs.energyfuels.7b03659
    [Google Scholar]
  21. MarzinzikA.L. RademacherP. ZanderM. J. Mol. Struct. Theochem19963751-211712610.1016/S0166‑1280(96)91289‑0
    [Google Scholar]
  22. HanJ. GuoS. LuH. LiuS. ZhaoQ. HuangW. Adv. Opt. Mater.2018617180053810.1002/adom.201800538
    [Google Scholar]
  23. MaS. SunH. ChenJ. YuY. LuH. WangS. ZhangJ. ZhaoJ. LongG. WangX.D. Adv. Opt. Mater.20231113220308710.1002/adom.202203087
    [Google Scholar]
  24. JungS-Y. LeeS-H. LeeM-J. MoonD-H. ChoS-H. US Patent 20211262032021
  25. LeeS-H. KimB. JungS-Y. ShinH-N. LeeM-J. US Patent 20223847442022
  26. WeaversR.T. SondheimerF. Angew. Chem. Int. Ed. Engl.197413214114210.1002/anie.197401411
    [Google Scholar]
  27. ĐorđevićL. MilanoD. DemitriN. BonifaziD. Org. Lett.202022114283428810.1021/acs.orglett.0c0133132429668
    [Google Scholar]
  28. ShaoJ. ZhaoX. WangL. TangQ. LiW. YuH. TianH. ZhangX. GengY. WangF. Tetrahedron Lett.201455415663566610.1016/j.tetlet.2014.08.073
    [Google Scholar]
  29. LuoC.E. DingZ. WuX.W. LiuZ. Spectrochim. Acta A Mol. Biomol. Spectrosc.201819411111610.1016/j.saa.2018.01.004
    [Google Scholar]
  30. ItoH. ItamiK. KawaharaK.P. Synthesis20245691335135410.1055/a‑2169‑4078
    [Google Scholar]
  31. MatsumuraM. KawahataM. MuranakaA. HiraiwaM. YamaguchiK. UchiyamaM. YasuikeS. Eur. J. Org. Chem.20192019233788379310.1002/ejoc.201900464
    [Google Scholar]
  32. BellottiP. HuangH.M. FaberT. GloriusF. Chem. Rev.202312384237435210.1021/acs.chemrev.2c0047836692361
    [Google Scholar]
  33. ShawM.H. TwiltonJ. MacMillanD.W.C. J. Org. Chem.201681166898692610.1021/acs.joc.6b0144927477076
    [Google Scholar]
  34. PrierC.K. RankicD.A. MacMillanD.W.C. Chem. Rev.201311375322536310.1021/cr300503r23509883
    [Google Scholar]
  35. ChanA.Y. PerryI.B. BissonnetteN.B. BukshB.F. EdwardsG.A. FryeL.I. GarryO.L. LavagninoM.N. LiB.X. LiangY. MaoE. MilletA. OakleyJ.V. ReedN.L. SakaiH.A. SeathC.P. Chem. Rev.2022122148510.1021/acs.chemrev.1c0038334793128
    [Google Scholar]
  36. Strieth-KalthoffF. JamesM.J. TedersM. PitzerL. GloriusF. Chem. Soc. Rev.201847197190720210.1039/C8CS00054A30088504
    [Google Scholar]
  37. ZhouQ.Q. ZouY.Q. LuL.Q. XiaoW.J. Angew. Chem. Int. Ed.20195861586160410.1002/anie.201803102
    [Google Scholar]
  38. CannalireR. PellicciaS. SancinetoL. NovellinoE. TronG.C. GiustinianoM. Chem. Soc. Rev.202150276689710.1039/D0CS00493F33350402
    [Google Scholar]
  39. SalumM.L. ProttiS. MellaM. BonesiS.M. ChemPhotoChem20248e20240005110.1002/cptc.202400051
    [Google Scholar]
  40. ZhangW. BuJ. WangL. LiP. LiH. Org. Chem. Front.20218185045505110.1039/D1QO00739D
    [Google Scholar]
  41. MannaK. GangulyT. BaitalikS. JanaR. Org. Lett.202123218634863910.1021/acs.orglett.1c0334334643396
    [Google Scholar]
  42. LiuQ. LiuY-X. SongH-J. WangQ-M. Adv. Synth. Catal.2020362311010.1002/adsc.202000578
    [Google Scholar]
  43. WuY. KangJ. ZhuH. BiM. LiJ. MengQ. LyuX. WuZ. ACS Sustain. Chem.& Eng.202412176640664710.1021/acssuschemeng.4c00202
    [Google Scholar]
  44. QuZ. ChenX. ZhongS. Org. Lett.202123534910.1021/acs.orglett.1c0165434180677
    [Google Scholar]
  45. DasS. KunduS. MetyaA. MajiM.S. Chem. Sci. (Camb.)20241533134661347410.1039/D4SC03438D
    [Google Scholar]
  46. BabuS.S. ShahidM. GopinathP. Chem. Commun. (Camb.)202056445985598810.1039/D0CC01443E32347860
    [Google Scholar]
  47. ShengH. LiuQ. ZhangB.B. WangZ.X. ChenX.Y. Angew. Chem. Int. Ed.20236212e20221846810.1002/anie.202218468
    [Google Scholar]
  48. HerediaM.D. GuerraW.D. BaroloS.M. FornasierS.J. RossiR.A. BudénM.E. J. Org. Chem.20208521134811349410.1021/acs.joc.0c0152332893628
    [Google Scholar]
  49. YuanZ.G. WangQ. ZhengA. ZhangK. LuL.Q. TangZ. XiaoW. J. Chem. Commun. (Camb.)201652295128513110.1039/C5CC10542K26987917
    [Google Scholar]
  50. ZhangL. WangZ. SongZ. J. Org. Chem.202489128888889510.1021/acs.joc.4c0074638818883
    [Google Scholar]
  51. ZhangQ.L. FanQ.T. ZhouY. ZhangJ. ZhangF.L. Org. Chem. Front.202411102884289010.1039/D4QO00140K
    [Google Scholar]
  52. WangE.B. FanQ. LuX. SunB. ZhangF.L. Org. Biomol. Chem.202422244968497210.1039/D4OB00656A38825973
    [Google Scholar]
  53. DuanT. ZhangY. ZhangJ. LuX. MaL. SunB. ZhangF.L. Tetrahedron Lett.202312115447610.1016/j.tetlet.2023.154476
    [Google Scholar]
  54. DuttaS. ErchingerJ.E. Strieth-KalthoffF. KleinmansR. GloriusF. Chem. Soc. Rev.20245331068108910.1039/D3CS00190C38168974
    [Google Scholar]
  55. HoffmannN. Chem. Rev.200810831052110310.1021/cr068033618302419
    [Google Scholar]
  56. LiuB. WangQ. ChengB. WangT. LiaoH. LinH.W. Green Chem.20242684742474810.1039/D3GC03983H
    [Google Scholar]
  57. MashraquiS. KeehnP. Synth. Commun.198212863764510.1080/00397918208061895
    [Google Scholar]
  58. BonnaudB. BiggD.C.H. Synthesis19941994546546710.1055/s‑1994‑25500
    [Google Scholar]
  59. HughesB. SuschitzkyH. J. Chem. Soc.196587510.1039/jr9650000875
    [Google Scholar]
  60. YuC. ZhangY. ZhangS. LiH. WangW. Chem. Commun. (Camb.)20114731036103810.1039/C0CC03186K21072421
    [Google Scholar]
  61. XieJ. HuangY. SongH. LiuY. WangQ. Org. Lett.201719226056605910.1021/acs.orglett.7b0276729086568
    [Google Scholar]
  62. PengF. McLaughlinM. LiuY. MangionI. TschaenD.M. XuY. J. Org. Chem.20168120100091001510.1021/acs.joc.6b0185427700080
    [Google Scholar]
  63. LlopisN. GisbertP. BaezaA. Correa-Campillo.J. Adv. Synth. Catal.202236461205121010.1002/adsc.202101360
    [Google Scholar]
  64. LlopisN. GisbertP. BaezaA. Adv. Synth. Catal.2021363133245324910.1002/adsc.202100214
    [Google Scholar]
  65. LlopisN. BaezaA. J. Org. Chem.20208596159616410.1021/acs.joc.0c0021832274926
    [Google Scholar]
  66. LlopisN. GisbertP. BaezaA. J. Org. Chem.20208517110721107910.1021/acs.joc.0c0157932786613
    [Google Scholar]
/content/journals/loc/10.2174/0115701786365977250129044853
Loading
/content/journals/loc/10.2174/0115701786365977250129044853
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test