Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The production and consumption of biodiesel in Brazil and worldwide have considerably increased in the last decades. As a consequence, the waste glycerol (glycerin) as a byproduct from this synthetic process has also increased since approximately 10-30% of glycerol is generated in the biodiesel synthesis process. Therefore, the reuse of glycerol after the biodiesel synthesis is highly desired. However, waste glycerol purification is still a costly process. In this context, herein, we propose a synthetic alternative for the use of waste glycerol as a solvent and promoting medium for condensation reactions of 1,8-diaminonaphthalene and different aldehydes. The reactions were carried out using the waste glycerol without prior purification at room temperature for 30 min, affording the synthesis of a series of perimidines in excellent yields. Furthermore, a comparative study was performed between the use of commercial glycerol or waste glycerol in the reactions, and the results showed that the waste glycerol is more efficient considering the product yields. The use of waste glycerol as a green solvent and a promotion medium for organic processes is a robust, sustainable, and economically viable option for the application of this undesired byproduct of biodiesel synthesis.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786364958250214093807
2025-02-17
2025-09-10
Loading full text...

Full text loading...

References

  1. LüneburgerS. Lazarin GallinaA. Cabreira SoaresL. Moter BenvegnúD. Fuel202232412463910.1016/j.fuel.2022.124639
    [Google Scholar]
  2. OleinikG. DarioP.P. de Morais GasperinK. BenvegnúD.M. LimaF.O. SoaresL.C. GallinaA.L. Sci. Rep.202212148010.1038/s41598‑021‑04017‑w 35013381
    [Google Scholar]
  3. dos SantosV.H.J.M. PestanaV.Z. de FreitasJ.S. RodriguesL.F. Vib. Spectrosc.20189911312310.1016/j.vibspec.2018.09.005
    [Google Scholar]
  4. IssariyakulT. DalaiA.K. Renew. Sustain. Energy Rev.20143144647110.1016/j.rser.2013.11.001
    [Google Scholar]
  5. BeckerL.C. BergfeldW.F. BelsitoD.V. HillR.A. KlaassenC.D. LieblerD.C. MarksJ.G.Jr ShankR.C. SlagaT.J. SnyderP.W. GillL.J. HeldrethB. Int. J. Toxicol.2019383Suppl.6S22S10.1177/1091581819883820 31840548
    [Google Scholar]
  6. MotaC.J.A. SilvaC.X.A. GonçalvesV.L.C. Quim. Nova200932363964810.1590/S0100‑40422009000300008
    [Google Scholar]
  7. BewleyB.R. BerkalievA. HenriksenH. BallD.B. OttL.S. Fuel Process. Technol.201513841942310.1016/j.fuproc.2015.05.025
    [Google Scholar]
  8. IndranV.P. SaudA.S.H. ManiamG.P. Taufiq-YapY.H. RahimA. Waste Biomass Valoriz.201781049105910.1007/s12649‑016‑9681‑3
    [Google Scholar]
  9. Bala-LitwiniakA. RadomiakH. Waste Biomass Valoriz.20191082193219910.1007/s12649‑018‑0260‑7
    [Google Scholar]
  10. ChagasP. ThibauM.A. BrederS. SouzaP.P. CaldeiraG.S. PortilhoM.F. CastroC.S. OliveiraL.C.A. Chem. Eng. J.20193691102110810.1016/j.cej.2019.03.068
    [Google Scholar]
  11. ChecaM. Nogales-DelgadoS. MontesV. EncinarJ.M. Catalysts20201011127910.3390/catal10111279
    [Google Scholar]
  12. WangY. FurukawaS. SongS. HeQ. AsakuraH. YanN. Angew. Chem. Int. Ed.20205962289229310.1002/anie.201912580 31773819
    [Google Scholar]
  13. PradhanG. SharmaY.C. J. Clean. Prod.202131512786010.1016/j.jclepro.2021.127860
    [Google Scholar]
  14. GuY. JérômeF. Green Chem.2010127112710.1039/c001628d
    [Google Scholar]
  15. Díaz-ÁlvarezA.E. FrancosJ. CrocheP. CadiernoV. Curr. Green Chem.201311516510.2174/221334610101131218094907
    [Google Scholar]
  16. LenardãoE.J. Manke BarcellosA. PenteadoF. AlvesD. PerinG. Virtual Quím.2017919223710.21577/1984‑6835.20170015
    [Google Scholar]
  17. MitraB. PariyarG.C. GhoshP. ChemistrySelect20194195476548310.1002/slct.201900982
    [Google Scholar]
  18. PaparellaA.N. MessaF. DilauroG. TroisiL. PerroneS. SalomoneA. ChemistrySelect2022737e20220343810.1002/slct.202203438
    [Google Scholar]
  19. NarasimhamurthyK.H. JoyM.N. SajithA.M. SantraS. ZyryanovG.V. SwaroopT.R. RangappaK.S. Lett. Org. Chem.2023201094595710.2174/1570178620666230418093820
    [Google Scholar]
  20. PatilS.M. BedreA.V. GadeV.B. JopaleM.K. J. Chem. Sci.202313525010.1007/s12039‑023‑02172‑3
    [Google Scholar]
  21. GuY. BarraultJ. JérômeF. Adv. Synth. Catal.2008350132007201210.1002/adsc.200800328
    [Google Scholar]
  22. WolfsonA. LitvakG. DlugyC. ShotlandY. TavorD. Ind. Crops Prod.2009301788110.1016/j.indcrop.2009.01.008
    [Google Scholar]
  23. LenardãoE.J. TrechaD.O. FerreiraP.C. JacobR.G. PerinG. J. Braz. Chem. Soc.2009201939910.1590/S0103‑50532009000100016
    [Google Scholar]
  24. GarcíaN. García-GarcíaP. Fernández-RodríguezM.A. GarcíaD. PedrosaM.R. ArnáizF.J. SanzR. Green Chem.201315499910.1039/c3gc36908k
    [Google Scholar]
  25. TorrezanG.S. PolaquiniC.R. LimaM.F. RegasiniL.O. Sustain. Chem. Pharm.20201610025010.1016/j.scp.2020.100250
    [Google Scholar]
  26. LampertiM. GianiA.M. MasperoA. VescoG. CiminoA. NegriR. GiovenzanaG.B. PalmisanoG. MellaM. NardoL. J. Fluoresc.201929249550410.1007/s10895‑019‑02361‑9 30859487
    [Google Scholar]
  27. JeffreysR.A. J. Chem. Soc.19552394-2397239410.1039/jr9550002394
    [Google Scholar]
  28. RoyD. ChakrabortyA. GhoshR. RSC Advances2017764405634057010.1039/C7RA06687B
    [Google Scholar]
  29. ShiraishiY. YamadaC. HiraiT. RSC Advances2019949286362864110.1039/C9RA05533A 35529625
    [Google Scholar]
  30. GeY. ZhangD. ZhangX. LiuY. DuL. WangY. J. Chem. Res.2021451-212512910.1177/1747519820919625
    [Google Scholar]
  31. MohajerF. Mohammadi ZiaraniG. BadieiA. VarmaR.S. GaikwadS.V. Singh.J. Molecular Catalysis202354511317410.1016/j.mcat.2023.113174
    [Google Scholar]
  32. FarghalyT.A. MahmoudH.K. J. Heterocycl. Chem.2015521869110.1002/jhet.1985
    [Google Scholar]
  33. FarghalyT.A. AbdallahM.A. MuhammadZ.A. Res. Chem. Intermed.20154163937394710.1007/s11164‑013‑1501‑9
    [Google Scholar]
  34. BassyouniF.A. Abu-BakrS.M. HegabK.H. El-ErakyW. El BeihA.A. RehimM.E.A. Res. Chem. Intermed.20123871527155010.1007/s11164‑011‑0482‑9
    [Google Scholar]
  35. ZhangH.J. WangX.Z. CaoQ. GongG.H. QuanZ.S. Bioorg. Med. Chem. Lett.201727184409441410.1016/j.bmcl.2017.08.014 28823493
    [Google Scholar]
  36. BrañaM. GarridolM. Lopez RodriguezM.L. MorcillolM.J. AlvarezzY. ValladareszY. KlebeG. Eur. J. Med. Chem.199025320921510.1016/0223‑5234(90)90203‑F
    [Google Scholar]
  37. WangW.L. YangD.L. GaoL.X. TangC.L. MaW.P. YeH.H. ZhangS.Q. ZhaoY.N. XuH.J. HuZ. ChenX. FanW.H. ChenH.J. LiJ.Y. NanF.J. LiJ. FengB. Molecules201319110212110.3390/molecules19010102 24366088
    [Google Scholar]
  38. SahibaN. AgarwalS. Top. Curr. Chem.20203784-54410.1007/s41061‑020‑00307‑5 32776212
    [Google Scholar]
  39. FarghalyT.A. Al-HussainS.A. MuhammadZ.A. AbdallahM.A. ZakiM.E.A. Curr. Org. Chem.202024151669171610.2174/1385272824999200622113807
    [Google Scholar]
  40. HarryN.A. ShilpaT. UjwaldevS.M. AnilkumarG. J. Heterocycl. Chem.202158137538110.1002/jhet.4146
    [Google Scholar]
  41. AgarwalS. PatelI. SahibaN. SoniJ. Lett. Org. Chem.202320655756110.2174/1570178620666221223093203
    [Google Scholar]
  42. SoniJ. SethiyaA. SahibaN. JoshiD. AgarwalS. Polycycl. Aromat. Compd.202343167468510.1080/10406638.2021.2019803
    [Google Scholar]
  43. MobinikhalediA. AhadiN. OmidiM. MirzaeiE. React. Kinet. Mech. Catal.20241372991101310.1007/s11144‑024‑02589‑y
    [Google Scholar]
  44. NandiniR. ThrilokrajR. KshirsagarU.A. HegdeR.V. GhoshA. PatilS.A. MaleckiJ.G. DateerR.B. New J. Chem.2024481327133510.1039/D3NJ03803C
    [Google Scholar]
  45. HarryN.A. CherianR.A. RadhikaS. AnilkumarG. Tetrahedron Lett.2019603315094610.1016/j.tetlet.2019.150946
    [Google Scholar]
  46. NematiF. HosseiniM.M. KianiH. J. Saudi Chem. Soc.201620S503S50810.1016/j.jscs.2013.02.004
    [Google Scholar]
  47. IngaleA.P. MoreV.K. GangardeU.S. ShindeS.V. New J. Chem.20184212101421014710.1039/C8NJ01585F
    [Google Scholar]
  48. YadavN. YadavV.B. AnsariM.D. SagirH. VermaA. SiddiquiI.R. New J. Chem.201943187011701410.1039/C8NJ05611K
    [Google Scholar]
  49. BotteselleG.V. EliasW.C. BettaninL. CantoR.F.S. SalinD.N.O. BarbosaF.A.R. SabaS. GallardoH. CiancaleoniG. DomingosJ.B. RafiqueJ. BragaA.L. Molecules20212615444610.3390/molecules26154446 34361597
    [Google Scholar]
  50. TavaresC.J. WilligJ.C.M. ManarinF. LenzG.F. FelixJ.F. BotteselleG.V. SchneiderR. J. Non-Cryst. Solids202361012230310.1016/j.jnoncrysol.2023.122303
    [Google Scholar]
  51. MarangoniR. CarvalhoR.E. MachadoM.V. Dos SantosV.B. SabaS. BotteselleG.V. RafiqueJ. Catalysts202313242610.3390/catal13020426
    [Google Scholar]
  52. QuispeC.A.G. CoronadoC.J.R. CarvalhoJ.A.Jr Renew. Sustain. Energy Rev.20132747549310.1016/j.rser.2013.06.017
    [Google Scholar]
  53. WangH. LiH. LeeC.K. Mat NanyanN.S. TayG.S. Int. J. Biol. Macromol.2024261Pt 112953610.1016/j.ijbiomac.2024.129536 38278390
    [Google Scholar]
  54. AmaralA.A. SchusterG.C. BoschenN.L. BenvegnúD.M. WyzykowskiJ. Pinto RodriguesP.R. GallinaA.L. Glob. Chall.2019311190000110.1002/gch2.201900001 31692959
    [Google Scholar]
  55. CanesinE.A. AmorinT.M. VeronezeA.F.F. SuzukiR.M. AlmeidaV.V. SouzaN.E. BonaféE.G. Braz. J. Food Res.20191017710.3895/rebrapa.v10n1.5182
    [Google Scholar]
/content/journals/loc/10.2174/0115701786364958250214093807
Loading
/content/journals/loc/10.2174/0115701786364958250214093807
Loading

Data & Media loading...

Supplements

NMR spectra are available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test