Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

5-amino-3-hydroxy-1-phenyl-1-pyrazol and 3-amino-5-hydroxy-1-phenyl-1-pyrazol are widely used as synthons in organic and pharmaceutical chemistry. We developed a high-yield synthesis method for 5-amino-3-hydroxy-1-phenyl-1-pyrazol using high-pressure and base catalysis, achieving up to 80% yield. This method significantly outperforms existing techniques, which yield no more than 39%. The synthesis was performed at pressures up to 10 katm, both in solvent-free conditions and in the presence of solvents, such as methanol, ethanol, toluene, -butyl methyl ether, and 1,4-dioxane. Thermodynamic parameters of possible paths were calculated using the SMD-M06-2X/MG3S method. Applying high pressure (7 katm) enables the solvent-free and catalyst-free synthesis of 2-cyano-N'-phenylacetohydrazide with a yield of 96%. This compound can subsequently be converted into 5-amino-3-hydroxy-1-phenyl-1-pyrazol with yields of up to 90% using base catalysis. Additionally, the reaction pathways of phenylhydrazine with ethyl cyanoacetate and its anion have been explored. These pathways are discussed in terms of thermodynamic potentials calculated using the SMD-M06-2X/MG3S method. High pressure significantly accelerates the reaction between phenylhydrazine and ethyl cyanoacetate, leading to the formation of 2-cyano-'-phenylacetohydrazide. This intermediate can then be easily converted into 5-amino-3-hydroxy-1-phenyl-1-pyrazol. Under neutral conditions, the most favorable reaction pathway involves the attack of the terminal nitrogen of phenylhydrazine on the carbonyl group. In the case of the ethyl cyanoacetate anion, the attack also targets the carbonyl group, but occurs the phenyl-substituted nitrogen.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786331865241120043030
2025-01-03
2025-10-29
Loading full text...

Full text loading...

References

  1. YetL. Comprehensive Heterocyclic Chemistry III; Katritzky, A.R.; Scriven, E.F.V.; Ramsden, C.A.; Taylor, R.J.K. JouleJ.A. EdinburghElsevier Science2008Vol. 41141
    [Google Scholar]
  2. FusteroS. Sánchez-RosellóM. BarrioP. Simón-FuentesA. Chem. Rev.2011111116984703410.1021/cr2000459 21806021
    [Google Scholar]
  3. YangL. OkudaF. KobayashiK. NozakiK. TanabeY. IshiiY. HagaM. Inorg. Chem.200847167154716510.1021/ic800196s 18642898
    [Google Scholar]
  4. ParshadM. KumarD. VermaV. J. Fluoresc.202434151955196410.1007/s10895‑023‑03402‑0 37740878
    [Google Scholar]
  5. ChangE.M. LeeC.T. ChenC.Y. WongF.F. YehM.Y. Aust. J. Chem.200861534234910.1071/CH07381
    [Google Scholar]
  6. YeC. GardG.L. WinterR.W. SyvretR.G. TwamleyB. ShreeveJ.M. Org. Lett.20079193841384410.1021/ol701602a 17715932
    [Google Scholar]
  7. AnsariA. AliA. AsifM. New J. Chem.2017411164110.1039/C6NJ03181A
    [Google Scholar]
  8. LusardiM. SpallarossaA. BrulloC. Int. J. Mol. Sci.20232497834785910.3390/ijms24097834 37175540
    [Google Scholar]
  9. EbenezerO. ShapiM. TuszynskiJ.A. Biomedicines20221051124118110.3390/biomedicines10051124 35625859
    [Google Scholar]
  10. YuB. ZhouS. CaoL. HaoZ. YangD. GuoX. ZhangN. BakulevV.A. FanZ. J. Agric. Food Chem.202068277093710210.1021/acs.jafc.0c00062 32530619
    [Google Scholar]
  11. AbdelrazekF.M. MetzP. MetwallyN.H. El-MahroukyS.F. Arch. Pharm. (Weinheim)2006339845646010.1002/ardp.200600057 16795107
    [Google Scholar]
  12. VermaR. VermaS.K. RakeshK.P. GirishY.R. AshrafizadehM. Sharath KumarK.S. RangappaK.S. Eur. J. Med. Chem.202121211313411315810.1016/j.ejmech.2020.113134 33395624
    [Google Scholar]
  13. SilvaV.L.M. ElgueroJ. SilvaA.M.S. Eur. J. Med. Chem.201815639442910.1016/j.ejmech.2018.07.007 30015075
    [Google Scholar]
  14. TewariA.K. SinghV.P. YadavP. GuptaG. SinghA. GoelR.K. ShindeP. MohanC.G. Bioorg. Chem.20145681510.1016/j.bioorg.2014.05.004 24893208
    [Google Scholar]
  15. BaileyD.M. HansenP.E. HlavacA.G. BaizmanE.R. PearlJ. DeFeliceA.F. FeigensonM.E. J. Med. Chem.198528225626010.1021/jm00380a020 3968690
    [Google Scholar]
  16. KaratiD. MahadikK.R. KumarD. Med. Chem.202218101060107210.2174/1573406418666220410181827 35410619
    [Google Scholar]
  17. YadavA.R. Katariya, A.P.; Kanagare, A.B.; Patil, P.D.J.; Tagad, C.K.; Dake, S.A.; Nagwade, P.A.; Deshmukh, S.U.Mol. Divers.202410.1007/s11030‑023‑10757‑w 38236443
    [Google Scholar]
  18. AtukuriD. Chem. Biol. Drug Des.2022100337638810.1111/cbdd.14098 35661410
    [Google Scholar]
  19. KurmaS.H. SridharB. BhimapakaC.R. J. Org. Chem.20218632271228210.1021/acs.joc.0c02421 33465310
    [Google Scholar]
  20. AsatiV. AnantA. PatelP. KaurK. GuptaG.D. Eur. J. Med. Chem.202122511378110.1016/j.ejmech.2021.113781 34438126
    [Google Scholar]
  21. KumarG. Siva KrishnaV. SriramD. JachakS.M. Arch. Pharm. (Weinheim)20203538200007710.1002/ardp.202000077
    [Google Scholar]
  22. ShaabaniA. NazeriM.T. AfshariR. Mol. Divers.201923375180710.1007/s11030‑018‑9902‑8 30552550
    [Google Scholar]
  23. KumarswamyreddyN. KesavanV. Org. Lett.20161861354135710.1021/acs.orglett.6b00287 26942717
    [Google Scholar]
  24. StanovnikB. Svete.J. Sci. Synth.20021215225
    [Google Scholar]
  25. FrigolaJ. ColomboA. ParesJ. MartinezL. SagarraR. RoserR. Eur. J. Med. Chem.198924443544510.1016/0223‑5234(89)90089‑5
    [Google Scholar]
  26. JoshiK.C. PathakV.N. GargU. J. Indian Chem. Soc.1981581211801181
    [Google Scholar]
  27. ConradM. ZartA. Chem. Ber.19063922288230610.1002/cber.190603902205
    [Google Scholar]
  28. WeissbergerA. PorterH.D. J. Am. Chem. Soc.19426492133213610.1021/ja01261a034
    [Google Scholar]
  29. KimC.K. ZielinskiP.A. MaggiulliC.A. J. Org. Chem.198449265247525010.1021/jo00200a047
    [Google Scholar]
  30. SayedG.H. AzabM.E. AnwerK.E. RaoufM.A. NegmN.A. J. Mol. Liq.201825232933810.1016/j.molliq.2017.12.156
    [Google Scholar]
  31. KrishnasamyS.K. NamasivayamV. MathewS. EakambaramR.S. IbrahimI.A. NatarajanA. PalaniappanS. Arch. Pharm. (Weinheim)2016349538339710.1002/ardp.201600019
    [Google Scholar]
  32. DeshmukhM.B. DeshmukhS.A. JagtapS.S. SuryavanshiA.W. JadhavS.D. AnbhuleP.V. J. Indian Chem. Soc.2009866613616
    [Google Scholar]
  33. AllenS. BlakeJ.W.O. Patent 2014,078,3282014
  34. BayneC.D. JohnsonA.T. LuS-P. MohanR. GriffithR.C.W.O. Patent 2003,059,8842003
  35. PorterH.D. WeissbergerA.U.S. Patent 2,367,5231942
  36. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. MennucciB. PeterssonG.A. NakatsujiH. CaricatoM. LiX. HratchianH.P. IzmaylovA.F. BloinoJ. ZhengG. SonnenbergJ.L. HadaM. EharaM. ToyotaK. FukudaR. HasegawaJ. IshidaM. NakajimaT. HondaY. KitaoO. NakaiH. VrevenT. Gaussian 09, Revision C.01.Wallingford, CTGaussian, Inc.2010
    [Google Scholar]
  37. ZhaoY. TruhlarD.G. Theor. Chem. Acc.20081201-321524110.1007/s00214‑007‑0310‑x
    [Google Scholar]
  38. LynchB.J. ZhaoY. TruhlarD.G. J. Phys. Chem. A200310791384138810.1021/jp021590l
    [Google Scholar]
  39. AlecuI.M. ZhengJ. ZhaoY. TruhlarD.G. J. Chem. Theory Comput.2010692872288710.1021/ct100326h 26616087
    [Google Scholar]
  40. StephensP.J. DevlinF.J. ChabalowskiC.F. FrischM.J. J. Phys. Chem.19949845116231162710.1021/j100096a001
    [Google Scholar]
  41. FranclM.M. PietroW.J. HehreW.J. BinkleyJ.S. GordonM.S. DeFreesD.J. PopleJ.A. J. Chem. Phys.19827773654366510.1063/1.444267
    [Google Scholar]
  42. WiitalaK.W. HoyeT.R. CramerC.J. J. Chem. Theory Comput.2006241085109210.1021/ct6001016 26633067
    [Google Scholar]
  43. Available from: http://cheshirenmr.info/
  44. JainR. BallyT. RablenP.R. J. Org. Chem.200974114017402310.1021/jo900482q 19435298
    [Google Scholar]
  45. BallyT. RablenP.R. J. Org. Chem.201176124818483010.1021/jo200513q 21574622
    [Google Scholar]
  46. BiglerP. Furrer.J. Magn. Reson. Chem.2019572-312914310.1002/mrc.4810
    [Google Scholar]
  47. WilliamsonR.T. BuevichA.V. MartinG.E. ParellaT. J. Org. Chem.20147993887389410.1021/jo500333u 24708226
    [Google Scholar]
/content/journals/loc/10.2174/0115701786331865241120043030
Loading
/content/journals/loc/10.2174/0115701786331865241120043030
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. It contains NMR and IR spectra of 3-amino-1-phenyl-5-pyrazolone, 5-amino-1-phenyl-1H-pyrazol-3-ol, Z- and E-isomers of 2-cyano-N'-phenylacetohydrazide.


  • Article Type:
    Research Article
Keyword(s): cyclocondensation; DFT; high pressure; N-phenylpyrazoles; phenylhydrazine; pyrazole ring
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test