Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

Monkeypox is an emerging zoonotic disease caused by the monkeypox virus, a member of the Orthopoxvirus genus, characterized by symptoms, such as fever and lymphadenopathy, with distinctive skin rashes transmitted through direct contact with infected individuals or animals. Currently, there is no specific antiviral treatment approved for monkeypox; however, antiviral agents used for smallpox, such as tecovirimat and brincidofovir, have shown efficacy against monkeypox in laboratory studies. By analyzing recent outbreaks and response strategies, we aim to synthesize steroidal derivatives that may serve as potent therapeutic agents for this infectious disease. In the present research paper, we synthesized the methylprednisolone derivatives (-) with the help of Steglich esterification using a dehydrating agent N, Nꞌ-dicyclohexyldicarbodiimide (DCC) and N, Nꞌ-dimethyl-4-aminopyridine (DMAP) as a catalyst. The structures of all synthesized methylprednisolone derivatives were identified using advanced spectroscopic techniques, including 1H NMR, 13C NMR, IR, UV-Vis, and ESI-MS. Experimental values correlated with theoretical predictions through DFT/B3LYP calculations. Hydrogen bonding and various interactions were thoroughly analyzed using Bader’s 'Atoms in Molecules' (AIM) theory. The HOMO-LUMO energy gap indicated a high level of chemical reactivity for the compounds, with Compound exhibiting nonlinear optical (NLO) behavior due to a high first hyperpolarizability value of 9.06 × 10–30 esu. Molecular docking studies of methylprednisolone derivatives , , , and against monkeypox protein (4QWO) revealed binding energies of -10.7 kcal/mol, -11.0 kcal/mol, -8.6 kcal/mol, and -9.3 kcal/mol, respectively. These results suggest that the methylprednisolone derivatives exhibit inhibitory activity against the monkeypox protein.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786325018241107061007
2025-06-01
2025-09-05
Loading full text...

Full text loading...

References

  1. Available from: https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html
  2. RizkJ.G. LippiG. HenryB.M. ForthalD.N. RizkY. Drugs202282995796310.1007/s40265‑022‑01742‑y 35763248
    [Google Scholar]
  3. Ortiz-SaavedraB. León-FigueroaD.A. Montes-MadariagaE.S. Ricardo-MartínezA. AlvaN. Cabanillas-RamirezC. BarbozaJ.J. SiddiqA. Coaguila CusicanquiL.A. Bonilla-AldanaD.K. Rodriguez-MoralesA. J. Trop. Med. Infect. Dis.202271136910.3390/tropicalmed7110369 36355910
    [Google Scholar]
  4. SethiA. YadavP. SinghR.P. KumarS. ParveenS. SinghA. YadavA. BanerjeeM. J. Chin. Chem. Soc. (Taipei)20226987288310.1002/jccs.202200040
    [Google Scholar]
  5. SinghR.P. SharmaS. KantR. J. Mol. Struct.2016110542343310.1016/j.molstruc.2015.10.015
    [Google Scholar]
  6. BijuP. McCormickK. AslanianR. BerlinM. SolomonD. ChapmanR. McLeodR. PreluskyD. EckelS. KellyG. NatielloM. HouseA. FernandezX. BitarR. PhillipsJ. AnthesJ. Bioorg. Med. Chem. Lett.201121216343634710.1016/j.bmcl.2011.08.108 21944381
    [Google Scholar]
  7. BijuP. McCormickK. AslanianR. BerlinM. SolomonD. WangH. LeeY.J. BitarR. PreluskyD. McLeodR. JiaY. FernandezX. EckelS. HouseA. LieberG. JimenezJ. KellyG. ChapmanR. PhillipsJ. AnthesJ. Bioorg. Med. Chem. Lett.20122221086109010.1016/j.bmcl.2011.11.120 22197391
    [Google Scholar]
  8. VyklickyV. SmejkalovaT. KrausovaB. BalikA. KorinekM. BorovskaJ. HorakM. ChvojkovaM. KleteckovaL. ValesK. CernyJ. NekardovaM. ChodounskaH. KudovaE. VyklickyL. J. Neurosci.20163672161217510.1523/JNEUROSCI.3181‑15.2016 26888927
    [Google Scholar]
  9. LaporteJ.R. CarneX. VidalX. MarenoV. Lancet1991337858910.1016/0140‑6736(91)90744‑A 1670734
    [Google Scholar]
  10. WeberN. WeitkampP. MukherjeeK.D. Food Res. Int.20023517710.1016/S0963‑9969(01)00180‑6
    [Google Scholar]
  11. SheldonR. Chem. Commun. (Camb.)200123232399240710.1039/B107270F 12239988
    [Google Scholar]
  12. EarleM.J. SeddonK.R. Pure Appl. Chem.200072139110.1351/pac200072071391
    [Google Scholar]
  13. WassersceidP. KeimW. Angew. Chem. Int. Ed.200039377310.1002/1521‑3773(20001103)39:21%3C3772::AID‑ANIE3772%3E3.0.CO;2‑5
    [Google Scholar]
  14. SinghR.K. SinghA.K. J. Mol. Struct.2017112912814110.1016/j.molstruc.2016.09.072
    [Google Scholar]
  15. SinghR.P. KantR. SinghK. SharmaS. SethiA. J. Mol. Struct.2015109512510.1016/j.molstruc.2015.04.018
    [Google Scholar]
  16. SilversteinR.M. BasslerG.C. MorrillT.C. John Wiley and Sons, Inc., New York1981
  17. RaukA. Orbital Interaction Theory of Organic Chemistry.2nd edNew YorkWiley-Interscience200186
    [Google Scholar]
  18. StreitwieserA.Jr Molecular Orbital Theory for Organic Chemists.New YorkWiley1961
    [Google Scholar]
  19. PowellB.J. BaruahT. BernsteinN. BrakeK. McKenzieR.H. MeredithP. PedersonM.R. J. Chem. Phys.2004120188608861510.1063/1.1690758 15267788
    [Google Scholar]
  20. KoopmansT. Physica1934110411310.1016/S0031‑8914(34)90011‑2
    [Google Scholar]
  21. PearsonR.G. J. Am. Chem. Soc.1985107680110.1021/ja00310a009
    [Google Scholar]
  22. PearsonR.G. J. Org. Chem.1989541423143010.1021/jo00267a034
    [Google Scholar]
  23. ParrR.G. PearsonR.G. J. Am. Chem. Soc.19831057512751610.1021/ja00364a005
    [Google Scholar]
  24. GreelingsP. ProftF.D. LangenaekerW. Chem. Rev.20031031793187310.1021/cr990029p 12744694
    [Google Scholar]
  25. SunY.X. J. Mol. Struct. THEOCHEM20099047410.1016/j.theochem.2009.02.036
    [Google Scholar]
  26. AndraudC. BrotinT. GarciaC. PelleF. GoldnerP. BigotB. ColletA. J. Am. Chem. Soc.1994116209410.1021/ja00084a055
    [Google Scholar]
  27. GeskinV.M. LambertC. BrédasJ.L. J. Am. Chem. Soc.200312550156511565810.1021/ja035862p 14664614
    [Google Scholar]
  28. SethiA. SinghR.P. PrakashR. J. Mol. Struct.2017113086086610.1016/j.molstruc.2016.10.087
    [Google Scholar]
  29. SajanD. JoeH. JayakumarV.S. ZaleskiJ. J. Mol. Struct.200643785
    [Google Scholar]
  30. KleinmannD.A. Rev.19621261977197910.1103/PhysRev.126.1977
    [Google Scholar]
  31. BaderR.F.W. Atoms in molecules, A quantum theory.OxfordOxford University press1990
    [Google Scholar]
  32. RozasI. J. Am. Chem. Soc.2000122111541116110.1021/ja0017864
    [Google Scholar]
  33. ShainyanB.A. ChipaninaN.N. AksamentovaT.N. Tetrahedron201066855110.1016/j.tet.2010.08.076
    [Google Scholar]
  34. MattaC.F. BoydR.J. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design.Wiley2007
    [Google Scholar]
  35. SethiA. SinghR.P. ShuklaD. SinghP. J. Mol. Struct.2016112561662310.1016/j.molstruc.2016.07.020
    [Google Scholar]
  36. YildirimG. ZalaogluY. KirilmisC. KocaM. Spectrochim. Acta A20118110411010.1016/j.saa.2011.05.056 21723183
    [Google Scholar]
  37. SethiA. SinghR.P. YadavN. BanerjeeM. J. Mol. Struct.20181166546210.1016/j.molstruc.2018.04.009
    [Google Scholar]
  38. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. MennucciB. PeterssonG.A. NakatsujiH. CaricatoM. LiX. HratchianH.P. IzmaylovA.F. BloinoJ. ZhengG. SonnenbergJ.L. HadaM. EharaM. ToyotaK. FukudaR. HasegawaJ. IshidaM. NakajimaT. HondaY. KitaoO. NakaiH. VrevenT. MontgomeryJ.A.Jr PeraltaJ.E. OgliaroF. BearparkM. HeydJ.J. BrothersE. KudinK.N. StaroverovV.N. KobayashiR. NormandJ. RaghavachariK. RendellA. BurantJ.C. IyengarS.S. TomasiJ. CossiM. RegaN. MillamJ.M. KleneM. KnoxJ.E. CrossJ.B. BakkenV. AdamoC. JaramilloJ. GompertsR. StratmannR.E. YazyevO. AustinA.J. CammiR. PomelliC. OchterskiJ.W. MartinR.L. MorokumaK. ZakrzewskiV.G. VothG.A. SalvadorP. DannenbergJ.J. DapprichS. DanielsA.D. FarkasÖ. ForesmanJ.B. OrtizJ.V. CioslowskiJ. FoxD.J. Gaussian 09.Wallingford, CTRevision A.I., Gaussian, Inc.2009
    [Google Scholar]
  39. LeeC. YangW. ParrR.G. Phys. Rev. B Condens. Matter198837278578910.1103/PhysRevB.37.785 9944570
    [Google Scholar]
  40. SundaraganesanN. KavithaE. SebastianS. CornardJ.P. MartelM. Spectrochim. Acta A Mol. Biomol. Spectrosc.200974378879710.1016/j.saa.2009.08.019 19729338
    [Google Scholar]
  41. KeithT.A. Available from: https://aim.tkgristmill.com/ 1997
  42. HueyR. MorrisG.M. Using AutoDock 4 with AutoDocktools: A tutorial.CA, USAThe Scripps Research Institute20085456
    [Google Scholar]
  43. VijeshA.M. IsloorA.M. TelkarS. ArumoliT. FunH.K. Arab. J. Chem.2013619720410.1016/j.arabjc.2011.10.007
    [Google Scholar]
  44. TrottO. OlsonA.J. J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  45. DeLanoW. L. Available from: https://legacy.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf 2002
/content/journals/loc/10.2174/0115701786325018241107061007
Loading
/content/journals/loc/10.2174/0115701786325018241107061007
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test