Letters in Drug Design & Discovery - Volume 17, Issue 6, 2020
Volume 17, Issue 6, 2020
-
-
Mannitol Reduces Spinal Cord Edema in Rats with Acute Traumatic Spinal Cord Injury
Authors: Chao Zhang, Anming Hu, Yingli Jing, Degang Yang and Jianjun LiBackground: The research about anti-edema effects of mannitol on acute traumatic spinal cord injury (SCI) in rats is rare. Objective: This study aimed to explore the effect of mannitol on spinal cord edema after SCI in rats. Methods: Seventy-eight adult female rats were assigned to three groups randomly: a sham control group (n = 18), a contusion and normal saline contrast group (n=30), and a contusion and mannitol treatment group (n=30). We used the open-field test to estimate the functional recovery of rats weekly. Spinal cord water content was measured to determine the spinal cord edema. The ultrastructure features of the injured dorsolateral spinal cord were determined on the 7th day after SCI by HE staining. Results: The mannitol group had greatly improved Basso-Beattie-Bresnahan (BBB) scores when compared with the saline contrast group. The spinal cord water content was increased significantly after SCI, and there was no significant difference in the water content between the NaCl and mannitol groups 1 day after SCI. The water content at 3 and 7 days after SCI was significantly lower in the mannitol group than in the NaCl group (p < 0.05). Mannitol can reduce spinal cord edema by increasing the number of red blood cells in the injured spinal cord and decrease the ratio (dorsoventral diameter/ mediolateral diameter) of spinal cord 7 days post-SCI. Conclusion: Mannitol increases recovery of motor function in rats, reduces spinal cord edema and increases the number of red blood cells in the injured spinal cord, decreasing the ratio of spinal cord to reduce pressure.
-
-
-
In Silico ADME and QSAR Studies on a Set of Coumarin Derivatives As Acetylcholinesterase Inhibitors Against Alzheimer’s Disease: CoMFA, CoMSIA, Topomer CoMFA, and HQSAR
Background: Alzheimer’s disease (AD) is increasingly being recognized as one of the lethal diseases in older people. Acetylcholinesterase (AChE) has proven to be the most promising target in AD, used for designing drugs against AD. Methods: In silico studies, 2D- or 3D-QSAR like hologram QSAR (HQSAR), Topomer comparative molecular field analysis (Topomer CoMFA), comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA) methods were used to generate QSAR models for acetylcholinesterase inhibitors. Results: Acetylcholinesterase inhibitors used for the present study contain a series of 7- hydroxycoumarin derivatives connected by piperidine, piperazine, tacrine, triazole, or benzyl fragments through alkyl or amide spacer training set compounds were used to generate best model with a HQSAR q2 value of 0.916 and r2 value of 0.940; a Topomer CoMFA q2 value of 0.907 and r2 value of 0.959, CoMFA q2 value of 0.880 and r2 value of 0.960; and a CoMSIA q2 value of 0.865 and r2 value of 0.941. In addition, contour plots obtained from QSAR models suggested the significant regions that influenced the AChE inhibitory activity. Conclusion: In light of these results, this study provides knowledge about the structural requirements for the development of more active acetylcholinesterase inhibitors. In addition, the predicted ADME profile helps us to find CNS active molecules, the obtained prediction compared with well-known AChE inhibitors viz., ensaculin, tacrine, galantamine, rivastigmine, and donepezil. Based on the knowledge obtained from these studies, the hybridization approach is one of the best ways to find lead compounds and these findings can be useful in the treatment of Alzheimer's disease.
-
-
-
Synthesis and Evaluation of Anticonvulsant Activities of 4-Phenylpiperidin-2-one Derivatives
Authors: Shi-Ben Wang, Hui Liu, Guang-Yong Li, Kang Lei, Xiao-Jing Li, Zhe-Shan Quan and Xue-Kun WangBackground: Although Antiepileptic Drugs (AEDs) acting on various targets have been applied in the clinic, the efficacy and tolerance of AEDs in the treatment of epilepsy have not significantly improved. Therefore, there is an urgent need to develop some novel chemical moieties with a better safety profile and greater efficacy. We designed and synthesized twenty-seven 4- phenylpiperidin-2-one derivatives. This study aimed to investigate the potential use of a series of 4- phenylpiperidin-2-one derivatives as anticonvulsant drugs. Methods: Two experimental methods, Maximal Electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ), were used to evaluate the anticonvulsant activity of the target compounds. Moreover, neurotoxicity (NT) was tested using the rotarod test. Results: Compound 7-[4-(trifluoromethyl)phenyl]-6,7-dihydrothieno[3,2-b]pyridin-5-(4H)-one (11; MES, ED50 = 23.7 mg/kg, PI > 33.7; PTZ, ED50 = 78.1 mg/kg, PI > 10.0) showed the best anticonvulsant activity. The results of in vivo γ-aminobutyric Acid (GABA) estimation showed that compound 11 may have an effect on the GABA system. Compound 11 showed significant interactions with residues at the benzodiazepine (BZD)-binding site on GABAA receptors. Most target compounds have favorable blood brain barrier (BBB) permeability and oral bioavailability in predictions using silico molecular properties. Conclusion: According to the in vivo and in silico studies, compound 11 stand out as potential anticonvulsant agents for further studies.
-
-
-
Synthesis, Characterization, and Molecular Docking Studies of N-Acylated Butyro and Valerolactam Derivatives with Antiproliferative and Cytotoxic Activities
Background: Electrophilic compounds bearing Michael acceptors present great promise in anticancer drug discovery. Methods: Drawing inspirations from cytotoxic Piper lactam alkaloids, twelve N-acylated butyro- and valerolactams were prepared and evaluated for antiproliferative and cytotoxic activities against the normal human umbilical vein endothelial cells (HUVEC), chronic human myeloid leukemia cells (K- 562), and Henrietta Lacks (HeLa) cells used as model cell lines. Molecular docking of bioactive derivatives was performed against tyrosine kinase. Results: Results of the MTT assay showed the crotonylated (5) and nitro-containing cinnamoyl (8) butyrolactams, and, the crotonylated (10), trifluoromethylated (13), and chlorinated (14) cinnamoyl valerolactam derivatives as the most antiproliferative against human myeloid leukemia cells. The trifluoromethylated cinnamoyl valerolactam (13) displayed the best selectivity on K-562 cells. Molecular docking studies of 13 against tyrosine kinase provided evidence as tyrosine kinase inhibitor, having comparable binding energy and receptor interaction with imatinib. Conclusion: The presence of electrophilic N-acrylic moieties contributes to the potential of a compound as inspiration to develop anti-leukemia drugs.
-
-
-
Synthesis of Spiro[cycloalkane-pyridazinones] with High Fsp3 Character
Background: Nowadays, in course of the drug design and discovery much attention is paid to the physicochemical parameters of a drug candidate, in addition to their biological activity. Disadvantageous physicochemical parameters can hinder the success of a drug candidate. Objective: Lovering et al. introduced the Fsp3 character as a measure of carbon bond saturation, which is related to the physicochemical paramethers of the drug. The pharmaceutical research focuses on the synthesis of compounds with high Fsp3 character. Methods: To improve the physicochemical properties (clogP, solubility, more advantageous ADME profile, etc.) of drug-candidate molecules one possibility is the replacement of all-carbon aromatic systems with bioisoster heteroaromatic moieties, e.g. with one or two nitrogen atom containing systems, such as pyridines and pyridazines, etc. The other option is to increase the Fsp3 character of the drug candidates. Both of these aspects were considered in the design the new spiro[cycloalkanepyridazinones], the synthesis of which is described in the present study. Results: Starting from 2-oxaspiro[4.5]decane-1,3-dione or 2-oxaspiro[4.4]nonane-1,3-dione, the corresponding ketocarboxylic acids were obtained by Friedel-Crafts reaction with anisole or veratrole. The ketocarboxylic acids were treated by hydrazine, methylhydrazine or phenylhydrazine to form the pyridazinone ring. N-Alkylation reaction of the pyridazinones resulted in the formation of further derivatives with high Fsp3 character. Conclusion: A small compound library was obtained incorporating compounds with high Fsp3 characters, which predicts advantageous physico-chemical parameters (LogP, ClogP and TPSA) for potential applications in medicinal chemistry.
-
-
-
Synthesis, Antibacterial Activity and Molecular Docking Studies of New Pyrazole Derivatives
Authors: Adnan Cetin and Havva KurtBackground: The pyrazole structure is an important heterocyclic structure and plays critical roles in agriculture, industrial and medicine. Furthermore, compounds containing pyrazole are known to exhibit various biological properties such as antibacterial, antifungal, anticancer, antiinflammatory, antidepressant, antipyretic, antiviral, anti-tubercular and anti-HIV activities. Because of these properties, pyrazole molecules have become a very popular topic for organic chemists. Methods: A series newly substituted pyrazole molecules were synthesized and characterized. Their antimicrobial activities were investigated by disk diffusion method against some gram positive bacteria and gram negative bacteria. Results: The present results indicated that the some test compounds were active in a broad spectrum against important human pathogenic microorganisms. The substituted pyrazoles including carbazone (7a, b) and thiazolidine (8a, b) showed a wide variety of biological activities. The results showed that synthesized pyrazole, compounds 7b and 8b are highly active and more potent in both biological and molecular docking simulation studies. Conclusion: The synthesized pyrazole molecules showed moderate antibacterial activities against the tested microorganism compared to antibiotic drug. Some test compounds (7b and 8b) might be used as new antibacterial agents.
-
-
-
Novel 3-Substituted-2, 3-Dihydro-2-Thioxoquinazolin-4-(1H)-one derivative as Anticonvulsants: Synthesis, Molecular Docking and Pharmacological Screening
Authors: Nimisha jain and Pradeep K. SingourBackground: According to the World Health Organization, 50 million people worldwide are suffering from epilepsy, making it one of the most common neurological diseases globally. 2,3 disubstituted quinazolinone-4-one derivatives endowed with various pharmacological activity, particularly having anticonvulsant action. Objectives: The aim of this study was to synthesize 3-Substituted-2,3-Dihydro-2-thioxoquinazolin- 4-(1H)-one derivative and evaluate for anticonvulsant activity and neurotoxicity in order to find an efficient, compound with lesser side effects. Methods: A novel series of 3-[4-(2-amino-5, 6-dihydro-4(substituted phenyl)-4H-1, 3-oxazin /thiazin-6yl) phenyl]-2, 3-dihyro-2-thioxoquinazolin-4(1H)-one derivatives (4a-4p) were synthesized. The structures of the synthesized compounds were assigned on the basis of spectral data (UV, IR, 1HNMR, 13CNMR and MS) and performed anticonvulsant activity against maximal electroshock test and Subcutaneous Pentylenetetrazole model. Neurotoxicity was assessed using a rotarod apparatus test. The molecular docking study was performed to assess their binding affinities towards Gamma-Aminobutyric Acid type A receptor. A quantitative estimate of drug-likeness was also performed, which calculates the molecular properties and screen the molecules based on drug-likeness rules. Results: Compounds 4b, 4e, 4j and 4m have shown the highest anticonvulsant activity against tonic seizure with decreased mean duration of tonic hind leg extension of 8.31, 7.35, 8.61 and 8.99 s, respectively in maximal electroshock model and increased onset time clonic convulsion duration of 94.45, 96.65, 93.51 and 91.86 s in Subcutaneous Pentylenetetrazole model. Molecular docking study revealed a better binding affinity with Gamma-Aminobutyric Acid type A receptor. Conclusion: The compound 4b and 4e emerged out as the pilot molecule with a better anticonvulsant activity without any neurotoxicity. The obtained results showed that compounds 4b and 4e could be useful as a template for future design, optimization, and investigation to produce more active analogs.
-
-
-
Identification of Phosphoinositide-3 Kinases Delta and Gamma Dual Inhibitors Based on the p110δ/γ Crystal Structure
Authors: Wen-Qing Jia, Xiao-Yan Feng, Ya-Ya Liu, Zhen-Zhen Han, Zhi Jing, Wei-Ren Xu and Xian-Chao ChengBackground: Phosphoinositide-3 kinases (PI3Ks) are key signaling molecules that affect a diverse array of biological processes in cells, including proliferation, differentiation, survival, and metabolism. The abnormal activity of PI3K signals is closely related to the occurrence of many diseases, which has become a very promising drug target, especially for the treatment of cancer. PI3Kδ/γ inhibitors can reduce toxicity concerns for chronic indications such as asthma and rheumatoid arthritis compared with pan PI3Ks inhibitors. Methods: With the aim of finding more effective PI3Kδ/γ dual inhibitors, virtual screening, ADMET prediction Molecular Dynamics (MD) simulations and MM-GBSA were executed based on the known p110δ/γ crystal structure. Compound ZINC28564067 with high docking score and low toxicity was obtained. Results: By MD simulations and MM-GBSA, we could observe that ZINC28564067 had more favorable conformation binding to the PI3Kδ/γ than the original ligands. Conclusion: The results provided a rapid approach for the discovery of novel PI3Kδ/γ dual inhibitors which might be a potential anti-tumor lead compound.
-
-
-
Comparison in the Glucose Response of Flexible Liposomes Loaded with Insulin with the Addition of Different Surfactants in an Experimental Diabetes Model
Background: Insulin has been included in a variety of dosage forms; nevertheless, liposomes have shown protection to degradation and better absorption. The addition of surfactant to liposomes could give the ability to deform and pass through intact membranes, and could increase the stability and the release of the drug. Introduction: Due to the limitations of the current treatment of insulin in diabetic patients, investigation in alternatives routes has increased. The oral route is the most convenient because of the similarity with the natural secretion of this hormone. The aim was to evaluate the in-vivo effect of fourteen formulations of Insulin-loaded flexible liposomes with different surfactants by oral and subcutaneous routes. Methods: Fourteen formulations of insulin were obtained with the addition of different surfactants. Size distribution, polydispersion index and Z potential were obtained for all formulations. In-vivo tests were performed in rats induced with experimental diabetes with streptozotocin, and glucose curves were obtained during 480 minutes. Results: All formulations by the subcutaneous route caused an optimal reduction in glucose levels. However, the addition of Brij L23 produced a better reduction, lasting for 420 minutes. By the oral route, the reduction of glucose did not reach the normal levels, but the addition of Poloxamer 407 and Brij S10 showed the best reduction in the glucose levels by this route. Conclusion: The addition of surfactants to the lipid structure can modify the release of the insulin by different routes of administration, but this behavior depends on the characteristics of the surfactant, such as the melting phase transition temperature of the lipid bilayer.
-
-
-
Design, Synthesis, and Anticancer Potential of the Enzyme (PARP-1) Inhibitor with Computational Studies of New Triazole, Thiazolidinone, - Thieno [2, 3-d] Pyrimidinones
Background: Thienopyrimidine, triazole and thiazolidinone derivatives have recently gained attention due to their effective pharmacological activities. They show antioxidant, antitumor, antimicrobial, antiviral, anti-inflammatory and analgesic properties. Objective: Synthesis of new ethyl 2-amino-4-isopropyl-5-methylthiophene-3-carboxylate (2) was used as a starting material to produce 2-mercapto-methylthienopyrimidinone (3), (4) and 2- hydrazinyl-methylthienopyrimidinone (5), through high yields and evaluating anticancer activities. Methods: A series of novel Schiff's bases (6-9) were produced after treatment of (5) with aldehydes. Triazolopyrimidinones (6a, 7a, 8a, 9a) were produced from cyclization of benzylidene (6-9) using Br2 / AcOH or dry pyridine /Ac2O. Thiazolidinones (6b, 7b, 8b, 9b) were synthesized from benzylidene (6-9) with mercaptoacetic acid. Results: All the compounds were synthesized in good yields (55-85%) in a regularly actual system under mild condition. The new compounds have been established by means of diverse spectroscopic ways as IR, NMR and MS. The newly synthesized compounds were evaluated for their antiproliferative activity against the breast MCF-7 carcinoma cell line. Compound (7) showed promising anticancer activity with IC50 of 6.9 μM, and 40.8% of antioxidant effect as DPPH inhibition. Molecular docking of (7) showed ΔG values of-20.54 kcal/ mol and -25.60 kcal/ mol. Molecular dynamics simulation of (7) in complex with PARP-1 revealed RMSD of 3.00 Å. Conclusion: The QSAR study confirmed the presence of a relationship between anticancer activity and subdivided surface area descriptors with coefficient r2 = 0.98 with high predictive power.
-
-
-
Insights into Biophysical Methods to Study Interactions Between HIV-1 Reverse Transcriptase and Non-nucleoside Reverse Transcriptase Inhibitors
Background: Reverse Transcriptase (RT) of immunodeficiency virus type-1 (HIV-1) remains an essential target for new antiretroviral therapies. Non-nucleoside reverse transcriptase inhibitors (or NNRTIs) constitute a major class of RT inhibitors whose characterization is essential. Introduction: Several biochemical, biological, and biophysical methods have been previously used to analyze the biological effects of NNRTIs. We explored here the use of surface plasmonic resonance to characterize the affinity of RT towards selected NNRTIs and compared the results with those obtained with in vitro and in cellulo assays. Methods: The solubility and stability in buffers of the tested NNRTIs were assessed by spectrophotometry and fluorescence. Surface plasmonic resonance experiments to study direct NNRTIs binding to immobilized RT and intramolecular quenching of RT tryptophan fluorescence were used to determine the KA association constants (= 1/KD) between RT and the inhibitors. The in vitro inhibition constants of RT were determined using kinetics and the effects on three other potential targets (proteasome, HIV-1 integrase, and HIV-1 protease) were analyzed. Results: The results obtained with two typical molecules belonging to our previous N-hydroxyureido acylnucleoside derivatives series using the above biophysical assays matched those obtained in in vitro and previous in cellulo assays. Conclusion: Surface plasmonic resonance provides reliable thermodynamic information on the interaction of RT with NNRTIs and appears as a useful method for understanding their inhibitory mechanism.
-
Volumes & issues
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month
