Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background and Objective

Hepatocellular carcinoma (HCC) is a common hepatic malignant tumor severely affecting the life and health of people globally. Radix Sophorae Flavescentis (RSF) is a Chinese herbal medicine widely utilized in China. However, its main ingredients and mechanism have not been fully illustrated. The current study explored the potential mechanism of RSF treating HCC through network pharmacology, molecular docking, and molecular dynamics simulation.

Materials and Methods

The potential RSF active compounds and the corresponding targets were retrieved from TCMSP, TCMID, HERB, ETCM, and BATMAN-TCM databases. HCC-related target genes were primarily mined using GeneCards and OMIM databases. The intersection target genes of RSF and HCC were collected, and the protein-protein interaction (PPI) network was constructed to obtain the core target genes of RSF in HCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the core targets. The network analysis results were verified through molecular docking and molecular dynamics simulation using active compounds and core targets.

Results

In this study, 23 potentially active ingredients of RSF and 203 corresponding targets of the active ingredients were mined, and 4594 HCC-related target genes were finally identified. Thereinto, quercetin, luteolin, formononetin, and 8-isopentenyl-kaempferol were predicted to be the core targets, and 61 core targets such as TP53, JUN, HSP90AA1, AKT1, MAPK1, RELA, TNF, and ESR1 were further screened through PPI network analysis. GO enrichment and KEGG pathway analysis revealed that the treatment of HCC with RSF mainly involved the receptor signaling pathway of vascular endothelial growth factor, cytoplasm, protein domain specific binding, and other biological processes. Signaling pathways included pathways in cancer, Hepatitis B, IL-17 signaling pathway, . Molecular docking and molecular dynamics simulations validated the above results.

Conclusion

This study elucidated the potential mechanism of RSF in the HCC treatment through network pharmacology, molecular docking, and molecular dynamics simulation, thereby offering valuable insights for future clinical investigations.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808359324241221182323
2025-01-16
2025-10-30
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. LlovetJ.M. PinyolR. YarchoanM. SingalA.G. MarronT.U. SchwartzM. PikarskyE. KudoM. FinnR.S. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma.Nat. Rev. Clin. Oncol.202421429431110.1038/s41571‑024‑00868‑0 38424197
    [Google Scholar]
  3. TangD. KroemerG. KangR. Ferroptosis in hepatocellular carcinoma: From bench to bedside.Hepatology202480372173910.1097/HEP.0000000000000390 37013919
    [Google Scholar]
  4. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. RossiZ.J. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  5. PolyzosS.A. ChrysavgisL. VachliotisI.D. ChartampilasE. CholongitasE. Nonalcoholic fatty liver disease and hepatocellular carcinoma:Insights in epidemiology, pathogenesis, imaging, prevention and therapy.Semin. Cancer Biol.202393203510.1016/j.semcancer.2023.04.010 37149203
    [Google Scholar]
  6. LehrichB.M. ZhangJ. MongaS.P. DhanasekaranR. Battle of the biopsies: Role of tissue and liquid biopsy in hepatocellular carcinoma.J. Hepatol.202480351553010.1016/j.jhep.2023.11.030 38104635
    [Google Scholar]
  7. VogelA. MeyerT. SapisochinG. SalemR. SaborowskiA. Hepatocellular carcinoma.Lancet2022400103601345136210.1016/S0140‑6736(22)01200‑4 36084663
    [Google Scholar]
  8. SingalA.G. KanwalF. LlovetJ.M. Global trends in hepatocellular carcinoma epidemiology: Implications for screening, prevention and therapy.Nat. Rev. Clin. Oncol.2023201286488410.1038/s41571‑023‑00825‑3 37884736
    [Google Scholar]
  9. ChanY.T. ZhangC. WuJ. LuP. XuL. YuanH. FengY. ChenZ.S. WangN. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma.Mol. Cancer202423118910.1186/s12943‑024‑02101‑z 39242496
    [Google Scholar]
  10. AiC. ZouY. LiuH. YangZ. XiJ. Traditional Chinese Herbal Medicine for Allergic Diseases: A Review.Am. J. Chin. Med.202351477980610.1142/S0192415X23500374 37060193
    [Google Scholar]
  11. LiuY. HuangT. WangL. WangY. LiuY. BaiJ. WenX. LiY. LongK. ZhangH. Traditional chinese medicine in the treatment of chronic atrophic gastritis, precancerous lesions and gastric cancer.J. Ethnopharmacol.2025337Pt 111881210.1016/j.jep.2024.118812 39260710
    [Google Scholar]
  12. DaiZ. TanC. WangJ. WangQ. WangY. HeY. PengY. GaoM. ZhangY. LiuL. SongN. LiN. Traditional chinese medicine for gastric cancer: An evidence mapping.Phytother. Res.20243862707272310.1002/ptr.8155 38517014
    [Google Scholar]
  13. SchultzC.J. GoonetillekeS.N. LiangJ. LahnsteinJ. LevinK.A. MiottoB.T. BurtonR.A. MatherD.E. ChalmersK.J. Analysis of genetic diversity in the traditional chinese medicine plant ‘kushen’ (sophora flavescens ait.).Front. Plant Sci.20211270420110.3389/fpls.2021.704201 34413868
    [Google Scholar]
  14. LiX.M. GaoY. WangS.H. HuangY.G. LongG.Q. WangD.D. ZhangR. WangA.H. HuangS.H. JiaJ.M. Natural prenylflavonoids from sophora flavescens root bark against multidrug-resistant methicillin-sensitive staphylococcus aureus targeting the membrane permeability.J. Agric. Food Chem.20247226146841470010.1021/acs.jafc.4c01430 38905352
    [Google Scholar]
  15. ChenM. DingY. TongZ. Efficacy and safety of sophora flavescens (kushen) based traditional chinese medicine in the treatment of ulcerative colitis: Clinical evidence and potential mechanisms.Front. Pharmacol.20201160347610.3389/fphar.2020.603476 33362558
    [Google Scholar]
  16. YuZ.Y. PengR.Y. HanM. GrantS. YangG.Y. LiuJ.P. CaoH.J. Adjunctive effect of compound Kushen Injection to chemotherapy for non-small cell lung cancer: An evidence map and overview of systematic reviews.J. Ethnopharmacol.202128111453810.1016/j.jep.2021.114538 34418510
    [Google Scholar]
  17. ChenH. YaoX. LiT. LamC.W.K. ZhangR. ZhangH. WangJ. ZhangW. LeungE.L.H. WuQ. Compound Kushen injection combined with platinum-based chemotherapy for stage III/IV non-small cell lung cancer: A meta-analysis of 37 RCTs following the PRISMA guidelines.J. Cancer20201171883189810.7150/jca.40267 32194799
    [Google Scholar]
  18. SunQ. MaW. GaoY. ZhengW. ZhangB. PengY. Meta-analysis: Therapeutic effect of transcatheter arterial chemoembolization combined with compound kushen injection in hepatocellular carcinoma.Afr. J. Tradit. Complement. Altern. Med.201192178188 23983333
    [Google Scholar]
  19. ZhangY. HuiF. YangY. ChuH. QinX. ZhaoM. ZhaoQ. Can Kushen injection combined with TACE improve therapeutic efficacy and safety in patients with advanced HCC? a systematic review and network meta-analysis.Oncotarget201786310725810727210.18632/oncotarget.20921 29291026
    [Google Scholar]
  20. MaX. LiR.S. WangJ. HuangY.Q. LiP.Y. WangJ. SuH.B. WangR.L. ZhangY.M. LiuH.H. ZhangC.E. MaZ.J. WangJ.B. ZhaoY.L. XiaoX.H. The therapeutic efficacy and safety of compound kushen injection combined with transarterial chemoembolization in unresectable hepatocellular carcinoma: An update systematic review and meta-analysis.Front. Pharmacol.201677010.3389/fphar.2016.00070 27065861
    [Google Scholar]
  21. YangY. SunM. YaoW. WangF. LiX. WangW. LiJ. GaoZ. QiuL. YouR. YangC. BaQ. WangH. Compound kushen injection relieves tumor-associated macrophage-mediated immunosuppression through TNFR1 and sensitizes hepatocellular carcinoma to sorafenib.J. Immunother. Cancer202081e00031710.1136/jitc‑2019‑000317 32179631
    [Google Scholar]
  22. ZhangJ.Q. LiY.M. LiuT. HeW.T. ChenY.T. ChenX.H. LiX. ZhouW.C. YiJ.F. RenZ.J. Antitumor effect of matrine in human hepatoma G2 cells by inducing apoptosis and autophagy.World J. Gastroenterol.201016344281429010.3748/wjg.v16.i34.4281 20818811
    [Google Scholar]
  23. YangZ. ZhangQ. YuL. ZhuJ. CaoY. GaoX. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer.J. Ethnopharmacol.202126411324910.1016/j.jep.2020.113249 32810619
    [Google Scholar]
  24. LiH. Advances in anti hepatic fibrotic therapy with traditional chinese medicine herbal formula.J. Ethnopharmacol.202025111244210.1016/j.jep.2019.112442 31891799
    [Google Scholar]
  25. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional chinese medicine: Review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.00123 30846939
    [Google Scholar]
  26. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  27. HaoD.C. XiaoP.G. Network pharmacology: A Rosetta Stone for traditional Chinese medicine.Drug Dev. Res.201475529931210.1002/ddr.21214 25160070
    [Google Scholar]
  28. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  29. HuangL. XieD. YuY. LiuH. ShiY. ShiT. WenC. TCMID 2.0: A comprehensive resource for TCM.Nucleic Acids Res.201846D1D1117D112010.1093/nar/gkx1028 29106634
    [Google Scholar]
  30. FangS. DongL. LiuL. GuoJ. ZhaoL. ZhangJ. BuD. LiuX. HuoP. CaoW. DongQ. WuJ. ZengX. WuY. ZhaoY. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine.Nucleic Acids Res.202149D1D1197D120610.1093/nar/gkaa1063 33264402
    [Google Scholar]
  31. XuH.Y. ZhangY.Q. LiuZ.M. ChenT. LvC.Y. TangS.H. ZhangX.B. ZhangW. LiZ.Y. ZhouR.R. YangH.J. WangX.J. HuangL.Q. ETCM: An encyclopaedia of traditional Chinese medicine.Nucleic Acids Res.201947D1D976D98210.1093/nar/gky987 30365030
    [Google Scholar]
  32. LiuZ. GuoF. WangY. LiC. ZhangX. LiH. DiaoL. GuJ. WangW. LiD. HeF. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine.Sci. Rep.2016612114610.1038/srep21146 26879404
    [Google Scholar]
  33. MaX. ZhangX. KongY. SuB. WuL. LiuD. WangX. Therapeutic effects of Panax notoginseng saponins in rheumatoid arthritis: Network pharmacology and experimental validation.Bioengineered2022136144381444910.1080/21655979.2022.2086379 36694450
    [Google Scholar]
  34. GengH. ChenX. WangC. Systematic elucidation of the pharmacological mechanisms of Rhynchophylline for treating epilepsy via network pharmacology.BMC Complement. Med. Ther.2021211910.1186/s12906‑020‑03178‑x 33407404
    [Google Scholar]
  35. QiZ. DexuanC. GuixiangZ. ShihuZ. XiaoF. ChaoqunM.A. YiZ. Efficacy of tounongsan decoction on pyogenic liver abscess: Network pharmacology and clinical trial validation.J. Tradit. Chin. Med.2024441145155 38213249
    [Google Scholar]
  36. XuG. LvX. FengY. LiH. ChenC. LinH. LiH. WangC. ChenJ. SunJ. Study on the effect of active components of schisandra chinensis on liver injury and its mechanisms in mice based on network pharmacology.Eur. J. Pharmacol.202191017444210.1016/j.ejphar.2021.174442 34492285
    [Google Scholar]
  37. JiangZ. WangW. LiM. SiH. Network pharmacology and integrated molecular docking study on the mechanism of the therapeutic effect of fangfeng decoction in osteoarthritis.Curr. Pharm. Des.202329537939210.2174/1381612829666230216095659 36803762
    [Google Scholar]
  38. DuH. ZhangL. SunH. ZhengS. ZhangH. YuanS. ZhouJ. FangZ. SongJ. MeiM. DengC. Exploring the underlying mechanisms of qingxing granules treating h1n1 influenza based on network pharmacology and experimental validation.Pharmaceuticals202417673110.3390/ph17060731 38931398
    [Google Scholar]
  39. LinY. ChenX.J. HeL. YanX.L. LiQ.R. ZhangX. HeM.H. ChangS. TuB. LongQ.D. ZengZ. Systematic elucidation of the bioactive alkaloids and potential mechanism from Sophora flavescens for the treatment of eczema via network pharmacology.J. Ethnopharmacol.202330111579910.1016/j.jep.2022.115799 36216196
    [Google Scholar]
  40. PérezV. AybarC. PavíaJ.M. Spanish electoral archive. SEA database.Sci. Data20218119310.1038/s41597‑021‑00975‑y 34321488
    [Google Scholar]
  41. UniProt A worldwide hub of protein knowledge.Nucleic Acids Res.201947D1D506D51510.1093/nar/gky1049 30395287
    [Google Scholar]
  42. SafranM. DalahI. AlexanderJ. RosenN. SteinI.T. ShmoishM. NativN. BahirI. DonigerT. KrugH. MadiS.A. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards Version 3: The human gene integrator.Database 201020100baq02010.1093/database/baq020 20689021
    [Google Scholar]
  43. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online mendelian inheritance in man (omim®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  44. JiaA. XuL. WangY. Venn diagrams in bioinformatics.Brief. Bioinform.2021225bbab10810.1093/bib/bbab108 33839742
    [Google Scholar]
  45. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  46. HongJ. DingJ. HongH. XuX. PanB. RuanY. ZhaiX. Identifying the mechanism of polygoni cuspidati rhizoma et radix in treating acute liver failure based on network pharmacology and molecular docking.Gastroenterol. Res. Pract.2022202211410.1155/2022/2021066 35432526
    [Google Scholar]
  47. ZuhriU.M. PurwaningsihE.H. FadilahF. YulianaN.D. Network pharmacology integrated molecular dynamics reveals the bioactive compounds and potential targets of Tinospora crispa Linn. as insulin sensitizer.PLoS One2022176e025183710.1371/journal.pone.0251837 35737707
    [Google Scholar]
  48. LiuT. WangJ. TongY. WuL. XieY. HeP. LinS. HuX. Integrating network pharmacology and animal experimental validation to investigate the action mechanism of oleanolic acid in obesity.J. Transl. Med.20242218610.1186/s12967‑023‑04840‑x 38246999
    [Google Scholar]
  49. WuJ. ZhouY. ZhangJ. ZhangH.X. JiaR. Molecular dynamics simulation investigation of the binding and interaction of the epha6–odin protein complex.J. Phys. Chem. B2022126264914492410.1021/acs.jpcb.2c01492 35732074
    [Google Scholar]
  50. LiY. HanL. ZhangZ. Understanding the influence of AMG 510 on the structure of KRASG12C empowered by molecular dynamics simulation.Comput. Struct. Biotechnol. J.2022201056106710.1016/j.csbj.2022.02.018 35284050
    [Google Scholar]
  51. FornerA. ReigM. BruixJ. Hepatocellular carcinoma.Lancet2018391101271301131410.1016/S0140‑6736(18)30010‑2 29307467
    [Google Scholar]
  52. YangX. YangC. ZhangS. GengH. ZhuA.X. BernardsR. QinW. FanJ. WangC. GaoQ. Precision treatment in advanced hepatocellular carcinoma.Cancer Cell202442218019710.1016/j.ccell.2024.01.007 38350421
    [Google Scholar]
  53. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.188314 31682895
    [Google Scholar]
  54. ChenS.R. QiuH.C. HuY. WangY. WangY.T. Herbal medicine offered as an initiative therapeutic option for the management of hepatocellular carcinoma.Phytother. Res.201630686387710.1002/ptr.5594 26879574
    [Google Scholar]
  55. ZhaiX. LiuX. ShenF. FanJ. LingC. Traditional herbal medicine prevents postoperative recurrence of small hepatocellular carcinoma: A randomized controlled study.Cancer2018124102161216810.1002/cncr.30915 29499082
    [Google Scholar]
  56. ChenK. ZhuP. YeJ. LiaoY. DuZ. ChenF. JuanjuanH. ZhangS. ZhaiW. Oxymatrine inhibits the migration and invasion of hepatocellular carcinoma cells by reducing the activity of MMP-2/-9 via regulating p38 signaling pathway.J. Cancer201910225397540310.7150/jca.32875 31632484
    [Google Scholar]
  57. DaiM. ChenN. LiJ. TanL. LiX. WenJ. LeiL. GuoD. In vitro and in vivo anti-metastatic effect of the alkaliod matrine from Sophora flavecens on hepatocellular carcinoma and its mechanisms.Phytomedicine20218715358010.1016/j.phymed.2021.153580 34029939
    [Google Scholar]
  58. AvendañoR.I. JiménezR.E. GarcíaG.K. FigueroaP.D.C. HoyosB.R. PastranaT.G. ChinoS.X.M. TreviñoV.S. RobledoA.J. GarzónV.V.R. Quercetin regulates key components of the cellular microenvironment during early hepatocarcinogenesis.Antioxidants202211235810.3390/antiox11020358 35204240
    [Google Scholar]
  59. YamadaN. NishiwakiM.R. KozawaO. Quercetin suppresses the migration of hepatocellular carcinoma cells stimulated by hepatocyte growth factor or transforming growth factor-α: Attenuation of AKT signaling pathway.Arch. Biochem. Biophys.202068210829610.1016/j.abb.2020.108296 32032576
    [Google Scholar]
  60. ChoiH.J. ChoiH.J. ChungT.W. HaK.T. Luteolin inhibits recruitment of monocytes and migration of Lewis lung carcinoma cells by suppressing chemokine (C–C motif) ligand 2 expression in tumor-associated macrophage.Biochem. Biophys. Res. Commun.2016470110110610.1016/j.bbrc.2016.01.002 26766793
    [Google Scholar]
  61. MansoorT.A. RamalhoR.M. LuoX. RamalheteC. RodriguesC.M.P. FerreiraM.J.U. Isoflavones as apoptosis inducers in human hepatoma HuH-7 cells.Phytother. Res.201125121819182410.1002/ptr.3498 21495101
    [Google Scholar]
  62. JuP.C. HoY.C. ChenP.N. LeeH.L. LaiS.Y. YangS.F. YehC.B. Kaempferol inhibits the cell migration of human hepatocellular carcinoma cells by suppressing MMP ‐9 and Akt signaling.Environ. Toxicol.202136101981198910.1002/tox.23316 34156145
    [Google Scholar]
  63. LongJ. WangA. BaiY. LinJ. YangX. WangD. YangX. JiangY. ZhaoH. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma.EBioMedicine20194236337410.1016/j.ebiom.2019.03.022 30885723
    [Google Scholar]
  64. ZhangY. ChenQ. LiB. LiH.Y. ZhaoX.K. XiaoY. LiuS. ZuoS. NAP1L1 functions as a tumor promoter via recruiting hepatoma-derived growth factor/c-jun signal in hepatocellular carcinoma.Front. Cell Dev. Biol.2021965968010.3389/fcell.2021.659680 34368121
    [Google Scholar]
  65. ZhangL. SunS. WangY. MoY. XiongF. ZhangS. ZengZ. XiongW. LiG. ChenH. GuoC. Gossypol induces apoptosis of multiple myeloma cells through the JUN-JNK pathway.Am. J. Cancer Res.2020103870883 32266096
    [Google Scholar]
  66. ChanK.K.S. LeungC.O.N. WongC.C.L. HoD.W.H. ChokK.S.H. LaiC.L. NgI.O.L. LoR.C.L. Secretory Stanniocalcin 1 promotes metastasis of hepatocellular carcinoma through activation of JNK signaling pathway.Cancer Lett.201740333033810.1016/j.canlet.2017.06.034 28688970
    [Google Scholar]
  67. LiH. LiY. ZhangY. TanB. HuangT. XiongJ. TanX. ErmolaevaM.A. FuL. MAPK10 expression as a prognostic marker of the immunosuppressive tumor microenvironment in human hepatocellular carcinoma.Front. Oncol.20211168737110.3389/fonc.2021.687371 34408980
    [Google Scholar]
  68. XuQ. TuJ. DouC. ZhangJ. YangL. LiuX. LeiK. LiuZ. WangY. LiL. BaoH. WangJ. TuK. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma.Mol. Cancer201716117810.1186/s12943‑017‑0748‑y 29262861
    [Google Scholar]
  69. ChenJ. LiangJ. LiuS. SongS. GuoW. ShenF. Differential regulation of AKT1 contributes to survival and proliferation in hepatocellular carcinoma cells by mediating Notch1 expression.Oncol. Lett.20181556857686410.3892/ol.2018.8193 29725418
    [Google Scholar]
  70. YangP. MarkowitzG.J. WangX.F. The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma.Natl. Sci. Rev.20141339641210.1093/nsr/nwu038 25741453
    [Google Scholar]
  71. LimC.J. LeeY.H. PanL. LaiL. ChuaC. WasserM. LimT.K.H. YeongJ. TohH.C. LeeS.Y. ChanC.Y. GohB.K.P. ChungA. HeikenwälderM. NgI.O.L. ChowP. AlbaniS. ChewV. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma.Gut201968591692710.1136/gutjnl‑2018‑316510 29970455
    [Google Scholar]
  72. LiJ. LauG.K.K. ChenL. DongS. LanH.Y. HuangX.R. LiY. LukJ.M. YuanY.F. GuanX. Interleukin 17A promotes hepatocellular carcinoma metastasis via NF-kB induced matrix metalloproteinases 2 and 9 expression.PLoS One201167e2181610.1371/journal.pone.0021816 21760911
    [Google Scholar]
  73. GuoB. LiL. GuoJ. LiuA. WuJ. WangH. ShiJ. PangD. CaoQ. M2 tumor-associated macrophages produce interleukin-17 to suppress oxaliplatin-induced apoptosis in hepatocellular carcinoma.Oncotarget2017827444654447610.18632/oncotarget.17973 28591705
    [Google Scholar]
  74. WaghelaB.N. VaidyaF.U. RanjanK. ChhipaA.S. TiwariB.S. PathakC. AGE-RAGE synergy influences programmed cell death signaling to promote cancer.Mol. Cell. Biochem.2021476258559810.1007/s11010‑020‑03928‑y 33025314
    [Google Scholar]
  75. MuthyalaiahY.S. JonnalagaddaB. JohnC.M. ArockiasamyS. Impact of Advanced Glycation End products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression.Glycoconj. J.202138671773410.1007/s10719‑021‑10031‑x 35064413
    [Google Scholar]
  76. SunR. ZhaiR. MaC. MiaoW. RETRACTED: Combination of aloin and metformin enhances the antitumor effect by inhibiting the growth and invasion and inducing apoptosis and autophagy in hepatocellular carcinoma through PI3K/AKT/mTOR pathway.Cancer Med.2020931141115110.1002/cam4.2723 31830378
    [Google Scholar]
  77. LiQ. WangC. WangY. SunL. LiuZ. WangL. SongT. YaoY. LiuQ. TuK. HSCs-derived COMP drives hepatocellular carcinoma progression by activating MEK/ERK and PI3K/AKT signaling pathways.J. Exp. Clin. Cancer Res.201837123110.1186/s13046‑018‑0908‑y 30231922
    [Google Scholar]
  78. ChenY. WenH. ZhouC. SuQ. LinY. XieY. HuangY. QiuQ. LinJ. HuangX. TanW. MinC. WangC. TNF-α derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/β-catenin pathway in SMMC-7721 hepatocellular carcinoma cells.Exp. Cell Res.20193781415010.1016/j.yexcr.2019.03.005 30844387
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808359324241221182323
Loading
/content/journals/lddd/10.2174/0115701808359324241221182323
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test