Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

The current use of Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2) inhibitors is often limited by low selectivity and adverse side effects, highlighting the urgent need for novel, highly selective agents targeting this receptor.

Methods

Based on existing VEGFR-2 inhibitors, we employed computer-aided drug design (CADD) techniques to develop a virtual compound library using active docking fragments. Molecular docking was performed using the configuration of VEGFR-2 as the receptor protein(PDB:4ASD). Comparative analysis and screening identified the most promising inhibitor, which was subsequently validated through molecular dynamics simulations.

Results

From the virtual library, 10 potential highly active inhibitors were identified. In particular, Compound demonstrated strong binding affinity with the protein configuration, forming four hydrogen bonds during docking. The calculated CODOCKER energy was 39.7315 kcal/mol, with an RMSD of 0.4634 nm and RMSF of 0.3234 nm. Compared to Sorafenib, Compound exhibited superior docking selectivity and activity.

Conclusion

Computational analyses suggest that Compound is a promising candidate as a highly selective VEGFR-2 inhibitor. Nonetheless, due to the inherent limitations of in silico docking studies, further chemical synthesis and experimental biological validation are required to confirm its potential.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808334488241121054542
2025-01-27
2025-09-08
Loading full text...

Full text loading...

References

  1. LemmonM.A. SchlessingerJ. Cell signaling by receptor tyrosine kinases.Cell201014171117113410.1016/j.cell.2010.06.011 20602996
    [Google Scholar]
  2. JIANG Q.Y. Small molecule tyrosine kinase inhibitors and their application in cancer treatment:research advances.Int. J. Pharm.2020471210471056
    [Google Scholar]
  3. JIANGL.P. Clinical use and research of VEGFR inhibitor.Anhui Yiyao20141120322035
    [Google Scholar]
  4. SherwoodL.M. ParrisE.E. FolkmanJ. Tumor angiogenesis: Therapeutic implications.N. Engl. J. Med.1971285211182118610.1056/NEJM197111182852108 4938153
    [Google Scholar]
  5. RibattiD. The discovery of the fundamental role of VEGF in the development of the vascular system.Mech. Dev.201916010357910.1016/j.mod.2019.103579 31644946
    [Google Scholar]
  6. HarmeyJ.H. Bouchier-HayesD. Vascular endothelial growth factor (VEGF), a survival factor for tumour cells: Implications for anti‐angiogenic therapy.BioEssays200224328028310.1002/bies.10043 11891765
    [Google Scholar]
  7. ThakurA. RanaM. MishraA. KaurC. PanC.H. NepaliK. Recent advances and future directions on small molecule VEGFR inhibitors in oncological conditions.Eur. J. Med. Chem.202427211647210.1016/j.ejmech.2024.116472 38728867
    [Google Scholar]
  8. WangX. BoveA.M. SimoneG. MaB. Molecular bases of VEGFR-2-mediated physiological function and pathological role.Front. Cell Dev. Biol.2020859928110.3389/fcell.2020.599281 33304904
    [Google Scholar]
  9. HaizhenZ JB. Molecular design and clinical development of VEGFR kinase inhibitors.Curr. Top. Med. Chem.20077141379139310.2174/156802607781696855 17692027
    [Google Scholar]
  10. CasakS.J. Fashoyin-AjeI. LemeryS.J. ZhangL. JinR. LiH. ZhaoL. ZhaoH. ZhangH. ChenH. HeK. DoughertyM. NovakR. KennettS. KhasarS. HelmsW. KeeganP. PazdurR. FDA approval summary: Ramucirumab for gastric cancer.Clin. Cancer Res.201521153372337610.1158/1078‑0432.CCR‑15‑0600 26048277
    [Google Scholar]
  11. AlbigesL. GizziM. CartonE. EscudierB. Axitinib in metastatic renal cell carcinoma.Expert Rev. Anticancer Ther.201515549950710.1586/14737140.2015.1033408 25907705
    [Google Scholar]
  12. BukowskiR.M. YasothanU. KirkpatrickP. Pazopanib.Nat. Rev. Drug Discov.201091171810.1038/nrd3073 20043026
    [Google Scholar]
  13. WilhelmS. CarterC. LynchM. LowingerT. DumasJ. SmithR.A. SchwartzB. SimantovR. KelleyS. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer.Nat. Rev. Drug Discov.200651083584410.1038/nrd2130 17016424
    [Google Scholar]
  14. TU Y. Clinical research advances of apatinib in the treatment of malignancies.Chin. J. Clin. Oncol.20164312545548
    [Google Scholar]
  15. KellyR.J. RixeO. Axitinib—a selective inhibitor of the vascular endothelial growth factor (VEGF) receptor.Target. Oncol.20094429730510.1007/s11523‑009‑0126‑9 19876699
    [Google Scholar]
  16. EscudierB. EisenT. StadlerW.M. SzczylikC. OudardS. SiebelsM. NegrierS. ChevreauC. SolskaE. DesaiA.A. RollandF. DemkowT. HutsonT.E. GoreM. FreemanS. SchwartzB. ShanM. SimantovR. BukowskiR.M. Sorafenib in advanced clear-cell renal-cell carcinoma.N. Engl. J. Med.2007356212513410.1056/NEJMoa060655 17215530
    [Google Scholar]
  17. LIU H.H. Research progress on mechanism of tyrosine kinase inhibitor-induced liver injury.Zhongguo Yaolixue Tongbao2023390916131617
    [Google Scholar]
  18. MiyamotoS. KakutaniS. SatoY. HanashiA. KinoshitaY. IshikawaA. Drug review.Pazopanib. Jpn. J. Clin. Oncol.201848650351310.1093/jjco/hyy053 29684209
    [Google Scholar]
  19. Méndez-BlancoC. FondevilaF. García-PalomoA. González-GallegoJ. MaurizJ.L. Sorafenib resistance in hepatocarcinoma: Role of hypoxia-inducible factors.Exp. Mol. Med.201850101910.1038/s12276‑018‑0159‑1 30315182
    [Google Scholar]
  20. ZhangY. ChenY. ZhangD. WangL. LuT. JiaoY. Discovery of novel potent vegfr-2 inhibitors exerting significant antiproliferative activity against cancer cell lines.J. Med. Chem.201861114015710.1021/acs.jmedchem.7b01091 29189002
    [Google Scholar]
  21. EissaI. ElkadyH. TaghourM.S. ElwanA. DahabM.A. HagrasM. ElkaeedE.B. AlsfoukB.A. IbrahimI.M. HuseinD.Z. HafezE.E. MansourH.M. MetwalyA. MahdyH.A. Novel thiazolidine‐2,4‐dione derivatives as potential vegfr‐2 inhibitors: Synthesis, biological testing, and in silico studies.ChemistrySelect2024911e20230309510.1002/slct.202303095
    [Google Scholar]
  22. El-serwyW.S. MohamedH.S. El-serwyW.S. MohamedN.A. KassemE.M.M. MahmoudK. NossierE.S. Thiopyrimidine‐5‐carbonitrile derivatives as VEGFR‐2 inhibitors: Synthesis, anticancer evaluation, molecular docking, ADME predictions and QSAR studies.ChemistrySelect2020548152431525310.1002/slct.202002566
    [Google Scholar]
  23. BayoumiH.H. IbrahimM.K. DahabM.A. KhedrF. El-AdlK. Exploration of the VEGFR-2 inhibition activity of phthalazine derivatives: Design, synthesis, cytotoxicity, ADMET, molecular docking and dynamic simulation.RSC Advances20241430216682168110.1039/D4RA03459G 38979468
    [Google Scholar]
  24. McTigueM. MurrayB.W. ChenJ.H. DengY.L. SolowiejJ. KaniaR.S. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors.Proc. Natl. Acad. Sci. USA201210945182811828910.1073/pnas.1207759109 22988103
    [Google Scholar]
  25. ZHANG, X.K. The design and synthesis of novol VEGFR2 receptor antagonists and their activity research.. MA Thesis, Henan University, 2013
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808334488241121054542
Loading
/content/journals/lddd/10.2174/0115701808334488241121054542
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test