Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

To address the issues of liposomal instability and enhance the delivery of docetaxel (DTX) to breast cancer cells, the development of polyethylene glycol (PEG)-coated proliposomes was proposed, utilizing a thin film hydration technique followed by lyophilization with an appropriate cryoprotectant. Various compositions of phospholipid, cholesterol, and docetaxel were optimized, and the PEG was used in a 1.3:1 ratio of the phospholipid.

Methods

The liposomes were converted to proliposomes using a lyophilizer. The optimized formulation possesses a particle size of 117.0 ± 9.78 nm, with a polydispersity index (PDI) of 0.265 ± 0.094, drug entrapment (DE) of 96.0± 6.14%, and drug loading (DL) of 9.20 ± 3.17%. study demonstrated a controlled release pattern consistent with the Higuchi model, alongside significantly lower protein binding relative to free DTX, indicating a potential reduction in side effects.

Results

Cell viability study demonstrated increased cytotoxicity of PEG-DTX proliposomes (PEG-DTX PL) against MDA-MB-231 cells, evidenced by a lower IC (4.677 μg/mL) relative to free DTX, underscoring the promise of this nanocarrier for targeted therapy.

Conclusion

The findings are promising as a simple and scalable carrier comprising general and biocompatible materials that can provide a safe surfactant free nanosystem with improved efficacy and performance.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808355340241223072643
2024-12-26
2025-11-14
Loading full text...

Full text loading...

References

  1. Lyseng-WilliamsonK.A. FentonC. Docetaxel.Drugs200565172513253110.2165/00003495‑200565170‑0000716296875
    [Google Scholar]
  2. LinJ. WangL. HuangM. XuG. YangM. Metabolic changes induced by heavy metal copper exposure in human ovarian granulosa cells.Ecotoxicol. Environ. Saf.202428511707810.1016/j.ecoenv.2024.11707839305777
    [Google Scholar]
  3. DeyG. BhartiR. DasA.K. SenR. MandalM. Resensitization of Akt induced docetaxel resistance in breast cancer by ‘Iturin A’ a lipopeptide molecule from Marine Bacteria Bacillus megaterium.Sci. Rep.2017711732410.1038/s41598‑017‑17652‑z29229973
    [Google Scholar]
  4. ThotakuraN. PanjetaA. NegiP. PreetS. RazaK. Doxorubicin-loaded mixed micelles for the effective management of skin carcinoma: in vivo anti-tumor activity and biodistribution studies.AAPS PharmSciTech202122313010.1208/s12249‑021‑01993‑033835327
    [Google Scholar]
  5. ThotakuraN. SharmaS. KhuranaR.K. BabuP.V. ChitkaraD. KumarV. SinghB. RazaK. Aspartic acid tagged carbon nanotubols as a tool to deliver docetaxel to breast cancer cells: Reduced hemotoxicity with improved cytotoxicity.Toxicol. In Vitro20195912613410.1016/j.tiv.2019.04.01230986424
    [Google Scholar]
  6. LanJ. ChenL. LiZ. LiuL. ZengR. HeY. ShenY. ZhangT. DingY. Multifunctional biomimetic liposomes with improved tumor‐targeting for TNBC treatment by combination of chemotherapy, antiangiogenesis and immunotherapy.Adv. Healthc. Mater.20241326240004610.1002/adhm.20240004638767575
    [Google Scholar]
  7. TanT. FengY. WangW. WangR. YinL. ZengY. ZengZ. XieT. Cabazitaxel-loaded human serum albumin nanoparticles combined with TGFβ-1 siRNA lipid nanoparticles for the treatment of paclitaxel-resistant non-small cell lung cancer.Cancer Nanotechnol.20231417010.1186/s12645‑023‑00194‑7
    [Google Scholar]
  8. JiangC.H. SunT.L. XiangD.X. WeiS.S. LiW.Q. Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.).Front. Pharmacol.2018953010.3389/fphar.2018.0053029872398
    [Google Scholar]
  9. TangJ. LiJ. LiG. ZhangH. WangL. LiD. DingJ. Spermidine-mediated poly(lactic-co-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis.Int. J. Nanomedicine2017126687670410.2147/IJN.S14056928932114
    [Google Scholar]
  10. ZhangY. ZhengX. LiuY. FangL. PanZ. BaoM. HuangP. Effect of oridonin on cytochrome P450 expression and activities in HepaRG cell.Pharmacology20181015-624625410.1159/00048660029393278
    [Google Scholar]
  11. FengS. CaoM. TangP. DengS. ChenL. TangY. ZhuL. ChenX. HuangZ. ShenM. YangF. Microcystins exposure associated with blood lipid profiles and dyslipidemia: a cross-sectional study in Hunan Province, China.Toxins (Basel)202315429310.3390/toxins1504029337104231
    [Google Scholar]
  12. SohailM.F. RehmanM. SarwarH.S. NaveedS. QureshiO.S. BukhariN.I. HussainI. WebsterT.J. ShahnazG. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends.Int. J. Nanomedicine2018133145316110.2147/IJN.S16451829922053
    [Google Scholar]
  13. RazaK. ThotakuraN. KumarP. JoshiM. BhushanS. BhatiaA. KumarV. MalikR. SharmaG. GuruS.K. KatareO.P.C. 60 -fullerenes for delivery of docetaxel to breast cancer cells: A promising approach for enhanced efficacy and better pharmacokinetic profile.Int. J. Pharm.2015495155155910.1016/j.ijpharm.2015.09.01626383841
    [Google Scholar]
  14. KaushikL. SrivastavaS. PanjetaA. ChaudhariD. GhadiR. KucheK. MalikR. PreetS. JainS. RazaK. Exploration of docetaxel palmitate and its solid lipid nanoparticles as a novel option for alleviating the rising concern of multi-drug resistance.Int. J. Pharm.202057811908810.1016/j.ijpharm.2020.11908832001291
    [Google Scholar]
  15. ÜnalS. DoğanO. AktaşY. Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics.Beilstein J. Nanotechnol.2022131393140710.3762/bjnano.13.11536483636
    [Google Scholar]
  16. ChaurawalN. RazaK. Nano-interventions for the drug delivery of docetaxel to cancer cells.Health Sci. Rev. (Oxf.)2023710010110.1016/j.hsr.2023.100101
    [Google Scholar]
  17. WangY. LiH. FanR. LvH. HuaS. XieH. TangT. LuoJ. XiaZ. The effects of ferulic acid on the pharmacokinetics of warfarin in rats after biliary drainage.Drug Des. Devel. Ther.2016102173218010.2147/DDDT.S10791727462142
    [Google Scholar]
  18. Yi-wenZ. Mei-huaB. Xiao-yaL. YuC. JingY. Hong-haoZ. Effects of oridonin on hepatic cytochrome P450 expression and activities in PXR-humanized mice.Biol. Pharm. Bull.201841570771210.1248/bpb.b17‑0088229709908
    [Google Scholar]
  19. ZengM. GuoD. Fernández-VaroG. ZhangX. FuS. JuS. YangH. LiuX. WangY.C. ZengY. CasalsG. CasalsE. The integration of nanomedicine with Traditional Chinese Medicine: Drug delivery of natural products and other opportunities.Mol. Pharm.202320288690410.1021/acs.molpharmaceut.2c0088236563052
    [Google Scholar]
  20. SzatmáriT. HargitaiR. SáfrányG. LumniczkyK. Extracellular vesicles in modifying the effects of ionizing radiation.Int. J. Mol. Sci.20192022552710.3390/ijms2022552731698689
    [Google Scholar]
  21. ChenJ. HuS. SunM. ShiJ. ZhangH. YuH. YangZ. Recent advances and clinical translation of liposomal delivery systems in cancer therapy.Eur. J. Pharm. Sci.202419310668810.1016/j.ejps.2023.10668838171420
    [Google Scholar]
  22. HolsæterA.M. WizgirdK. KarlsenI. HemmingsenJ.F. BrandlM. Škalko-BasnetN. How docetaxel entrapment, vesicle size, zeta potential and stability change with liposome composition–A formulation screening study.Eur. J. Pharm. Sci.202217710626710.1016/j.ejps.2022.10626735872073
    [Google Scholar]
  23. MisraC. RazaK. GoyalA.K. The scope and challenges of vesicular carrier-mediated delivery of docetaxel for the management of cancer.Curr. Drug Deliv.2020171087488410.2174/156720181766620062312163332576129
    [Google Scholar]
  24. LuizM.T. ViegasJ.S.R. AbriataJ.P. TofaniL.B. VaidergornM.M. EmeryF.S. ChorilliM. MarchettiJ.M. Docetaxel-loaded folate-modified TPGS-transfersomes for glioblastoma multiforme treatment.Mater. Sci. Eng. C202112411203310.1016/j.msec.2021.11203333947535
    [Google Scholar]
  25. KumbharP.S. KambleV. VishwasS. KumbharP. KolekarK. GuptaG. VeigaF. Paiva-SantosA.C. GohB.H. SinghS.K. DuaK. DisouzaJ. PatravaleV. Unravelling the success of transferosomes against skin cancer: Journey so far and road ahead.Drug Deliv. Transl. Res.20241492325234410.1007/s13346‑024‑01607‑938758498
    [Google Scholar]
  26. ShakibZ. MahmoudiA. MoosavianS.A. Malaekeh-NikoueiB. PEGylated solid lipid nanoparticles functionalized by aptamer for targeted delivery of docetaxel in mice bearing C26 tumor.Drug Dev. Ind. Pharm.2022482697810.1080/03639045.2022.209539835758194
    [Google Scholar]
  27. GaikwadD.S. ChougaleR.D. PatilK.S. DisouzaJ.I. HajareA.A. Design, development, and evaluation of docetaxel-loaded niosomes for the treatment of breast cancer.Future J. Pharm. Sci.2023914310.1186/s43094‑023‑00494‑0
    [Google Scholar]
  28. BasakM. NarisepalliS. SalunkheS.A. TiwariS. ChitkaraD. MittalA. Macrophage derived Exosomal Docetaxel (Exo-DTX) for pro-metastasis suppression: QbD driven formulation development, validation, in-vitro and pharmacokinetic investigation.Eur. J. Pharm. Biopharm.202419511417510.1016/j.ejpb.2024.11417538185191
    [Google Scholar]
  29. PatilS.S. ChougaleR.D. ManjappaA.S. DisouzaJ.I. HajareA.A. PatilK.S. Statistically developed docetaxel-laden mixed micelles for improved therapy of breast cancer.OpenNano2022810007910.1016/j.onano.2022.100079
    [Google Scholar]
  30. RazaK. KumarN. MisraC. KaushikL. GuruS.K. KumarP. MalikR. BhushanS. KatareO.P. Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile.Int. J. Biol. Macromol.20168820621210.1016/j.ijbiomac.2016.03.06427037052
    [Google Scholar]
  31. ThakurG.S. MisraC. ThotakuraN. Al SaqrA. AlmawashS. PreetS. RazaK. Chitosan-based nanoconjugate for safe and effective delivery of docetaxel to cancer cells: An explorative study.J. Drug Deliv. Sci. Technol.20216410265310.1016/j.jddst.2021.102653
    [Google Scholar]
  32. WangH. ChenW. WuG. KongJ. YuanS. ChenL. A magnetic T7 peptide&AS1411 aptamer-modified microemulsion for triple glioma-targeted delivery of shikonin and docetaxel.J. Pharm. Sci.202111082946295410.1016/j.xphs.2021.03.01833785350
    [Google Scholar]
  33. AlkhatibM.H. BawadudR.S. GashlanH.M. Incorporation of docetaxel and thymoquinone in borage nanoemulsion potentiates their antineoplastic activity in breast cancer cells.Sci. Rep.20201011812410.1038/s41598‑020‑75017‑533093596
    [Google Scholar]
  34. BarkatM.A. Harshita; Rizwanullah, M.; Pottoo, F.H.; Beg, S.; Akhter, S.; Ahmad, F.J. Therapeutic nanoemulsion: concept to delivery.Curr. Pharm. Des.202026111145116610.2174/138161282666620031714060032183664
    [Google Scholar]
  35. WangW. ZhangX. LiZ. PanD. ZhuH. GuZ. ChenJ. ZhangH. GongQ. LuoK. Dendronized hyaluronic acid-docetaxel conjugate as a stimuli-responsive nano-agent for breast cancer therapy.Carbohydr. Polym.202126711816010.1016/j.carbpol.2021.11816034119134
    [Google Scholar]
  36. MahdavijalalM. Ahmad PanahiH. MoniriE. Synthesis of PAMAM dendrimers anchored to WS2 nano-sheets for controlled delivery of docetaxel: Design, characterization and in vitro drug release.J. Drug Deliv. Sci. Technol.20237910406610.1016/j.jddst.2022.104066
    [Google Scholar]
  37. WangY. ZuoA. HuangX. YingY. ShuX. ChenX. YangY. MaJ. LinG. WangX. MeiL. LiuG. ZhaoY. Docetaxel-loaded PAMAM-based poly (γ-benzyl-l-glutamate)-b-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles in human breast cancer and human cervical cancer therapy.J. Microencapsul.201936613310.1080/02652048.2019.165400231403342
    [Google Scholar]
  38. YoosefianM. FouladiM. AtanaseL.I. Molecular dynamics simulations of docetaxel adsorption on graphene quantum dots surface modified by PEG-b-PLA copolymers.Nanomaterials (Basel)202212692610.3390/nano1206092635335739
    [Google Scholar]
  39. JahangirM.A. GilaniS.J. MuheemA. JafarM. AslamM. AnsariM.T. BarkatM.A. Quantum dots: next generation of smart nano-systems.Pharm. Nanotechnol.20197323424510.2174/221173850766619042911390631486752
    [Google Scholar]
  40. MisraC. ThotakuraN. KumarR. SinghB. SharmaG. KatareO.P. RazaK. Improved cellular uptake, enhanced efficacy and promising pharmacokinetic profile of docetaxel employing glycine-tethered C60-fullerenes.Mater. Sci. Eng. C20177650150810.1016/j.msec.2017.03.07328482557
    [Google Scholar]
  41. ThotakuraN. SharmaG. SinghB. KumarV. RazaK. Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: an explorative study.Artif. Cells Nanomed. Biotechnol.201746811010.1080/21691401.2017.139231429069915
    [Google Scholar]
  42. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  43. TiwariG. TiwariR. BannerjeeS.K. BhatiL. PandeyS. PandeyP. SriwastawaB. Drug delivery systems: An updated review.Int. J. Pharm. Investig.20122121110.4103/2230‑973X.9692023071954
    [Google Scholar]
  44. ChoudharyM. ChaurawalN. BarkatM.A. RazaK. Proliposome-based nanostrategies: challenges and development as drug delivery systems.AAPS PharmSciTech202223829310.1208/s12249‑022‑02443‑136329341
    [Google Scholar]
  45. LiuY. XieB. LiL. ZhangX. ZhangY. HeH. YinT. TangX. CaiC. GouJ. PEGylated lipid microspheres loaded with cabazitaxel for intravenous administration: stability, bioavailability, antitumor efficacy, and toxicity.Drug Deliv. Transl. Res.2018851365137910.1007/s13346‑018‑0562‑030019282
    [Google Scholar]
  46. NegiJ.S. Chapter 6 - Nanolipid Materials for Drug Delivery Systems: A Comprehensive Review.In: Characterization and Biology of Nanomaterials for Drug Delivery - Nanoscience and Nanotechnology in Drug Delivery Micro and Nano Technologies.Chapter 6Elsevier201913716310.1016/B978‑0‑12‑814031‑4.00006‑4
    [Google Scholar]
  47. NosovaA.S. KoloskovaO.O. NikonovaA.A. SimonovaV.A. SmirnovV.V. KudlayD. KhaitovM.R. Diversity of PEGylation methods of liposomes and their influence on RNA delivery.MedChemComm201910336937710.1039/C8MD00515J31015904
    [Google Scholar]
  48. TunkiL. KulhariH. VaditheL.N. KunchaM. BhargavaS. PoojaD. SistlaR. Modulating the site-specific oral delivery of sorafenib using sugar-grafted nanoparticles for hepatocellular carcinoma treatment.Eur. J. Pharm. Sci.201913710497810.1016/j.ejps.2019.10497831254645
    [Google Scholar]
  49. ShenQ. LinY. HandaT. DoiM. SugieM. WakayamaK. OkadaN. FujitaT. YamamotoA. Modulation of intestinal P-glycoprotein function by polyethylene glycols and their derivatives by in vitro transport and in situ absorption studies.Int. J. Pharm.20063131-2495610.1016/j.ijpharm.2006.01.02016500056
    [Google Scholar]
  50. KumarM. SharmaG. MisraC. KumarR. SinghB. KatareO.P. Raza, K. -desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells.Mater. Sci. Eng. C20188927428210.1016/j.msec.2018.03.03329752099
    [Google Scholar]
  51. BachD. WachtelE. Phospholipid/cholesterol model membranes: formation of cholesterol crystallites.Biochim. Biophys. Acta Biomembr.20031610218719710.1016/S0005‑2736(03)00017‑812648773
    [Google Scholar]
  52. ZhaoL. XiongH. PengH. WangQ. HanD. BaiC. LiuY.Z. ShiS.H. DengB. PEG-coated lyophilized proliposomes: preparation, characterizations and in vitro release evaluation of vitamin E.Eur. Food Res. Technol.2011232464765410.1007/s00217‑011‑1429‑5
    [Google Scholar]
  53. AdelI.M. ElMeligyM.F. AbdelrahimM.E.A. MagedA. AbdelkhalekA.A. AbdelmotelebA.M.M. ElkasabgyN.A. Design and characterization of spray-dried proliposomes for the pulmonary delivery of curcumin.Int. J. Nanomedicine2021162667268710.2147/IJN.S30683133854314
    [Google Scholar]
  54. RobsonA.L. DastoorP.C. FlynnJ. PalmerW. MartinA. SmithD.W. WolduA. HuaS. Advantages and limitations of current imaging techniques for characterizing liposome morphology.Front. Pharmacol.201898010.3389/fphar.2018.0008029467660
    [Google Scholar]
  55. ShahH. MadniA. RahimM.A. JanN. KhanA. KhanS. JabarA. AliA. Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein.PLoS One20211610e025814110.1371/journal.pone.025814134665836
    [Google Scholar]
  56. LuT. ten HagenT.L.M. A novel kinetic model to describe the ultra-fast triggered release of thermosensitive liposomal drug delivery systems.J. Control. Release202032466967810.1016/j.jconrel.2020.05.04732512013
    [Google Scholar]
  57. TangX. WangG. ShiR. JiangK. MengL. RenH. WuJ. HuY. Enhanced tolerance and antitumor efficacy by docetaxel-loaded albumin nanoparticles.Drug Deliv.20162382686269610.3109/10717544.2015.104972026004129
    [Google Scholar]
  58. RazaK. KumarD. KiranC. KumarM. GuruS.K. KumarP. AroraS. SharmaG. BhushanS. KatareO.P. Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: Implications on pharmacokinetic profile and anticancer activity.Mol. Pharm.20161372423243210.1021/acs.molpharmaceut.6b0018327182646
    [Google Scholar]
  59. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic.Crit. Rev. Ther. Drug Carrier Syst.200926652358010.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
    [Google Scholar]
  60. PaviaD.L. LampmanG.M. KrizG.S. JamesA. Introduction to Spectroscopy.Thomson Learning2019
    [Google Scholar]
  61. PayneN.I. AmbroseC.V. TimminsP. WardM.D. RidgwayF. Proliposomes: a novel solution to an old problem.J. Pharm. Sci.198675432532910.1002/jps.26007504023723351
    [Google Scholar]
  62. SunC. WangJ. LiuJ. QiuL. ZhangW. ZhangL. Liquid proliposomes of nimodipine drug delivery system: preparation, characterization, and pharmacokinetics.AAPS PharmSciTech201314133233810.1208/s12249‑013‑9924‑623319300
    [Google Scholar]
  63. MirajS. SaeedH. IqtedarM. AlbekairiN.A. AhmedN. DanishM.Z. IslamM. RasoolM.F. DeenK.M. RathoreH.A. Docetaxel-loaded methoxy poly(ethylene glycol)-poly (L-lactic Acid) nanoparticles for breast cancer: synthesis, characterization, method validation, and cytotoxicity.Pharmaceuticals (Basel)20231611160010.3390/ph1611160038004465
    [Google Scholar]
  64. SheuM.T. WuC.Y. SuC.Y. HoH.O. Determination of total and unbound docetaxel in plasma by ultrafiltration and UPLC-MS/MS: application to pharmacokinetic studies.Sci. Rep.2017711460910.1038/s41598‑017‑15176‑029097770
    [Google Scholar]
  65. PaulD.R. Elaborations on the Higuchi model for drug delivery.Int. J. Pharm.20114181131710.1016/j.ijpharm.2010.10.03721034800
    [Google Scholar]
  66. Vakili-GhartavolR. RezayatS.M. Faridi-MajidiR. SadriK. JaafariM.R. Optimization of Docetaxel Loading Conditions in Liposomes: proposing potential products for metastatic breast carcinoma chemotherapy.Sci. Rep.2020101556910.1038/s41598‑020‑62501‑132221371
    [Google Scholar]
  67. TuscanoJ.M. MartinS.M. MaY. ZamboniW. O’DonnellR.T. Efficacy, biodistribution, and pharmacokinetics of CD22-targeted pegylated liposomal doxorubicin in a B-cell non-Hodgkin’s lymphoma xenograft mouse model.Clin. Cancer Res.201016102760276810.1158/1078‑0432.CCR‑09‑319920460479
    [Google Scholar]
  68. PassosI.D. PapadimitriouD. KatsoudaA. PapavasileiouG.E. GalatasA. TzitzisP. MpakosiA. Mironidou- Tzouveleki, M. In vitro and in vivo effects of docetaxel and dasatinib in triple-negative breast cancer: a research study.Cureus2023158e4353410.7759/cureus.4353437719631
    [Google Scholar]
  69. KousarK. ShafiqS. SheraziS.T. IqbalF. ShareefU. KakarS. AhmadT. In silico ADMET profiling of Docetaxel and development of camel milk derived liposomes nanocarriers for sustained release of Docetaxel in triple negative breast cancer.Sci. Rep.202414191210.1038/s41598‑023‑50878‑838195628
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808355340241223072643
Loading
/content/journals/lddd/10.2174/0115701808355340241223072643
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test