Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Breast cancer is a common and deadly disease that affects women worldwide. Despite advancements in research and treatment, breast cancer continues to be a significant health issue.

Objective

This study examined the potential of black soybean, commonly known as Sojae Semen Nigrum (SSN), in the prevention and therapy of breast cancer using a mix of data mining, network pharmacology, and docking analysis.

Methods

Molecular dynamic simulation studies and docking analysis supported the findings by confirming the bioactive compounds' efficient activity against potential target genes.

Results

The study discovered the top three significant compounds Pramoxine, Sapogenol C, and beta-sitosterol, that may change target genes involved in the etiology of breast cancer as well as proteins like AKT1, MAPK1, and MAPK3. The study's conclusions point to SSN as having potential multi-target pharmacological defenses against breast cancer, laying the groundwork for more experimental exploration.

Conclusion

The study's conclusion suggests that SSN may help certain people with breast cancer and might transform cancer treatment.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808333132241226071319
2024-12-31
2025-09-02
Loading full text...

Full text loading...

References

  1. ScudelerM.M. ManóchioC. PintoB.A.J. CirinoS.H. da SilvaC.S. SoaresR.F. Breast cancer pharmacogenetics: A systematic review.Pharmacogenomics202324210712210.2217/pgs‑2022‑014436475975
    [Google Scholar]
  2. BrayF. FerlayJ. LaversanneM. BrewsterD.H. MbalawaG.C. KohlerB. PiñerosM. FoucherS.E. SwaminathanR. AntoniS. SoerjomataramI. FormanD. Cancer I ncidence in F ive C ontinents: Inclusion criteria, highlights from Volume X and the global status of cancer registration.Int. J. Cancer201513792060207110.1002/ijc.2967026135522
    [Google Scholar]
  3. SmithR.A. AndrewsK.S. BrooksD. FedewaS.A. BaptisteM.D. SaslowD. BrawleyO.W. WenderR.C. Cancer screening in the United States, 2017: A review of current American Cancer Society guidelines and current issues in cancer screening.CA Cancer J. Clin.201767210012110.3322/caac.2139228170086
    [Google Scholar]
  4. PolyakK. Heterogeneity in breast cancer.J. Clin. Invest.2011121103786378810.1172/JCI6053421965334
    [Google Scholar]
  5. RakhaE.A. ParejaF.G. New advances in molecular breast cancer pathology, Seminars in cancer biology.Elsevier2021102113
    [Google Scholar]
  6. MartinelliF. PerroneA. YousefiS. PapiniA. CastiglioneS. GuarinoF. CicatelliA. AelaeiM. AradN. GholamiM. SalamiS. Botanical, phytochemical, anti-microbial and pharmaceutical characteristics of hawthorn (Crataegus monogyna Jacq.), rosaceae.Molecules20212623726610.3390/molecules2623726634885847
    [Google Scholar]
  7. MinW.L. QianQ.W. PingA.D. ChenJ.Z. YanJ. YueZ. LiS.Z. BingY. LaiZ.Z. QiL.H. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi=.Zhongguo Zhongyao Zazhi202045184519452733164383
    [Google Scholar]
  8. PradoJ. RostagnoM. Natural product extraction: Principles and applications.Royal Society of Chemistry202273010.1039/9781839165894
    [Google Scholar]
  9. HeF.J. ChenJ.Q. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms.Food Sci. Hum. Wellness201323-414616110.1016/j.fshw.2013.08.002
    [Google Scholar]
  10. SwallahM.S. YangX. LiJ. KoreseJ.K. WangS. FanH. YuH. HuangQ. The pros and cons of soybean bioactive compounds: An overview.Food Rev. Int.202239851045131
    [Google Scholar]
  11. IdekerT. GalitskiT. HoodL. A new approach to decoding life: Systems biology.Annu. Rev. Genomics Hum. Genet.20012134337210.1146/annurev.genom.2.1.34311701654
    [Google Scholar]
  12. LiS. ZhangB. Traditional Chinese medicine network pharmacology: Theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑023787177
    [Google Scholar]
  13. MohanrajK. KarthikeyanB.S. AnanthV.R.P. ChandR.P.B. AparnaS.R. MangalapandiP. SamalA. IMPPAT: A curated database of indian medicinal plants, phytochemistry and therapeutics.Sci. Rep.201881432910.1038/s41598‑018‑22631‑z29531263
    [Google Scholar]
  14. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  15. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv95126400175
    [Google Scholar]
  16. DainaA. MichielinO. ZoeteV.J.S.R. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.201774271710.1038/srep42717
    [Google Scholar]
  17. KuhnM. SzklarczykD. FranceschiniA. von MeringC. JensenL.J. BorkP. STITCH 3: Zooming in on protein-chemical interactions.Nucleic Acids Res.201240D1D876D88010.1093/nar/gkr101122075997
    [Google Scholar]
  18. GfellerD. GrosdidierA. WirthM. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: A web server for target prediction of bioactive small molecules.Nucleic Acids Res.201442W1W32W3810.1093/nar/gku29324792161
    [Google Scholar]
  19. SafranM. DalahI. AlexanderJ. RosenN. SteinI.T. ShmoishM. NativN. BahirI. DonigerT. KrugH. Genecards version 3: The human gene integrator.Database20102010baq02010.1093/database/baq020
    [Google Scholar]
  20. HamoshA. ScottA.F. AmbergerJ.S. BocchiniC.A. McKusickV.A. Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders.Nucleic Acids Res.200433S1D514D51710.1093/nar/gki03315608251
    [Google Scholar]
  21. ConsortiumU. UniProt: A hub for protein information.Nucleic Acids Res.201543D1D204D21210.1093/nar/gku98925348405
    [Google Scholar]
  22. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac19435325185
    [Google Scholar]
  23. SmootM.E. OnoK. RuscheinskiJ. WangP.L. IdekerT. Cytoscape 2.8: New features for data integration and network visualization.Bioinformatics201127343143210.1093/bioinformatics/btq67521149340
    [Google Scholar]
  24. MeringC. HuynenM. JaeggiD. SchmidtS. BorkP. SnelB. STRING: A database of predicted functional associations between proteins.Nucleic Acids Res.200331125826110.1093/nar/gkg03412519996
    [Google Scholar]
  25. DhameliyaT.M. NagarP.R. GajjarN.D. Systematic virtual screening in search of SARS CoV-2 inhibitors against spike glycoprotein: Pharmacophore screening, molecular docking, ADMET analysis and MD simulations.Mol. Divers.20222652775279210.1007/s11030‑022‑10394‑935132518
    [Google Scholar]
  26. AdelusiT.I. OyedeleA.Q.K. BoyenleI.D. OgunlanaA.T. AdeyemiR.O. UkachiC.D. IdrisM.O. OlaobaO.T. AdedotunI.O. KolawoleO.E. XiaoxingY. HammedA.M. Molecular modeling in drug discovery.Inform. Med. Unlocked20222910088010.1016/j.imu.2022.100880
    [Google Scholar]
  27. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein Data Bank (PDB): The single global macromolecular structure archive.Methods Mol. Biol.20171607627641
    [Google Scholar]
  28. DundasJ. OuyangZ. TsengJ. BinkowskiA. TurpazY. LiangJ. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues.Nucleic Acids Res.200634S2W116W11810.1093/nar/gkl28216844972
    [Google Scholar]
  29. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.20151263243250
    [Google Scholar]
  30. GoddardT.D. HuangC.C. MengE.C. PettersenE.F. CouchG.S. MorrisJ.H. FerrinT.E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis.Protein Sci.2018271142510.1002/pro.323528710774
    [Google Scholar]
  31. JejurikarB.L. RohaneS.H. Drug designing in discovery studio.Asian J. Res. Chem202114213513810.5958/0974‑4150.2021.00025.0
    [Google Scholar]
  32. LiA.P. Screening for human ADME/Tox drug properties in drug discovery.Drug Discov. Today20016735736610.1016/S1359‑6446(01)01712‑311267922
    [Google Scholar]
  33. SelickH.E. BeresfordA.P. TarbitM.H. The emerging importance of predictive ADME simulation in drug discovery.Drug Discov. Today20027210911610.1016/S1359‑6446(01)02100‑611790621
    [Google Scholar]
  34. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab25533893803
    [Google Scholar]
  35. ShouW.Z. Current status and future directions of high-throughput ADME screening in drug discovery.J. Pharm. Anal.202010320120810.1016/j.jpha.2020.05.00432612866
    [Google Scholar]
  36. NaeemI. MateenR.M. HassanS.S. TariqA. ParveenR. SaqibM.A.N. FareedM.I. HussainM. AfzalM.S. In silico identification of potential drug-like molecules against G glycoprotein of Nipah virus by molecular docking, DFT studies, and molecular dynamic simulation.J. Biomol. Struct. Dyn.202341157104711836036362
    [Google Scholar]
  37. NguyenP.T.V. HuynhH.A. TruongD.V. TranT.D. VoC.V.T. Exploring aurone derivatives as potential human pancreatic lipase inhibitors through molecular docking and molecular dynamics simulations.Molecules20202520465710.3390/molecules2520465733066044
    [Google Scholar]
  38. HasanA.H. HussenN.H. ShakyaS. JamalisJ. PratamaM.R.F. ChanderS. KharkwalH. MurugesanS. In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions.Struct. Chem.20223351645166510.1007/s11224‑022‑01996‑y
    [Google Scholar]
  39. MahmudS. PaulG.K. AfrozeM. IslamS. GuptS.B.R. RazuM.H. BiswasS. ZamanS. UddinM.S. KhanM. CacciolaN.A. EmranT.B. SalehM.A. CapassoR. GandaraS.J. Efficacy of phytochemicals derived from Avicennia officinalis for the management of COVID-19: A combined in silico and biochemical study.Molecules2021268221010.3390/molecules2608221033921289
    [Google Scholar]
  40. LiuY.Y. FengX.Y. JiaW.Q. JingZ. XuW.R. ChengX.C. Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations.Comput. Biol. Chem.20197819020410.1016/j.compbiolchem.2018.12.00230557817
    [Google Scholar]
  41. MichaelD. BankotiN. BiswasA. SekarK. Aspects of protein structure, function, and dynamics in rational drug designing.Innovations and Implementations of Computer Aided Drug Discovery Strategies in Rational Drug Design2021355710.1007/978‑981‑15‑8936‑2_3
    [Google Scholar]
  42. CoughlinS.S. Epidemiology of breast cancer in women.Adv. Exp. Med. Biol.2019115292910.1007/978‑3‑030‑20301‑6_2
    [Google Scholar]
  43. PaltielA.M. Migration, risk of death, and time: Mortality among immigrants from the former soviet union in Israel 1990-2004.Heidelberg University202410.11588/heidok.00034224
    [Google Scholar]
  44. BhardwajP.V. GuptaS. ElyashA. TeplinskyE.J.C.O.R. Male breast cancer: A review on diagnosis.Treatment, and Survivorship2024112
    [Google Scholar]
  45. ZhangM. LvH. NiuL. LiuZ. ZengH. ZhaoS. WangJ. SunH. YanM.J.C.M.J. Effect of GnRH analogs in advanced male breast cancer: 10-year experience from the henan breast cancer center and literature review.Chin. Med. J.20241371316231625
    [Google Scholar]
  46. TongY. HuZ. WangH. HuangJ. ZhanY. ChaiW. DengY. YuanY. ShenK. WangY.J.E.R. Anti-HER2 therapy response assessment for guiding treatment (de-) escalation in early HER2-positive breast cancer using a novel deep learning radiomics model.Eur. Radiol.202434854775486
    [Google Scholar]
  47. GuoX. BianX. LiY. ZhuX. ZhouX.J.B.E.B.A.M.B.O.D. The intricate dance of tumor evolution: Exploring immune escape, tumor migration, drug resistance, and treatment strategies.Biochim. Biophys. Acta Mol. Basis Dis.202418704167098
    [Google Scholar]
  48. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  49. NgM.C.K. FongS. SiuS.W.I. PSOVina: The hybrid particle swarm optimization algorithm for protein–ligand docking.J. Bioinform. Comput. Biol.2015133154100710.1142/S021972001541007325800162
    [Google Scholar]
  50. RehmanA. FatimaI. WangY. TongJ. NoorF. QasimM. PengY. LiaoM.J.C.I.B. Medicine, unveiling the multi-target compounds of rhazya stricta: Discovery and inhibition of novel target genes for the treatment of clear cell renal cell carcinoma.Comput. Biol. Med.20231653107424
    [Google Scholar]
  51. FatimaI. AhmadS. AlamriM.A. MirzaM.U. Discovery of rift valley fever virus natural pan-inhibitors by targeting its multiple key proteins through computational approaches.Sci. Rep.20221219260
    [Google Scholar]
  52. YangM. PoonJ. WangS. JiaoL. PoonS. CuiL. ChenP. SzeD.M.Y. XuL. Application of genetic algorithm for discovery of core effective formulae in TCM clinical data.Comput. Math. Methods Med.2013201311610.1155/2013/97127224288577
    [Google Scholar]
  53. LiS. Exploring traditional chinese medicine by a novel therapeutic concept of network target.Chin. J. Integr. Med.201622964765210.1007/s11655‑016‑2499‑927145941
    [Google Scholar]
  54. QiQ. LiR. LiH. CaoY. BaiM. FanX. WangS. ZhangB. LiS. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach.Acta Pharmacol. Sin.201637796397210.1038/aps.2016.5327180984
    [Google Scholar]
  55. ZuS. ChenT. LiS. Global optimization-based inference of chemogenomic features from drug–target interactions.Bioinformatics201531152523252910.1093/bioinformatics/btv18125819672
    [Google Scholar]
  56. LiuQ. LiuJ. DuY. GuoW. MiJ. GuoY. Network pharmacology and molecular docking analysis to explore the mechanism of huaiqihuang-mediated alleviation of henoch–schönlein purpura nephritis.BioMed Res. Int.2022202211310.1155/2022/279821736389115
    [Google Scholar]
  57. PilarczykM. NajafabadiF.M. KourilM. ShamsaeiB. VasiliauskasJ. NiuW. MahiN. ZhangL. ClarkN.A. RenY. Connecting omics signatures and revealing biological mechanisms with iLINCS.Nat. Commun.2022134678
    [Google Scholar]
  58. ShuklaR. TripathiT. Molecular dynamics simulation of protein and protein–ligand complexes.In: Comp. Drug Design.SingaporeSpringer2020133161
    [Google Scholar]
  59. MaradeshaT. MartizR.M. PatilS.M. PrasadA. BabakrA.T. SilinaE. StupinV. AcharR.R. RamuR. Integrated network pharmacology and molecular modeling approach for the discovery of novel potential MAPK3 inhibitors from whole green jackfruit flour targeting obesity-linked diabetes mellitus.PLoS One2023181e028084710.1371/journal.pone.028084736716329
    [Google Scholar]
  60. ZhaoE.Y. EfendizadeA. CaiL. DingY. The role of Akt (protein kinase B) and protein kinase C in ischemia–reperfusion injury.Neurol. Res.201638430130810.1080/01616412.2015.113302427092987
    [Google Scholar]
  61. NajarM.A. AravindA. DagamajaluS. SidranskyD. AshktorabH. SmootD.T. GowdaH. PrasadT.S.K. ModiP.K. ChatterjeeA. Hyperactivation of MEK/ERK pathway by Ca 2+/calmodulin‐dependent protein kinase kinase 2 promotes cellular proliferation by activating cyclin‐dependent kinases and minichromosome maintenance protein in gastric cancer cells.Mol. Carcinog.2021601176978310.1002/mc.2334334437731
    [Google Scholar]
  62. SiW. ShenJ. DuC. ChenD. GuX. LiC. YaoM. PanJ. ChengJ. JiangD. XuL. BaoC. FuP. FanW. A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance.Cell Death Differ.201825240642010.1038/cdd.2017.17629125598
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808333132241226071319
Loading
/content/journals/lddd/10.2174/0115701808333132241226071319
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test