Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

Chronic Renal Failure (CRF) refers to the gradual decline in renal function caused by various chronic kidney diseases, eventually leading to end-stage renal failure. Yangshen Paidu Decoction (YPD) is a Traditional Chinese medicine (TCM) formula utilized in CRF treatment. This work has analyzed the effects of YPD on CRF and the specific mechanism.

Methods

Network pharmacology was performed to screen effective components and targets of YPD, from which key targets and signaling pathways contributing the most to the treatment effects on CRF were determined. Subsequently, we validated the therapeutic role of YPD and the underlying pathological mechanisms using the 5/6-nephrectomy rat model.

Results

Network pharmacology analysis showed the mTOR pathway to be a pivotal mechanism underlying the effectiveness of YPD in CRF treatment. YPD significantly suppressed urine protein levels, blood urea nitrogen, and serum creatinine in 5/6 nephrectomized rats. Furthermore, YPD remarkably improved renal pathological injuries. Western blot analysis revealed that YPD enhanced autophagy and upregulated the expression of nephrin, podocin, beclin1, p-AMPK/AMPK, and p-ULK1/ULK1, and attenuated the ratios of p-mTOR/mTOR to its downstream protein phosphorylated eIF4E-binding protein (p-4EBP1). However, these effects were notably reversed by the AMPK inhibitor compound C.

Conclusion

Our findings have demonstrated YPD to suppress the mTOR pathway and stimulate autophagy by modulating AMPK pathways, thereby mitigating podocyte injury and enhancing renal function. Our study has confirmed autophagy and the AMPK/mTOR pathway as potential targets for YPD in CRF treatment.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808331134241128053200
2024-11-29
2025-09-02
Loading full text...

Full text loading...

/deliver/fulltext/lddd/21/18/LDDD-21-18-24.html?itemId=/content/journals/lddd/10.2174/0115701808331134241128053200&mimeType=html&fmt=ahah

References

  1. ChenI.R. WangS.M. LiangC.C. KuoH.L. ChangC.T. LiuJ.H. LinH.H. WangI.K. YangY.F. ChouC.Y. HuangC.C. Association of walking with survival and RRT among patients with CKD stages 3-5.Clin. J. Am. Soc. Nephrol.2014971183118910.2215/CJN.0981091324832096
    [Google Scholar]
  2. NaberT. PurohitS. Chronic kidney disease: Role of diet for a reduction in the severity of the disease.Nutrients2021139327710.3390/nu1309327734579153
    [Google Scholar]
  3. HaradaR. HamasakiY. OkudaY. HamadaR. IshikuraK. Epidemiology of pediatric chronic kidney disease/kidney failure: Learning from registries and cohort studies.Pediatr. Nephrol.20223761215122910.1007/s00467‑021‑05145‑134091754
    [Google Scholar]
  4. HuangJ. TangD. ZhengF. XuH. DaiY. Comprehensive analysis of lysine crotonylation modification in patients with chronic renal failure.BMC Nephrol.202122131010.1186/s12882‑021‑02445‑434517817
    [Google Scholar]
  5. FanX. LiJ. BiZ. LiangW. WangF. Cause of death and influencing factors of chronic renal failure on maintenance hemodialysis.Pak. J. Med. Sci.20233951378138210.12669/pjms.39.5.703737680805
    [Google Scholar]
  6. LimM.A. KohliJ. BloomR.D. Immunosuppression for kidney transplantation: Where are we now and where are we going?Transplant. Rev. (Orlando)2017311101710.1016/j.trre.2016.10.00628340885
    [Google Scholar]
  7. LuW. RenC. HanX. YangX. CaoY. HuangB. The protective effect of different dialysis types on residual renal function in patients with maintenance hemodialysis.Medicine (Baltimore)20189737e1232510.1097/MD.000000000001232530212979
    [Google Scholar]
  8. JosephM.S. PalardyM. BhaveN.M. Management of heart failure in patients with end-stage kidney disease on maintenance dialysis: A practical guide.Rev. Cardiovasc. Med.2020211313910.31083/j.rcm.2020.01.2432259902
    [Google Scholar]
  9. LiS. ZhangB. Traditional Chinese medicine network pharmacology: theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑023787177
    [Google Scholar]
  10. LuoX. XieH. HanL. ZhongQ. XuM. JinL. Integrated network pharmacology and molecular docking to reveal the mechanism of tetrandrine in tumor chemoresistance.Oncologie202123342543810.32604/Oncologie.2021.017267
    [Google Scholar]
  11. ChenY. MaK. SiH. DuanY. ZhaiH. Network pharmacology integrated molecular docking to reveal the autism and mechanism of Baohewan Heshiwei Wen Dan Tang.Curr. Pharm. Des.202228393231324110.2174/138161282866622092609592236165527
    [Google Scholar]
  12. MizushimaN. LevineB. Autophagy in Human Diseases.N. Engl. J. Med.2020383161564157610.1056/NEJMra202277433053285
    [Google Scholar]
  13. VallinoL. GaravagliaB. ViscigliaA. AmorusoA. PaneM. FerraresiA. IsidoroC. Cell-free Lactiplantibacillus plantarum OC01 supernatant suppresses IL-6-induced proliferation and invasion of human colorectal cancer cells: Effect on β-Catenin degradation and induction of autophagy.J. Tradit. Complement. Med.202313219320610.1016/j.jtcme.2023.02.00136970462
    [Google Scholar]
  14. RubyM. GiffordC.C. PandeyR. RajV.S. SabbisettiV.S. AjayA.K. Autophagy as a therapeutic target for chronic kidney disease and the roles of TGF-β1 in autophagy and kidney fibrosis.Cells202312341210.3390/cells1203041236766754
    [Google Scholar]
  15. ZhangY. YanM. KuangS. LouY. WuS. LiY. WangZ. MaoH. Bisphenol A induces apoptosis and autophagy in murine osteocytes MLO-Y4: Involvement of ROS-mediated mTOR/ULK1 pathway.Ecotoxicol. Environ. Saf.202223011311910.1016/j.ecoenv.2021.11311934954677
    [Google Scholar]
  16. ChenW.R. YangJ.Q. LiuF. ShenX.Q. ZhouY.J. Melatonin attenuates vascular calcification by activating autophagy via an AMPK/mTOR/ULK1 signaling pathway.Exp. Cell Res.2020389111188310.1016/j.yexcr.2020.11188332014443
    [Google Scholar]
  17. XueL. PanZ. YinQ. ZhangP. ZhangJ. QiW. Liraglutide promotes autophagy by regulating the AMPK/mTOR pathway in a rat remnant kidney model of chronic renal failure.Int. Urol. Nephrol.201951122305231310.1007/s11255‑019‑02274‑331531806
    [Google Scholar]
  18. JinY. LiuS. MaQ. XiaoD. ChenL. Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes.Eur. J. Pharmacol.201779410611410.1016/j.ejphar.2016.11.03727887947
    [Google Scholar]
  19. WangZ. ZhangS. ZhengX. ZhangL. Efficacy and safety of colonic dialysis combined with traditional Chinese medicine retention enema in the treatment of chronic renal failure.Medicine (Baltimore)202110050e2808210.1097/MD.000000000002808234918661
    [Google Scholar]
  20. WuL. WangY. LiuY. WuL. ChengD. JiangT. QuB. LuH. YangJ. TangA. LiM. Efficacy and safety of traditional Chinese medicinal enemas for treatment of chronic renal failure.Medicine (Baltimore)20209944e2300210.1097/MD.000000000002300233126381
    [Google Scholar]
  21. PanR. RuiG. BaiX. TengZ. ChenG. PangZ. HuC. CaoP. Protective effects of Pai-Du-Yang-Shen formula on chronic renal failure in rats.Eur. J. Inflamm.201917205873921987141910.1177/2058739219871419
    [Google Scholar]
  22. FangS. DongL. LiuL. GuoJ. ZhaoL. ZhangJ. BuD. LiuX. HuoP. CaoW. DongQ. WuJ. ZengX. WuY. ZhaoY. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine.Nucleic Acids Res.202149D1D1197D120610.1093/nar/gkaa106333264402
    [Google Scholar]
  23. ShanL. HuH. WuJ. GuoB. WangY. iTRAQ-based proteomics analysis of ADTM for preventing the development of nitroglycerin-induced tolerance.Curr. Pharm. Anal.202218989290010.2174/1573412918666220831101931
    [Google Scholar]
  24. TsuprykovO. AndoR. ReichetzederC. von WebskyK. AntonenkoV. SharkovskaY. ChaykovskaL. RahnenführerJ. HasanA.A. TammenH. AlterM. KleinT. UedaS. YamagishiS. OkudaS. HocherB. The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy.Kidney Int.20168951049106110.1016/j.kint.2016.01.01627083282
    [Google Scholar]
  25. VucicevicL. MisirkicM. KristinaJ. VilimanovichU. SudarE. IsenovicE. PricaM. Harhaji-TrajkovicL. Kravic-StevovicT. VladimirB. TrajkovicV. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway.Autophagy201171405010.4161/auto.7.1.1388320980833
    [Google Scholar]
  26. WuY. QiY. LiuH. WangX. ZhuH. WangZ. AMPK activator AICAR promotes 5-FU-induced apoptosis in gastric cancer cells.Mol. Cell. Biochem.20164111-229930510.1007/s11010‑015‑2592‑y26497305
    [Google Scholar]
  27. LiangR. YanD. ZhangX. ChenX. ZhangW. JiaH. Kidney Mesenchymal stem cells alleviate cisplatin-induced kidney injury and apoptosis in rats.Tissue Cell20238010199810.1016/j.tice.2022.10199836529038
    [Google Scholar]
  28. SolankiA.K. ArifE. SrivastavaP. FurchtC.M. RahmanB. WenP. SinghA. HolzmanL.B. FitzgibbonW.R. BudisavljevicM.N. LoboG.P. KwonS.H. HanZ. LazzaraM.J. LipschutzJ.H. NihalaniD. Phosphorylation of slit diaphragm proteins NEPHRIN and NEPH1 upon binding of HGF promotes podocyte repair.J. Biol. Chem.2021297310107910.1016/j.jbc.2021.10107934391780
    [Google Scholar]
  29. LiuY. SuH. MaC. JiD. ZhengX. WangP. ZhengS. WangL. WangZ. XuD. IQGAP1 mediates podocyte injury in diabetic kidney disease by regulating nephrin endocytosis.Cell. Signal.201959132310.1016/j.cellsig.2019.03.00930857827
    [Google Scholar]
  30. ShengH. ZhangD. ZhangJ. ZhangY. LuZ. MaoW. LiuX. ZhangL. Kaempferol attenuated diabetic nephropathy by reducing apoptosis and promoting autophagy through AMPK/mTOR pathways.Front. Med. (Lausanne)2022998682510.3389/fmed.2022.98682536530875
    [Google Scholar]
  31. ZhangX. ZhangL. ChenZ. LiS. CheB. WangN. ChenJ. XuC. WeiC. Exogenous spermine attenuates diabetic kidney injury in rats by inhibiting AMPK/mTOR signaling pathway.Int. J. Mol. Med.20214732710.3892/ijmm.2021.486033537831
    [Google Scholar]
  32. DaiP. ChangW. XinZ. ChengH. OuyangW. LuoA. Retrospective study on the influencing factors and prediction of hospitalization expenses for chronic renal failure in china based on random forest and LASSO regression.Front. Public Health2021967827610.3389/fpubh.2021.67827634211956
    [Google Scholar]
  33. ThurlowJ.S. JoshiM. YanG. NorrisK.C. AgodoaL.Y. YuanC.M. NeeR. Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy.Am. J. Nephrol.20215229810710.1159/00051455033752206
    [Google Scholar]
  34. WangJ. WongY.K. LiaoF. What has traditional Chinese medicine delivered for modern medicine?Expert Rev. Mol. Med.201820e410.1017/erm.2018.329747718
    [Google Scholar]
  35. HeJ. ZhangL. GuoD. HanX. ZhangH. WangL. ZhangY. Sinomenium inhibits the viability of hepatoma carcinoma cells through activating IFNA2.Oncologie202022111210.32604/oncologie.2020.012436
    [Google Scholar]
  36. ChenY. WuH. JiaoA. TongJ. ZhuJ. ZhangM. LiZ. LiP. Chinese herbal prescription QYSL prevents progression of lung cancer by targeting tumor microenvironment.Oncologie202224229530710.32604/oncologie.2022.022116
    [Google Scholar]
  37. LiX. QuL. DongY. HanL. LiuE. FangS. ZhangY. WangT. A review of recent research progress on the astragalus genus.Molecules20141911188501888010.3390/molecules19111885025407722
    [Google Scholar]
  38. TangJ.L. XinM. ZhangL.C. Protective effect of Astragalus membranaceus and Astragaloside IV in sepsis-induced acute kidney injury.Aging (Albany NY)202214145855587710.18632/aging.20418935859295
    [Google Scholar]
  39. LeeB.C. ChoiJ.B. ChoH.J. KimY.S. Rehmannia glutinosa ameliorates the progressive renal failure induced by 5/6 nephrectomy.J. Ethnopharmacol.2009122113113510.1016/j.jep.2008.12.01519146934
    [Google Scholar]
  40. LiZ. ZhuL. ZhangH. YangJ. ZhaoJ. DuD. MengJ. YangF. ZhaoY. SunJ. Protective effect of a polysaccharide from stem of Codonopsis pilosula against renal ischemia/reperfusion injury in rats.Carbohydr. Polym.20129041739174310.1016/j.carbpol.2012.07.06222944441
    [Google Scholar]
  41. ZhouL. ChenX. LuM. WuQ. YuanQ. HuC. MiaoJ. ZhangY. LiH. HouF.F. NieJ. LiuY. Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria.Kidney Int.201995483084510.1016/j.kint.2018.10.03230770219
    [Google Scholar]
  42. OzawaS. MatsubayashiM. NanauraH. YanagitaM. MoriK. AsanumaK. KajiwaraN. HayashiK. OhashiH. KasaharaM. YokoiH. KataokaH. MoriE. NakagawaT. Proteolytic cleavage of Podocin by Matriptase exacerbates podocyte injury.J. Biol. Chem.202029547160021601210.1074/jbc.RA120.01372132907879
    [Google Scholar]
  43. ChoiM.E. Autophagy in Kidney Disease.Annu. Rev. Physiol.202082129732210.1146/annurev‑physiol‑021119‑03465831640469
    [Google Scholar]
  44. KaushalG.P. ChandrashekarK. JuncosL.A. ShahS.V. Autophagy function and regulation in kidney disease.Biomolecules202010110010.3390/biom1001010031936109
    [Google Scholar]
  45. ChenJ. YuanS. ZhouJ. HuangX. WuW. CaoY. LiuH. HuQ. LiX. GuanX. YinS. JiangJ. ZhouY. ZhouJ. Danshen injection induces autophagy in podocytes to alleviate nephrotic syndrome via the PI3K/AKT/mTOR pathway.Phytomedicine202210715447710.1016/j.phymed.2022.15447736215790
    [Google Scholar]
  46. MaR. HeY. FangQ. XieG. QiM. Ferulic acid ameliorates renal injury via improving autophagy to inhibit inflammation in diabetic nephropathy mice.Biomed. Pharmacother.202215311342410.1016/j.biopha.2022.11342436076545
    [Google Scholar]
  47. HuY. WangS.X. WuF.Y. WuK.J. ShiR.P. QinL.H. LuC.F. WangS.Q. WangF.F. ZhouS. Effects and mechanism of Ganoderma lucidum polysaccharides in the treatment of diabetic nephropathy in streptozotocin-induced diabetic rats.BioMed Res. Int.2022202211310.1155/2022/431441535299891
    [Google Scholar]
  48. YangF. QuQ. ZhaoC. LiuX. YangP. LiZ. HanL. ShiX. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice.Biomed. Pharmacother.202012911047910.1016/j.biopha.2020.11047932768963
    [Google Scholar]
  49. DusabimanaT. ParkE.J. JeJ. JeongK. YunS.P. KimH.J. KimH. ParkS.W. Geniposide improves diabetic nephropathy by enhancing ULK1-mediated autophagy and reducing oxidative stress through AMPK activation.Int. J. Mol. Sci.2021224165110.3390/ijms2204165133562139
    [Google Scholar]
  50. TangC. LivingstonM.J. LiuZ. DongZ. Autophagy in kidney homeostasis and disease.Nat. Rev. Nephrol.202016948950810.1038/s41581‑020‑0309‑232704047
    [Google Scholar]
  51. AlersS. WesselborgS. StorkB. ATG13: just a companion, or an executor of the autophagic program?Autophagy201410694495610.4161/auto.2898724879146
    [Google Scholar]
  52. FangY. ZouL. HeW. miR 30a 5p mitigates autophagy by regulating the Beclin 1/ATG16 pathway in renal ischemia/reperfusion injury.Int. J. Mol. Med.202148114410.3892/ijmm.2021.497734080645
    [Google Scholar]
  53. ArabH.H. AshourA.M. EidA.H. ArafaE.S.A. Al KhabbazH.J. Abd El-AalS.A. Targeting oxidative stress, apoptosis, and autophagy by galangin mitigates cadmium-induced renal damage: Role of SIRT1/Nrf2 and AMPK/mTOR pathways.Life Sci.202229112030010.1016/j.lfs.2021.12030034999115
    [Google Scholar]
  54. LiuX. ChenJ. SunN. LiN. ZhangZ. ZhengT. LiZ. Ginsenoside Rb1 ameliorates autophagy via the AMPK/mTOR pathway in renal tubular epithelial cells in vitro and in vivo.Int. J. Biol. Macromol.2020163996100910.1016/j.ijbiomac.2020.07.06032659400
    [Google Scholar]
  55. SuS. WangX. XiX. ZhuL. ChenQ. ZhangH. QinY. YangB. CheN. CaoH. ZhongW. WangB. Phellodendrine promotes autophagy by regulating the AMPK/mTOR pathway and treats ulcerative colitis.J. Cell. Mol. Med.202125125707572010.1111/jcmm.1658734002930
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808331134241128053200
Loading
/content/journals/lddd/10.2174/0115701808331134241128053200
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test