Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

This study evaluated the effects of Rigosertib (RGS) on the prevention of intra-abdominal adhesions in a mouse model.

Methods

Eighteen mice were divided into three groups: Sham (no abrasion or adhesion), Positive Control (surgical abrasion and adhesion), and Rigosertib Treatment (200 mg/kg/day intraperitoneally for 7 days). Adhesions were induced through cecal abrasion and assessed using Nair and Leach adhesion scoring systems. Histological evaluations were performed using Haematoxylin & Eosin (H & E) and Masson's trichrome stains in order to analyze inflammatory cell infiltration and collagen deposition.

Results

Results showed that RGS administration did not have a significant impact on the formation or rigidity of adhesion bands compared to the positive control group. Both Nair and Leach scoring systems confirmed the lack of significant differences. Histological analysis revealed no reduction in inflammatory responses or collagen deposition in RGS-treated mice. H & E staining showed similar inflammatory cell infiltration across all groups, while Masson's trichrome staining indicated no differences in fibrosis levels between treated and untreated mice. In conclusion, Rigosertib did not demonstrate efficacy in down-regulating peritoneal adhesions or associated inflammatory responses and fibrosis in this mouse model.

Conclusion

These findings suggest that Rigosertib may not be suitable for preventing intra-abdominal adhesions, warranting further investigation into alternative therapeutic strategies.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808323064241210055454
2024-12-13
2025-09-19
Loading full text...

Full text loading...

References

  1. HellebrekersB.W.J. KooistraT. Pathogenesis of postoperative adhesion formation.Br. J. Surg.201198111503151610.1002/bjs.765721877324
    [Google Scholar]
  2. BrochhausenC. SchmittV.H. PlanckC.N.E. RajabT.K. HollemannD. TapprichC. KrämerB. WallwienerC. HierlemannH. ZehbeR. PlanckH. KirkpatrickC.J. Current strategies and future perspectives for intraperitoneal adhesion prevention.J. Gastrointest. Surg.20121661256127410.1007/s11605‑011‑1819‑922297658
    [Google Scholar]
  3. MenziesD. Peritoneal adhesions. Incidence, cause, and prevention.Surg. Annu.199224Pt 127451727325
    [Google Scholar]
  4. SulaimanH. GabellaG. DavisC. MutsaersS.E. BoulosP. LaurentG.J. HerrickS.E. Growth of nerve fibres into murine peritoneal adhesions.J. Pathol.2000192339640310.1002/1096‑9896(2000)9999:9999<::AID‑PATH710>3.0.CO;2‑411054724
    [Google Scholar]
  5. KavicS.M. KavicS.M. Adhesions and adhesiolysis: The role of laparoscopy.JSLS2002629910912113430
    [Google Scholar]
  6. EllisH. MoranB.J. ThompsonJ.N. ParkerM.C. WilsonM.S. MenziesD. McGuireA. LowerA.M. HawthornR.J.S. O’BrienF. BuchanS. CroweA.M. Adhesion-related hospital readmissions after abdominal and pelvic surgery: A retrospective cohort study.Lancet199935391631476148010.1016/S0140‑6736(98)09337‑410232313
    [Google Scholar]
  7. CaiX. HuS. YuB. CaiY. YangJ. LiF. ZhengY. ShiX. Transglutaminase-catalyzed preparation of crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen composite membrane for postsurgical peritoneal adhesion prevention.Carbohydr. Polym.201820120121010.1016/j.carbpol.2018.08.06530241812
    [Google Scholar]
  8. OkabayashiK. AshrafianH. ZacharakisE. HasegawaH. KitagawaY. AthanasiouT. DarziA. Adhesions after abdominal surgery: A systematic review of the incidence, distribution and severity.Surg. Today201444340542010.1007/s00595‑013‑0591‑823657643
    [Google Scholar]
  9. LeachR.E. BurnsJ.W. DaweE.J. SmithBarbour, M.D.; Diamond, M.P. Reduction of postsurgical adhesion formation in the rabbit uterine horn model with use of hyaluronate/carboxymethylcellulose gel.Fertil. Steril.199869341541810.1016/S0015‑0282(97)00573‑69531869
    [Google Scholar]
  10. HemadehO. ChilukuriS. BonetV. HusseinS. ChaudryI.H. Prevention of peritoneal adhesions by administration of sodium carboxymethyl cellulose and oral vitamin E.Surgery199311459079108236013
    [Google Scholar]
  11. HellebrekersB.W.J. Trimbos-KemperG.C.M. van BlitterswijkC.A. BakkumE.A. TrimbosJ.B.M.Z. Effects of five different barrier materials on postsurgical adhesion formation in the rat.Hum. Reprod.20001561358136310.1093/humrep/15.6.135810831569
    [Google Scholar]
  12. HellebrekersB.W.J. EmeisJ.J. KooistraT. TrimbosJ.B. MooreN.R. ZwindermanK.H. Trimbos-KemperT.C.M. A role for the fibrinolytic system in postsurgical adhesion formation.Fertil. Steril.200583112212910.1016/j.fertnstert.2004.06.06015652897
    [Google Scholar]
  13. HolmdahlL. ErikssonE. ErikssonB.I. RisbergB. Depression of peritoneal fibrinolysis during operation is a local response to trauma.Surgery1998123553954410.1067/msy.1998.869849591006
    [Google Scholar]
  14. HellebrekersB.W.J. Trimbos-KemperT.C.M. TrimbosJ.B.M.Z. EmeisJ.J. KooistraT. Use of fibrinolytic agents in the prevention of postoperative adhesion formation.Fertil. Steril.200074220321210.1016/S0015‑0282(00)00656‑710927033
    [Google Scholar]
  15. diZeregaG.S. CampeauJ.D. Peritoneal repair and post-surgical adhesion formation.Hum. Reprod. Update20017654755510.1093/humupd/7.6.54711727863
    [Google Scholar]
  16. SaedG.M. ZhangW. DiamondM.P. Molecular characterization of fibroblasts isolated from human peritoneum and adhesions.Fertil. Steril.200175476376810.1016/S0015‑0282(00)01799‑411287032
    [Google Scholar]
  17. SaedG.M. DiamondM.P. Modulation of the expression of tissue plasminogen activator and its inhibitor by hypoxia in human peritoneal and adhesion fibroblasts.Fertil. Steril.200379116416810.1016/S0015‑0282(02)04557‑012524082
    [Google Scholar]
  18. BranfordO.A. KlassB.R. GrobbelaarA.O. RolfeK.J. The growth factors involved in flexor tendon repair and adhesion formation.J. Hand Surg. Eur. Vol.2014391607010.1177/175319341350923124162452
    [Google Scholar]
  19. Athuluri-DivakarS.K. Vasquez-Del CarpioR. DuttaK. BakerS.J. CosenzaS.C. BasuI. GuptaY.K. ReddyM.V.R. UenoL. HartJ.R. VogtP.K. MulhollandD. GuhaC. AggarwalA.K. ReddyE.P. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling.Cell2016165364365510.1016/j.cell.2016.03.04527104980
    [Google Scholar]
  20. AndersonR.T. KeysarS.B. BowlesD.W. GlogowskaM.J. AstlingD.P. MortonJ.J. LeP. UmpierrezA. Eagles-SoukupJ. GanG.N. VoglerB.W. SehrtD. TakimotoS.M. AisnerD.L. WilhelmF. FrederickB.A. Varella-GarciaM. TanA.C. JimenoA. The dual pathway inhibitor rigosertib is effective in direct patient tumor xenografts of head and neck squamous cell carcinomas.Mol. Cancer Ther.201312101994200510.1158/1535‑7163.MCT‑13‑020623873848
    [Google Scholar]
  21. MaW.W. MessersmithW.A. DyG.K. WeekesC.D. WhitworthA. RenC. ManiarM. WilhelmF. EckhardtS.G. AdjeiA.A. JimenoA. Phase I study of Rigosertib, an inhibitor of the phosphatidylinositol 3-kinase and Polo-like kinase 1 pathways, combined with gemcitabine in patients with solid tumors and pancreatic cancer.Clin. Cancer Res.20121872048205510.1158/1078‑0432.CCR‑11‑281322338014
    [Google Scholar]
  22. RoschewskiM. FarooquiM. AueG. WilhelmF. WiestnerA. Phase I study of ON 01910.Na (Rigosertib), a multikinase PI3K inhibitor in relapsed/refractory B-cell malignancies.Leukemia20132791920192310.1038/leu.2013.7923486532
    [Google Scholar]
  23. BowlesD.W. DiamondJ.R. LamE.T. WeekesC.D. AstlingD.P. AndersonR.T. LeongS. GoreL. Varella-GarciaM. VoglerB.W. KeysarS.B. FreasE. AisnerD.L. RenC. TanA.C. WilhelmF. ManiarM. EckhardtS.G. MessersmithW.A. JimenoA. Phase I study of oral rigosertib (ON 01910.Na), a dual inhibitor of the PI3K and Plk1 pathways, in adult patients with advanced solid malignancies.Clin. Cancer Res.20142061656166510.1158/1078‑0432.CCR‑13‑250624493827
    [Google Scholar]
  24. HyodaT. TsujiokaT. NakaharaT. SuemoriS. OkamotoS. KataokaM. TohyamaK. Rigosertib induces cell death of a myelodysplastic syndrome‐derived cell line by DNA damage‐induced G2/M arrest.Cancer Sci.2015106328729310.1111/cas.1260525580850
    [Google Scholar]
  25. SoltaniA. BahreyniA. BoroumandN. RoshanM. KhazaeiM. RyzhikovM. SoleimanpourS. AvanA. HassanianS.M. Therapeutic potency of mTOR signaling pharmacological inhibitors in the treatment of proinflammatory diseases, current status, and perspectives.J. Cell. Physiol.201823364783479010.1002/jcp.2627629165795
    [Google Scholar]
  26. HassanianS.M. DinarvandP. SmithS.A. RezaieA.R. Inorganic polyphosphate elicits pro‐inflammatory responses through activation of the mammalian target of rapamycin complexes 1 and 2 in vascular endothelial cells.J. Thromb. Haemost.201513586087110.1111/jth.1289925776944
    [Google Scholar]
  27. HawkinsP.T. StephensL.R. PI3K signalling in inflammation.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20151851688289710.1016/j.bbalip.2014.12.006
    [Google Scholar]
  28. GhigoA. DamilanoF. BracciniL. HirschE. PI3K inhibition in inflammation: Toward tailored therapies for specific diseases.BioEssays201032318519610.1002/bies.20090015020162662
    [Google Scholar]
  29. KyriakisJ.M. AvruchJ. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update.Physiol. Rev.201292268973710.1152/physrev.00028.201122535895
    [Google Scholar]
  30. GruschM. PetzM. MetznerT. OztürkD. SchnellerD. MikulitsW. The crosstalk of RAS with the TGF-β family during carcinoma progression and its implications for targeted cancer therapy.Curr. Cancer Drug Targets201010884985710.2174/15680091079335794320718708
    [Google Scholar]
  31. MaheriH. HashemzadehF. ShakibapourN. KamelniyaE. Malaekeh-NikoueiB. MokaberiP. ChamaniJ. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro).J. Mol. Struct.2022126913380310.1016/j.molstruc.2022.133803
    [Google Scholar]
  32. KalhoriF. YazdyaniH. KhademorezaeianF. HamzkanlooN. MokaberiP. HosseiniS. ChamaniJ. Enzyme activity inhibition properties of new cellulose nanocrystals fromCitrus medica L. pericarp: A perspective of cholesterol lowering.Luminescence202237111836184510.1002/bio.436035946171
    [Google Scholar]
  33. KnodJ.L. CrawfordK. DusingM. FrischerJ.S. Murine colitis treated with multitargeted tyrosine kinase inhibitors.J. Surg. Res.2016200250150710.1016/j.jss.2015.09.02326521099
    [Google Scholar]
  34. NairS.K. BhatI.K. AuroraA.L. Role of proteolytic enzyme in the prevention of postoperative intraperitoneal adhesions.Arch. Surg.1974108684985310.1001/archsurg.1974.013503000810194829809
    [Google Scholar]
  35. BinabajM.M. AsgharzadehF. AvanA. RahmaniF. SoleimaniA. ParizadehM.R. FernsG.A. RyzhikovM. KhazaeiM. HassanianS.M. EW‐7197 prevents ulcerative colitis‐associated fibrosis and inflammation.J. Cell. Physiol.20192347116541166110.1002/jcp.2782330478959
    [Google Scholar]
  36. ThompsonJ. Pathogenesis and prevention of adhesion formation.Dig. Surg.199815215315710.1159/0000186109845579
    [Google Scholar]
  37. DuronJ.J. SilvaN.J.D. du MontcelS.T. BergerA. MuscariF. HennetH. VeyrieresM. HayJ.M. Adhesive postoperative small bowel obstruction: Incidence and risk factors of recurrence after surgical treatment: A multicenter prospective study.Ann. Surg.2006244575075710.1097/01.sla.0000225097.60142.6817060768
    [Google Scholar]
  38. IvarssonL.H.M-L. IvarssonM.L. The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair.Eur. J. Surg.1999165111012101910.1080/11024159975000781010595602
    [Google Scholar]
  39. RafteryA.T. Regeneration of peritoneum: A fibrinolytic study.J. Anat.1979129Pt 3659664541248
    [Google Scholar]
  40. MenziesD. Postoperative adhesions: Their treatment and relevance in clinical practice.Ann. R. Coll. Surg. Engl.19937531471538323205
    [Google Scholar]
  41. SoleimaniA. Novel oral transforming growth factor-beta signaling inhibitor potently inhibits postsurgical adhesion band formation.J. Cell. Physiol.201931313829
    [Google Scholar]
  42. DinarvandP. HassanianS.M. WeilerH. RezaieA.R. Intraperitoneal administration of activated protein C prevents postsurgical adhesion band formation.Blood201512581339134810.1182/blood‑2014‑10‑60933925575539
    [Google Scholar]
  43. PancholiP.S. Rigosertib (on. 01910na) synergistically enhances the anti cancer activity of cisplatin in various preclinical models of upper gastrointestinal cancers.. Thesis, Long Island University, The Brooklyn Center,2016
    [Google Scholar]
  44. PrasadA. KhudaynazarN. TantravahiR.V. GillumA.M. HoffmanB.S. ON 01910.Na (rigosertib) inhibits PI3K/Akt pathway and activates oxidative stress signals in head and neck cancer cell lines.Oncotarget2016748793887940010.18632/oncotarget.1269227764820
    [Google Scholar]
  45. ChapmanC.M. SunX. RoschewskiM. AueG. FarooquiM. StennettL. GibelliniF. ArthurD. Pérez-GalánP. WiestnerA. ON 01910.Na is selectively cytotoxic for chronic lymphocytic leukemia cells through a dual mechanism of action involving PI3K/AKT inhibition and induction of oxidative stress.Clin. Cancer Res.20121871979199110.1158/1078‑0432.CCR‑11‑211322351695
    [Google Scholar]
  46. RittD.A. Abreu-BlancoM.T. BinduL. DurrantD.E. ZhouM. SpechtS.I. StephenA.G. HolderfieldM. MorrisonD.K. Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit.Mol. Cell201664587588710.1016/j.molcel.2016.10.02927889448
    [Google Scholar]
  47. SaedG.M. KrugerM. DiamondM.P. Expression of transforming growth factor‐β and extracellular matrix by human peritoneal mesothelial cells and by fibroblasts from normal peritoneum and adhesions: Effect of Tisseel.Wound Repair Regen.200412555756410.1111/j.1067‑1927.2004.012508.x15453838
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808323064241210055454
Loading
/content/journals/lddd/10.2174/0115701808323064241210055454
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test