Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Introduction

is a rapidly growing human pathogenic bacterium that has been linked to a number of clinical conditions. Its ability to quickly develop intricate biofilms makes its treatment challenging. Development of drug resistance has been reported in cases of further reducing treatment options available against the pathogen.

Objective

In order to identify the proteins involved in biofilm development, this work attempted to analyze the real-time proteome data of using machine learning strategies. The aim of the study was to provide novel drug targets that may be used to treat patients more quickly and efficiently.

Materials and Methods

The proteomic data was analyzed using the Support Vector Machine (SVM), Artificial Neural Network (ANN), and k-nearest Neighbors (kNN) techniques. Proteins linked to biofilm formation, which were over-expressed and under-expressed, were used in the training set of the models. The trained models were then evaluated using abundant proteins found in proteome analysis. The pre-processing and optimization were done to improve the performance of the models.

Results and Discussion

The kNN algorithm achieved the highest accuracy level of 82.98%, followed by SVM at 82.75% and ANN at 78%. Using other machine learning methods, including Random Forest, Naive Bayes, and Logistic Regression, the performance of these models was further verified. The outcomes demonstrated for the prediction of proteins, kNN consistently produced the best accuracy.

Conclusion

The study shows that machine learning techniques, in particular kNN, can be used for successful analyses of proteome data obtained from in order to identify proteins associated with the formation of biofilms. This methodology may be used for the prediction of drug targets using a proteome database. Identification of drug targets can help in designing better treatment strategies against the pathogen.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265371302250426154427
2025-05-22
2026-01-05
Loading full text...

Full text loading...

References

  1. SmithM.B. FrankenburgC. PeloquinC.A. Clinical and laboratory features of Mycobacterium fortuitum infection.J. Clin. Microbiol.201452932833287
    [Google Scholar]
  2. AdekambiT. Reynaud-GaubertM. GreubG. Amycobacterium bolletii sp. nov., a new rapidly growing species related to Mycobacterium chelonae and Mycobacterium abscessus.Int. J. Syst. Evol. Microbiol.200656922472251
    [Google Scholar]
  3. Fordham von ReynC.L. MaslowE.D. BarberT.W. SullivanJ.N. PalustroR.D. Skin and soft tissue infections due to Mycobacterium fortuitum: Clinical features, microbiology, and antimicrobial susceptibility patterns.Clin. Infect. Dis.1996231414420
    [Google Scholar]
  4. PoonamRM "Ribosomal maturation factor (RimP) is essential for the survival of nontuberculous mycobacteria Mycobacterium fortuitum under in vitro acidic stress conditions".3 Biotech20199412710.1007/s13205‑019‑1659‑y
    [Google Scholar]
  5. ShrivastavaR. KatochP. BishtG.S. In vivo infection and In vitro stress survival studies of acid susceptible mutant of Mycobacterium fortuitum.Int. J. Mycobacteriol.20198439039610.4103/ijmy.ijmy_166_1931793511
    [Google Scholar]
  6. SharmaA. VashisttJ. ShrivastavaR. Knockdown of the Type-II Fatty acid synthase gene hadC in Mycobacterium fortuitum does not affect its growth, biofilm formation, and survival under stress.Int. J. Mycobacteriol.202211215916610.4103/ijmy.ijmy_46_2235775548
    [Google Scholar]
  7. WallaceR.J. SwensonJ.M. SilcoxV.A. GoodR.C. TschenJ.A. StoneM.S. Spectrum of disease due to rapidly growing mycobacteria.Clin. Infect. Dis.19835465767910.1093/clinids/5.4.6576353528
    [Google Scholar]
  8. MacenteS. HelbelC. SouzaS.F.R. SiqueiraV.L.D. PaduaR.A.F. CardosoR.F. Disseminated folliculitis by Mycobacterium fortuitum in an immunocompetent woman.An. Bras. Dermatol.201388110210410.1590/S0365‑0596201300010001423539012
    [Google Scholar]
  9. GhaiS. ShrivastavaR. JainS. Computational model to predict potential therapeutic targets employing generative adversarial networks for analysis of proteins involved in Mycobacterium fortuitum biofilm formation.Curr. Med. Chem.20251610.2174/0109298673345515241122024326
    [Google Scholar]
  10. El HelouG. ViolaG.M. HachemR. HanX.Y. RaadI.I. Rapidly growing mycobacterial bloodstream infections.Lancet Infect. Dis.201313216617410.1016/S1473‑3099(12)70316‑X23347634
    [Google Scholar]
  11. RaikarG.V.S. RaikarA.S. SomnacheS.N. Advancements in artificial intelligence and machine learning in revolutionising biomarker discovery.Braz. J. Pharm. Sci.202359e2314610.1590/s2175‑97902023e23146
    [Google Scholar]
  12. RoyB. MaikapA. DasS. ChakrabortyS. Simultaneous detection of trace protein biomarkers from a single drop of blood using AI-enhanced smartphone-based digital microscopy.Biosens. Bioelectron.202527611725911725910.1016/j.bios.2025.11725939965417
    [Google Scholar]
  13. GhaiS. JagwanP. ShrivastavaR. JainS. Analysis of differentially expressed M. fortuitum proteins for biomarker prediction using Support Vector Machine.2023 Seventh International Conference on Image Information Processing (ICIIP)2023, pp. 212-217.10.1109/ICIIP61524.2023.10537781
    [Google Scholar]
  14. OkonechnikovK. IudinA. MarchantA. ApweilerH. VassilevE. InVERT: Integrated visualization of experimental proteomic data.Bioinformatics201632213333333527378289
    [Google Scholar]
  15. HoefslootW. van IngenJ. AndrejakC. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study.Eur. Respir. J.20134261604161310.1183/09031936.0014921223598956
    [Google Scholar]
  16. WattalC. RaveendranR. OberoiJ.K. Multidrug-resistant pulmonary & extrapulmonary tuberculosis: A 13 years retrospective hospital-based analysis.Indian J. Med. Res.2015142557558210.4103/0971‑5916.17128526658593
    [Google Scholar]
  17. ChetchotisakdP. MootsikapunP. AnunnatsiriS. Disseminated infection due to rapidly growing mycobacteria in immunocompetent hosts presenting with chronic lymphadenopathy: A previously unrecognized clinical entity.Clin. Infect. Dis.2000301293410.1086/31358910619729
    [Google Scholar]
  18. SharmaA. BansalS. KumariN. VashisttJ. ShrivastavaR. Comparative proteomic investigation unravels the pathobiology of Mycobacterium fortuitum biofilm.Appl. Microbiol. Biotechnol.2023107196029604610.1007/s00253‑023‑12705‑y37542577
    [Google Scholar]
  19. AungT.T. ChorW.H.J. YamJ.K.H. GivskovM. YangL. BeuermanR.W. Discovery of novel antimycobacterial drug therapy in biofilm of pathogenic nontuberculous mycobacterial keratitis.Ocul. Surf.201715477078310.1016/j.jtos.2017.06.00228662943
    [Google Scholar]
  20. MauryaA.K. NagV.L. KantS. Prevalence of nontuberculous mycobacteria among extrapulmonary tuberculosis cases in tertiary care centers in Northern India.BioMed Res. Int.201520151510.1155/2015/46540325883962
    [Google Scholar]
  21. PhillipsM.S. von ReynC.F. Nosocomial infections due to nontuberculous mycobacteria.Clin. Infect. Dis.20013381363137410.1086/32312611550115
    [Google Scholar]
  22. HondaJ.R. VirdiR. ChanE.D. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches.Front. Microbiol.201891810.3389/fmicb.2018.02029
    [Google Scholar]
  23. KumarC. ShrivastavaK. SinghA. ChauhanV. Varma-BasilM. Skin and soft-tissue infections due to rapidly growing mycobacteria: An overview.Int. J. Mycobacteriol.202110329330010.4103/ijmy.ijmy_110_2134494569
    [Google Scholar]
  24. ShrivastavaK. KumarC. SinghA. An overview of pulmonary infections due to rapidly growing mycobacteria in South Asia and impressions from a subtropical region.Int. J. Mycobacteriol.202091627010.4103/ijmy.ijmy_179_1932474491
    [Google Scholar]
  25. AungT.T. BeuermanR.W. Atypical Mycobacterial keratitis: A negligent and emerging thread for blindness.J. Rare Dis. Res. Treat.201831152010.29245/2572‑9411/2018/1.1143
    [Google Scholar]
  26. KatochP. GuptaK. YennamalliR.M. VashisttJ. BishtG.S. ShrivastavaR. Random insertion transposon mutagenesis of Mycobacterium fortuitum identified mutant defective in biofilm formation.Biochem. Biophys. Res. Commun.2020521499199610.1016/j.bbrc.2019.11.02131727369
    [Google Scholar]
  27. AungT.T. YamJ.K.H. LinS. Biofilms of pathogenic nontuberculous mycobacteria targeted by new therapeutic approaches.Antimicrob. Agents Chemother.2016601243510.1128/AAC.01509‑1526459903
    [Google Scholar]
  28. BettsJ.C. LukeyP.T. RobbL.C. McAdamR.A. DuncanK. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling.Mol. Microbiol.200243371773110.1046/j.1365‑2958.2002.02779.x11929527
    [Google Scholar]
  29. GaniefN. SjouermanJ. AlbeldasC. Associating H2O2- and NO-related changes in the proteome of Mycobacterium smegmatis with enhanced survival in macrophage.Emerg. Microbes Infect.20187111710.1038/s41426‑018‑0210‑229323102
    [Google Scholar]
  30. Hall-StoodleyL. KeevilC.W. Lappin-ScottH.M. Mycobacterium fortuitum and Mycobacterium chelonae biofilm formation under high and low nutrient conditions.J. Appl. Microbiol.199885S160S69S10.1111/j.1365‑2672.1998.tb05284.x21182694
    [Google Scholar]
  31. Gonzalez-DiazE. Morfin-OteroR. Perez-GomezH.R. Esparza-AhumadaS. Rodriguez-NoriegaE. Rapidly growing mycobacterial infections of the skin and soft tissues caused by M. fortuitum and M. chelonae.Curr. Trop. Med. Rep.20185316216910.1007/s40475‑018‑0150‑x
    [Google Scholar]
  32. ZamoraN. EstebanJ. KinnariT.J. CeldránA. GranizoJ.J. ZafraC. In-vitro evaluation of the adhesion to polypropylene sutures of non-pigmented, rapidly growing mycobacteria.Clin. Microbiol. Infect.200713990290710.1111/j.1469‑0691.2007.01769.x17608747
    [Google Scholar]
  33. TaylorR.K. MillerV.L. FurlongD.B. MekalanosJ.J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin.Proc. Natl. Acad. Sci.19878492833283710.1073/pnas.84.9.2833
    [Google Scholar]
  34. PartiR. ShrivastavaR. SrivastavaS. A transposon insertion mutant of Mycobacterium fortuitum attenuated in virulence and persistence in a murine infection model that is complemented by Rv3291c of Mycobacterium tuberculosis.Microb. Pathog.2008455-637037610.1016/j.micpath.2008.08.008
    [Google Scholar]
  35. PoonamRM Ribosomal maturation factor (RimP) is essential for survival of nontuberculous mycobacteria Mycobacterium fortuitum under in vitro acidic stress conditions.3 Biotech20199412710.1007/s13205‑019‑1659‑y
    [Google Scholar]
  36. SalauA.O. JainS. Adaptive diagnostic machine learning technique for classification of cell decisions for AKT protein.Informatics in Medicine Unlocked20212310051110.1016/j.imu.2021.100511
    [Google Scholar]
  37. PrasharN. SoodM. JainS. Novel cardiac arrhythmia processing using machine learning techniques.Int. J. Image Graph.2020203205002310.1142/S0219467820500230
    [Google Scholar]
  38. DograJ. JainS. SoodM. Glioma Classification of MR brain tumor employing machine learning.Int. J. Innov. Technol. Explor. Eng.20198826762682
    [Google Scholar]
  39. JainS. A Computational Model for Detection of Lung Diseases Due to Forkhead Transcription Factors.Emergent converging technologies and biomedical systems Lecture Notes in Electrical Engineering. MarriwalaN. TripathiC.C. JainS. MathapathiS. SingaporeSpringer202284110.1007/978‑981‑16‑8774‑7_7
    [Google Scholar]
  40. PaulT. RajR. GargP. JainS. Real time monitoring of water quality for rural reas: A machine learning and internet of things approach.Conference: 2023 4th International Conference on Intelligent Engineering and Management (ICIEM).202310.1109/ICIEM59379.2023.10165824
    [Google Scholar]
  41. AbadiM. BarhamP. ChenJ. Tensor flow: A system for large-scale machine learning.12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)2016, pp. 265-283.
    [Google Scholar]
  42. SalauA.O. JainS. SoodM. Paradigms in computational intelligence and data sciences.U.K.20221610.1201/9781003224068
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265371302250426154427
Loading
/content/journals/iddt/10.2174/0118715265371302250426154427
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): drug targets; machine learning; Mycobacterium fortuitum; pathogenesis; proteome; proteomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test