Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Tuberculosis (TB) spreads through droplets that contain Mycobacterium tuberculosis (Mtb) and can infect susceptible people. Due to different risk factors, people have different susceptibility ranges towards TB. The risk factors are classified into three main groups, including bacterial, environmental, and host factors. Literature review reveals that the most important host risk factors are aging, male gender, genetics, epigenetics, having an impaired immune system, diabetes, malignancy, malnutrition, anemia, and pregnancy. The risk factors contribute to the increase in TB cases through inflammation, increased contact with TB patients, disruption of immune genes, changes in gene expression, increased activity of Mtb, damage to cellular immunity, reactivation of Latent TB Infection (LTBI), increased susceptibility to TB, compromised immunity, and changes in the proportion of T cell subgroups, respectively. Therefore, identification of the infection source and high-risk people and timely treatment of the patients can reduce TB mortality and help control the disease.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265304343240722190414
2024-09-03
2025-08-16
Loading full text...

Full text loading...

References

  1. Global tuberculosis report 2022.2022Available from: https://www.who.int/publications/i/item/9789240061729 (accessed on 2-7-2024)
  2. ChaiQ. LuZ. LiuC.H. Host defense mechanisms against Mycobacterium tuberculosis.Cell. Mol. Life Sci.202077101859187810.1007/s00018‑019‑03353‑5 31720742
    [Google Scholar]
  3. PonnusamyN. ArumugamM. Interaction of host Pattern Recognition Receptors (PRRs) with Mycobacterium tuberculosis and ayurvedic management of tuberculosis: A systemic approach.Infect. Disord. Drug Targets2022222e13092119642010.2174/1871526521666210913110834 34517809
    [Google Scholar]
  4. GuptaS. Role of dendritic cells in innate and adaptive immune response in human aging.Exp. Gerontol.201454475210.1016/j.exger.2013.12.009 24370374
    [Google Scholar]
  5. de MartinoM. LodiL. GalliL. ChiappiniE. Immune response to Mycobacterium tuberculosis: A narrative review.Front Pediatr.20197350
    [Google Scholar]
  6. TesfayeF SturegårdE WallesJ Dynamics of Mycobacterium tuberculosis-specific and nonspecific immune responses in women with tuberculosis infection during pregnancy.Microbiol. Spectr.2022105e01178e2210.1128/spectrum.01178‑22 35969076
    [Google Scholar]
  7. AsgharzadeM. ShahbabianK. Samadi KafH. RafiA. Use of DNA fingerprinting in identifying the source case of tuberculosis in East Azarbaijan Province of Iran.J Med Sci20077341842110.3923/jms.2007.418.421
    [Google Scholar]
  8. OzmaM.A. LahoutyM. AbbasiA. RezaeeM.A. KafilH.S. AsgharzadehM. Effective bacterial factors involved in the dissemination of tuberculosis.Biointer Res. Appl. Chem.2022133234
    [Google Scholar]
  9. TaherpourS. BazzazM.M. NaderiH. A systematic and meta-analysis study on the prevalence of tuberculosis and relative risk factors for prisoners in Iran.Infect. Disord. Drug Targets2022221e13092119642210.2174/1871526521666210913111612 34517810
    [Google Scholar]
  10. OzmaM.A. RashediJ. PoorB.M. Tuberculosis and Diabetes Mellitus in Northwest of Iran.Infect. Disord. Drug Targets202020566767110.2174/1871526519666190715142100 31322073
    [Google Scholar]
  11. NabhanA.N. BrownfieldD.G. HarburyP.B. KrasnowM.A. DesaiT.J. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells.Science201835963801118112310.1126/science.aam6603 29420258
    [Google Scholar]
  12. FulopT. LarbiA. PawelecG. Immunology of aging: the birth of inflammaging.Clin. Rev. Allergy Immunol.202164210912210.1007/s12016‑021‑08899‑6 34536213
    [Google Scholar]
  13. GodinL.M. SandriB.J. WagnerD.E. Decreased laminin expression by human lung epithelial cells and fibroblasts cultured in acellular lung scaffolds from aged mice.PLoS One2016113e015096610.1371/journal.pone.0150966 26954258
    [Google Scholar]
  14. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe.Cell2023186224327810.1016/j.cell.2022.11.001 36599349
    [Google Scholar]
  15. LiX. LiC. ZhangW. WangY. QianP. HuangH. Inflammation and aging: signaling pathways and intervention therapies.Signal Transduct. Target. Ther.20238123910.1038/s41392‑023‑01502‑8 37291105
    [Google Scholar]
  16. CananC.H. GokhaleN.S. CarruthersB. Characterization of lung inflammation and its impact on macrophage function in aging.J. Leukoc. Biol.201496347348010.1189/jlb.4A0214‑093RR 24935957
    [Google Scholar]
  17. Nikolich-ŽugichJ. The twilight of immunity: emerging concepts in aging of the immune system.Nat. Immunol.2018191101910.1038/s41590‑017‑0006‑x 29242543
    [Google Scholar]
  18. AlaviS.M. AlaviL. Review on epidemiology, diagnosis, occupational hazards and management of pulmonary tuberculosis in elderly, a guide for general physicians working in the health network setting, Khuzestan.Iran. J. Microbiol.20136e6677
    [Google Scholar]
  19. LeeSY Mac AogáinM. Fam KD Airway microbiome composition correlates with lung function and arterial stiffness in an age-dependent manner.PLoS One20191411e022563610.1371/journal.pone.0225636 31770392
    [Google Scholar]
  20. MohammadAsgharzadeh MansourKhakpour SalehiT.Z. KafilH.S. Use of mycobacterial interspersed repetitive unit-variable-number tandem repeat typing to study Mycobacterium tuberculosis isolates from East Azarbaijan province of Iran.Pak. J. Biol. Sci.200710213769377710.3923/pjbs.2007.3769.3777 19090229
    [Google Scholar]
  21. MinJ. ParkJ.S. KimH.W. Differential effects of sex on tuberculosis location and severity across the lifespan.Sci. Rep.2023131602310.1038/s41598‑023‑33245‑5 37055508
    [Google Scholar]
  22. NhamoyebondeS. LeslieA. Biological differences between the sexes and susceptibility to tuberculosis.J. Infect. Dis.2014209Suppl. 3S100S10610.1093/infdis/jiu147 24966189
    [Google Scholar]
  23. PourostadiM. RashediJ. Mahdavi PoorB. Samadi KafilH. ShiraziS. AsgharzadehM. Molecular diversity of Mycobacterium tuberculosis strains in Northwestern Iran.Jundishapur J. Microbiol.201699e3552010.5812/jjm.35520 27800145
    [Google Scholar]
  24. CasanovaJ.L. AbelL. The human genetic determinism of life-threatening infectious diseases: genetic heterogeneity and physiological homogeneity?Hum. Genet.202013968169410.1007/s00439‑020‑02184‑w
    [Google Scholar]
  25. Boisson-DupuisS. The monogenic basis of human tuberculosis.Hum. Genet.20201396-71001100910.1007/s00439‑020‑02126‑6 32055999
    [Google Scholar]
  26. GhorghanluS. AsgharzadehM. Samadi-KafilH. TNF-A-308 G/A polymorphism and susceptibility to tuberculosis in Azeri population of Iran.Genetika201648819826
    [Google Scholar]
  27. MöllerM. HoalEG. Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis.Tuberculosis (Edinb.)2010902718310.1016/j.tube.2010.02.002 20206579
    [Google Scholar]
  28. RashediJ. AsgharzadehM. MoaddabS.R. Vitamin D receptor gene polymorphism and vitamin d plasma concentration: correlation with susceptibility to tuberculosis.Adv. Pharm. Bull.20144Suppl. 260761110.5681/apb.2014.089 25671196
    [Google Scholar]
  29. KhadelaA. ChavdaV.P. PostwalaH. ShahY. MistryP. ApostolopoulosV. Epigenetics in Tuberculosis: Immunomodulation of Host Immune Response.Vaccines (Basel)20221010174010.3390/vaccines10101740 36298605
    [Google Scholar]
  30. FuK. BonoraG. PellegriniM. Interactions between core histone marks and DNA methyltransferases predict DNA methylation patterns observed in human cells and tissues.Epigenetics202015327228210.1080/15592294.2019.1666649 31509087
    [Google Scholar]
  31. ÁlvarezGI Hernández Del PinoRE BarberoAM Association of IFN-γ +874 A/T SNP and hypermethylation of the -53 CpG site with tuberculosis susceptibility. Front Cell Infect Microbiol202313108010010.3389/fcimb.2023.1080100 36743307
    [Google Scholar]
  32. KathirvelM. MahadevanS. The role of epigenetics in tuberculosis infection.Epigenomics20168453754910.2217/epi.16.1 27035266
    [Google Scholar]
  33. AsaadM. Abo-kadoumM.A. NzungizeL. UaeM. NzaouS.A.E. XieJ. Methylation in Mycobacterium-host interaction and implications for novel control measures.Infect. Genet. Evol.20208310435010.1016/j.meegid.2020.104350 32380312
    [Google Scholar]
  34. ShiG. MaoG. XieK. WuD. WangW. MiR‐1178 regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis‐infected macrophages partly via TLR4.J. Cell. Biochem.201811997449745710.1002/jcb.27054 29781535
    [Google Scholar]
  35. ChaoW.C. YenC.L. WuC.H. ShiehC.C. How mycobacteria take advantage of the weakness in human immune system in the modern world.J. Microbiol. Immunol. Infect.202053220921510.1016/j.jmii.2019.10.008 31926875
    [Google Scholar]
  36. DinkarA. SinghJ. PatelN.K. Disseminated Tuberculosis in an Immunocompetent State: A Case Report.Infect. Disord. Drug Targets2023232e21092220902210.2174/1871526522666220921123920 36154589
    [Google Scholar]
  37. ÁlvarezS BrañasF Sánchez-CondeM MorenoS López-Bernaldo de QuirósJC Muñoz-FernándezMÁ. Frailty, markers of immune activation and oxidative stress in HIV infected elderly.PLoS One2020153e023033910.1371/journal.pone.0230339 32187205
    [Google Scholar]
  38. SsendikwanawaE. Juniour NsubugaE. LeeS. Factors associated with isoniazid preventive treatment interruption and completion among PLHIV in Gombe Hospital, Uganda, 2017–2019.J. Clin. Tuberc. Other Mycobact. Dis.20233110034910.1016/j.jctube.2023.100349 37181458
    [Google Scholar]
  39. MolaeipoorL. PoorolajalJ. MohrazM. EsmailnasabN. Predictors of tuberculosis and human immunodeficiency virus co-infection: a case-control study.Epidemiol. Health201436e201402410.4178/epih/e2014024 25358465
    [Google Scholar]
  40. KimH.W. KimE.H. LeeM. JungI. AhnS.S. Risk of cancer, tuberculosis and serious infections in patients with ankylosing spondylitis, psoriatic arthritis and psoriasis treated with IL-17 and TNF-α inhibitors: a nationwide nested case-control analysis.Clin. Exp. Rheumatol.20224171491149910.55563/clinexprheumatol/qkiorp 36533975
    [Google Scholar]
  41. HaghdoostA.A. Rezazadeh KermaniM. SadghiradB. BaradaranH.R. Prevalence of type 2 diabetes in the Islamic Republic of Iran: systematic review and meta-analysis.East. Mediterr. Health J.200915359159910.26719/2009.15.3.591 19731775
    [Google Scholar]
  42. RestrepoB.I. Fisher-HochS.P. PinoP.A. Tuberculosis in poorly controlled type 2 diabetes: altered cytokine expression in peripheral white blood cells.Clin. Infect. Dis.200847563464110.1086/590565 18652554
    [Google Scholar]
  43. Kumar NathellaP. BabuS. Influence of diabetes mellitus on immunity to human tuberculosis.Immunology20171521132410.1111/imm.12762 28543817
    [Google Scholar]
  44. AsgharzadehM. TaghinejadZ. MahdavipoorB. AsgharzadehV. KafilH.S. RashediJ. Mixed tuberculosis infections in Northwest of Iran.Infez. Med.202129458358810.53854/liim‑2904‑12 35146368
    [Google Scholar]
  45. Al-RifaiR.H. PearsonF. CritchleyJ.A. Abu-RaddadL.J. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis.PLoS One20171211e018796710.1371/journal.pone.0187967 29161276
    [Google Scholar]
  46. SohA.Z. CheeC.B.E. WangY-T. YuanJ-M. KohW-P. Diabetes and body mass index in relation to risk of active tuberculosis: a prospective population-based cohort.Int. J. Tuberc. Lung Dis.201923121277128210.5588/ijtld.19.0094 31931911
    [Google Scholar]
  47. DooleyK.E. GolubJ.E. CroninW. TangT. DormanS.E. Impact of diabetes mellitus on treatment outcomes of patients with active tuberculosis.Am. J. Trop. Med. Hyg.200980463463910.4269/ajtmh.2009.80.634 19346391
    [Google Scholar]
  48. CarneiroB.A. El-DeiryW.S. Targeting apoptosis in cancer therapy.Nat. Rev. Clin. Oncol.202017739541710.1038/s41571‑020‑0341‑y 32203277
    [Google Scholar]
  49. ChoiY. NohJ.M. ShinS.H. The Incidence and Risk Factors of Chronic Pulmonary Infection after Radiotherapy in Patients with Lung Cancer.Cancer Res. Treat.202355380481310.4143/crt.2022.1305 36596726
    [Google Scholar]
  50. CheonJ. KimC. ParkE.J. Active tuberculosis risk associated with malignancies: an 18-year retrospective cohort study in Korea.J. Thorac. Dis.20201294950495910.21037/jtd.2020.02.50 33145069
    [Google Scholar]
  51. DoblerC.C. CheungK. NguyenJ. MartinA. Risk of tuberculosis in patients with solid cancers and haematological malignancies: a systematic review and meta-analysis.Eur. Respir. J.2017502170015710.1183/13993003.00157‑2017 28838977
    [Google Scholar]
  52. StefanD.C. KruisA.L. SchaafH.S. WesselsG. Tuberculosis in oncology patients.Ann. Trop. Paediatr.200828211111610.1179/146532808X302125 18510820
    [Google Scholar]
  53. GombartA.F. PierreA. MagginiS. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection.Nutrients202012123610.3390/nu12010236 31963293
    [Google Scholar]
  54. ShajiB. Arun ThomasE.T. SasidharanP.K. Tuberculosis control in India: Refocus on nutrition.Indian J. Tuberc.2019661262910.1016/j.ijtb.2018.10.001 30797277
    [Google Scholar]
  55. MartinS.J. SabinaE.P. Malnutrition and associated disorders in tuberculosis and its therapy.J. Diet. Suppl.201916560261010.1080/19390211.2018.1472165 29958051
    [Google Scholar]
  56. TalatN. PerryS. ParsonnetJ. DawoodG. HussainR. Vitamin d deficiency and tuberculosis progression.Emerg. Infect. Dis.201016585385510.3201/eid1605.091693 20409383
    [Google Scholar]
  57. ComberiatiP. Di CiccoM. ParavatiF. The role of gut and lung microbiota in susceptibility to tuberculosis.Int. J. Environ. Res. Public Health202118221222010.3390/ijerph182212220 34831976
    [Google Scholar]
  58. BalcellsM.E. YokoboriN. HongB. CorbettJ. CervantesJ. The lung microbiome, vitamin D, and the tuberculous granuloma: A balance triangle.Microb. Pathog.201913115816310.1016/j.micpath.2019.03.041 30953746
    [Google Scholar]
  59. ChaparroC.M. SuchdevP.S. Anemia epidemiology, pathophysiology, and etiology in low‐ and middle‐income countries.Ann. N. Y. Acad. Sci.201914501153110.1111/nyas.14092 31008520
    [Google Scholar]
  60. SahaK. MukhopadhyayD. RoyS. Impact of iron deficiency anemia on cell-mediated and humoral immunity in children: A case control study.J. Nat. Sci. Biol. Med.20145115816310.4103/0976‑9668.127317 24678217
    [Google Scholar]
  61. GelawY. GetanehZ. MelkuM. Anemia as a risk factor for tuberculosis: a systematic review and meta-analysis.Environ. Health Prev. Med.20212611310.1186/s12199‑020‑00931‑z 33485299
    [Google Scholar]
  62. LuoM. LiuM. WuX. Impact of anemia on prognosis in tuberculosis patients.Ann. Transl. Med.202210632910.21037/atm‑22‑679 35433932
    [Google Scholar]
  63. BalukuJ.B. MayinjaE. MugabeP. NtabaddeK. OlumR. BongominF. Prevalence of anaemia and associated factors among people with pulmonary tuberculosis in Uganda.Epidemiol. Infect.2022150e2910.1017/S0950268822000103 35022106
    [Google Scholar]
  64. PiccinniM.P. RaghupathyR. SaitoS. Szekeres-BarthoJ. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction.Front. Immunol.20211271780810.3389/fimmu.2021.717808 34394125
    [Google Scholar]
  65. AshenafiS. AderayeG. BekeleA. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3.Clin. Immunol.20141512849910.1016/j.clim.2014.01.010 24584041
    [Google Scholar]
  66. SobhyS. BabikerZ.O.E. ZamoraJ. KhanK.S. KunstH. Maternal and perinatal mortality and morbidity associated with tuberculosis during pregnancy and the postpartum period: a systematic review and meta‐analysis.BJOG2017124572773310.1111/1471‑0528.14408 27862893
    [Google Scholar]
  67. SoetaertK. CeyssensP.J. BoarbiS. Retrospective evaluation of routine whole genome sequencing of Mycobacterium tuberculosis at the Belgian National Reference Center, 2019.Acta Clin. Belg.202277585386010.1080/17843286.2021.1999588 34751641
    [Google Scholar]
  68. BaliashviliD. BlumbergH.M. BenkeserD. Association of treated and untreated chronic hepatitis C with the incidence of active tuberculosis disease: A population-based cohort study.Clin. Infect. Dis.202376224525110.1093/cid/ciac786 36134743
    [Google Scholar]
  69. ChengL.T. ChungC.H. PengC.K. Bidirectional relationship between tuberculosis and hypothyroidism: An 18-year nationwide population-based longitudinal cohort study.Front. Med.2022990085810.3389/fmed.2022.900858 35903317
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265304343240722190414
Loading
/content/journals/iddt/10.2174/0118715265304343240722190414
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anemia; dendritic cells; diabetes; epigenetic modification; malnutrition; Tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test