Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Tuberculosis (TB) is a major global health concern and a leading cause of death worldwide. The emergence of drug-resistant TB strains poses a significant threat to public health and is contributing to the growing rate of TB infections globally. Therefore, it is crucial to explore new and safe drugs for TB treatment. Despite significant progress in developing new drugs, many existing treatments and prevention strategies for TB do not achieve the desired positive health outcomes for various reasons. Small-molecule treatments can potentially address drug resistance and provide opportunities for multimodal therapy. This review focuses on recent advancements in understanding the pathogenesis of and the mechanisms of flavonoids in antimycobacterial properties. Given the urgent need for new antimycobacterial agents to enhance the effectiveness of current drugs, investigating flavonoids as potential candidates is promising. Evidence suggests that specific structural characteristics in flavonoids play a significant role in their antimycobacterial effects, among other pharmacological activities. Flavonoids can act through various mechanisms, such as disrupting bacterial cell membranes or inhibiting the production of essential cellular components like DNA. These findings may prompt further research to enhance our understanding of how flavonoids combat tuberculosis, potentially establishing their importance as key compounds in treating the disease.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265361578250504110100
2025-07-03
2026-01-05
Loading full text...

Full text loading...

/deliver/fulltext/iddt/25/8/IDDT-25-8-01.html?itemId=/content/journals/iddt/10.2174/0118715265361578250504110100&mimeType=html&fmt=ahah

References

  1. ReddyD.S. KongotM. NetalkarS.P. Synthesis and evaluation of novel coumarin-oxime ethers as potential anti-tubercular agents: Their DNA cleavage ability and BSA interaction study.Eur. J. Med. Chem.201815086487510.1016/j.ejmech.2018.03.04229597169
    [Google Scholar]
  2. CampaniçoA. MoreiraR. LopesF. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents.Eur. J. Med. Chem.201815052554510.1016/j.ejmech.2018.03.02029549838
    [Google Scholar]
  3. AnQ. LiC. ChenY. DengY. YangT. LuoY. Repurposed drug candidates for antituberculosis therapy.Eur. J. Med. Chem.202019211217510.1016/j.ejmech.2020.11217532126450
    [Google Scholar]
  4. JianY. HulpiaF. RisseeuwM.D.P. Synthesis and structure activity relationships of cyanopyridone based anti-tuberculosis agents.Eur. J. Med. Chem.202020111245010.1016/j.ejmech.2020.11245032623208
    [Google Scholar]
  5. UnissaA.N. SubbianS. HannaL.E. SelvakumarN. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis.Infect. Genet. Evol.20164547449210.1016/j.meegid.2016.09.00427612406
    [Google Scholar]
  6. MonamaM.Z. OlotuF. Tastan BishopÖ. Investigation of multi-subunit Mycobacterium tuberculosis DNA-directed RNA polymerase and its rifampicin resistant mutants.Int. J. Mol. Sci.2023244331310.3390/ijms2404331336834726
    [Google Scholar]
  7. SinghaB. MurmuS. NairT. RawatR.S. SharmaA.K. SoniV. Metabolic rewiring of Mycobacterium tuberculosis upon drug treatment and antibiotics resistance.Metabolites20241416310.3390/metabo1401006338248866
    [Google Scholar]
  8. VermaS.K. VermaR. VermaS. VaishnavY. TiwariS.P. RakeshK.P. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review.Eur. J. Med. Chem.202120911288610.1016/j.ejmech.2020.11288633032083
    [Google Scholar]
  9. RameshD. JojiA. VijayakumarB.G. SethumadhavanA. ManiM. KannanT. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis.Eur. J. Med. Chem.202019811235810.1016/j.ejmech.2020.11235832361610
    [Google Scholar]
  10. NirmalC.R. EbenezerR.S. KannanP. Anti-tuberculosis activity of bio-active compounds from Lantana camara L., Euphorbia hirta L., Mukia maderaspatana (L.) M. Roem, and Abutilon indicum (L.).Eur. J. Integr. Med.20203510110510.1016/j.eujim.2020.101105
    [Google Scholar]
  11. GaoF. WangT. GaoM. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and] in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity.Eur. J. Med. Chem.201916532333110.1016/j.ejmech.2019.01.04230690301
    [Google Scholar]
  12. ZhaoW. WangB. LiuY. Design, synthesis, and biological evaluation of novel 4H-chromen-4-one derivatives as antituberculosis agents against multidrug-resistant tuberculosis.Eur. J. Med. Chem.202018911207510.1016/j.ejmech.2020.11207531986405
    [Google Scholar]
  13. DimitrovS. SlavchevI. SimeonovaR. Evaluation of acute and sub-acute toxicity, oxidative stress and molecular docking of two nitrofuranyl amides as promising anti-tuberculosis agents.Biomolecules2023138117410.3390/biom1308117437627241
    [Google Scholar]
  14. MangasuliS.N. HosamaniK.M. DevarajegowdaH.C. KurjogiM.M. JoshiS.D. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents.Eur. J. Med. Chem.201814674775610.1016/j.ejmech.2018.01.02529407993
    [Google Scholar]
  15. AlMatarM. VarI. KayarB. Evaluation of polyphenolic profile and antibacterial activity of pomegranate juice in combination with rifampin (R) against MDR-TB clinical isolates.Curr. Pharm. Biotechnol.201920431732610.2174/138920102066619030813034330854955
    [Google Scholar]
  16. Torres-PiedraM. Ortiz-AndradeR. Villalobos-MolinaR. A comparative study of flavonoid analogues on streptozotocin–nicotinamide induced diabetic rats: Quercetin as a potential antidiabetic agent acting via 11β-Hydroxysteroid dehydrogenase type 1 inhibition.Eur. J. Med. Chem.20104562606261210.1016/j.ejmech.2010.02.04920346546
    [Google Scholar]
  17. ZhangH. ZhengX. LiJ. Flavonoid-triazolyl hybrids as potential anti-hepatitis C virus agents: Synthesis and biological evaluation.Eur. J. Med. Chem.202121811339510.1016/j.ejmech.2021.11339533838584
    [Google Scholar]
  18. ShiS. ZhengX. SuzukiR. Novel flavonoid hybrids as potent antiviral agents against hepatitis A: Design, synthesis and biological evaluation.Eur. J. Med. Chem.202223811445210.1016/j.ejmech.2022.11445235597006
    [Google Scholar]
  19. JeonD. JeongM.C. JnawaliH. Phloretin exerts anti-tuberculosis activity and suppresses lung inflammation.Molecules201722118310.3390/molecules2201018328117761
    [Google Scholar]
  20. Al AboodyM.S. MickymarayS. Anti-fungal efficacy and mechanisms of flavonoids.Antibiotics2020924510.3390/antibiotics902004531991883
    [Google Scholar]
  21. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant Flavonoids: Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules2617537734500810
    [Google Scholar]
  22. AbotalebM. LiskovaA. KubatkaP. BüsselbergD. Therapeutic potential of plant phenolic acids in the treatment of cancer.Biomolecules202010222110.3390/biom1002022132028623
    [Google Scholar]
  23. KoklesovaL. LiskovaA. SamecM. Protective effects of flavonoids against mitochondriopathies and associated pathologies: Focus on the predictive approach and personalized prevention.Int. J. Mol. Sci.20212216864910.3390/ijms2216864934445360
    [Google Scholar]
  24. XiaoZ.P. WangX.D. WangP.F. Design, synthesis, and evaluation of novel fluoroquinolone–flavonoid hybrids as potent antibiotics against drug-resistant microorganisms.Eur. J. Med. Chem.2014809210010.1016/j.ejmech.2014.04.03724769347
    [Google Scholar]
  25. BabiiC. MihalacheG. BahrinL.G. A novel synthetic flavonoid with potent antibacterial properties: In vitro activity and proposed mode of action.PLoS One2018134e019489810.1371/journal.pone.019489829617411
    [Google Scholar]
  26. KhisimuziMdluli ZhenkunMa Mycobacterium tuberculosis DNA gyrase as a target for drug discovery.Infect. Disord. Drug Targets20077215916810.2174/18715260778100176317970226
    [Google Scholar]
  27. RahlwesK.C. DiasB.R.S. CamposP.C. Alvarez-ArguedasS. ShilohM.U. Pathogenicity and virulence of Mycobacterium tuberculosis.Virulence2023141215044910.1080/21505594.2022.215044936419223
    [Google Scholar]
  28. MiglioriG.B. OngC.W.M. PetroneL. D’AmbrosioL. CentisR. GolettiD. The definition of tuberculosis infection based on the spectrum of tuberculosis disease.Breathe202117321007910.1183/20734735.0079‑202135035549
    [Google Scholar]
  29. FennellyK.P. Jones-LópezE.C. Quantity and quality of inhaled dose predicts immunopathology in tuberculosis.Front. Immunol.2015631310.3389/fimmu.2015.0031326175730
    [Google Scholar]
  30. MiggianoR. RizziM. FerrarisD.M. Mycobacterium tuberculosis pathogenesis, infection prevention and treatment.Pathogens20209538510.3390/pathogens905038532443469
    [Google Scholar]
  31. NatarajanA. BeenaP.M. DevnikarA.V. MaliS. A systemic review on tuberculosis.Indian J. Tuberc.202067329531110.1016/j.ijtb.2020.02.00532825856
    [Google Scholar]
  32. YangJ. ZhangL. QiaoW. LuoY. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets.MedComm202345e35310.1002/mco2.35337674971
    [Google Scholar]
  33. RabaanA.A. AlhumaidS. AlbayatH. Promising antimycobacterial activities of flavonoids against Mycobacterium sp. drug targets: A comprehensive review.Molecules20222716533510.3390/molecules2716533536014572
    [Google Scholar]
  34. NabaviS.M. ŠamecD. TomczykM. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering.Biotechnol. Adv.20203810731610.1016/j.biotechadv.2018.11.00530458225
    [Google Scholar]
  35. D’AmeliaV. AversanoR. ChiaieseP. CarputoD. The antioxidant properties of plant flavonoids: Their exploitation by molecular plant breeding.Phytochem. Rev.201817361162510.1007/s11101‑018‑9568‑y
    [Google Scholar]
  36. ShamsudinN.F. AhmedQ.U. MahmoodS. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation.Molecules2022274114910.3390/molecules2704114935208939
    [Google Scholar]
  37. RakhaA. UmarN. RabailR. Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review.Biomed. Pharmacother.202215611394510.1016/j.biopha.2022.11394536411631
    [Google Scholar]
  38. UivarosiV. MunteanuA.C. NițulescuG.M. An overview of synthetic and semisynthetic flavonoid derivatives and analogues: Perspectives in drug discovery.Stud Nat Prod Chem201960298410.1016/B978‑0‑444‑64181‑6.00002‑4
    [Google Scholar]
  39. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  40. ŠamecD. KaralijaE. ŠolaI. Vujčić BokV. Salopek-SondiB. The role of polyphenols in a biotic stress response: The influence of molecular structure.Plants202110111810.3390/plants1001011833430128
    [Google Scholar]
  41. UllahA. MunirS. BadshahS.L. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules2522524333187049
    [Google Scholar]
  42. TranV. MarksD. DukeR. BebawyM. DukeC. RoufogalisB. Modulation of P-glycoprotein-mediated anticancer drug accumulation, cytotoxicity, and ATPase activity by flavonoid interactions.Nutr. Cancer201163343544310.1080/01635581.2011.53595921462089
    [Google Scholar]
  43. JaganathanS.K. Can flavonoids from honey alter multidrug resistance?Med. Hypotheses201176453553710.1016/j.mehy.2010.12.01121247706
    [Google Scholar]
  44. BrownA.K. PapaemmanouilA. BhowruthV. BhattA. DoverL.G. BesraG.S. Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II.Microbiology2007153103314332210.1099/mic.0.2007/009936‑017906131
    [Google Scholar]
  45. SuriyanarayananB. ShanmugamK. SanthoshR.S.J.R.B.L. Synthetic quercetin inhibits mycobacterial growth possibly by interacting with DNA gyrase.Rom. Biotechnol. Lett.201318585878593
    [Google Scholar]
  46. ZhengY. JiangX. GaoF. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome.BMC Complement. Altern. Med.201414140010.1186/1472‑6882‑14‑40025315519
    [Google Scholar]
  47. ZhangQ. SunJ. WangY. Antimycobacterial and anti-inflammatory mechanisms of baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis.Front. Microbiol.20178214210.3389/fmicb.2017.0214229163427
    [Google Scholar]
  48. SohA. PanA. CheeC. WangY.T. YuanJ.M. KohW.P. Tea drinking and its association with active tuberculosis incidence among middle-aged and elderly adults: The Singapore Chinese health study.Nutrients20179654410.3390/nu906054428587081
    [Google Scholar]
  49. SinghM. KaurM. SilakariO. Flavones: An important scaffold for medicinal chemistry.Eur. J. Med. Chem.20148420623910.1016/j.ejmech.2014.07.01325019478
    [Google Scholar]
  50. NemethK. PiskulaM.K. Food content, processing, absorption and metabolism of onion flavonoids.Crit. Rev. Food Sci. Nutr.200747439740910.1080/1040839060084629117457724
    [Google Scholar]
  51. BatihaG.E.S. BeshbishyA.M. IkramM. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin.Foods20209337410.3390/foods903037432210182
    [Google Scholar]
  52. KozłowskaA. Szostak-WegierekD. Flavonoids-food sources and health benefits.Rocz. Panstw. Zakl. Hig.2014652798525272572
    [Google Scholar]
  53. TeraharaN. Flavonoids in foods: A review.Nat Prod Commun20151031934578X150100033410.1177/1934578X150100033425924542
    [Google Scholar]
  54. YadavA.K. ThakurJ. PrakashO. KhanF. SaikiaD. GuptaM.M. Screening of flavonoids for antitubercular activity and their structure–activity relationships.Med. Chem. Res.20132262706271610.1007/s00044‑012‑0268‑7
    [Google Scholar]
  55. LechnerD. GibbonsS. BucarF. Modulation of isoniazid susceptibility by flavonoids in Mycobacterium.Phytochem. Lett.200812717510.1016/j.phytol.2008.01.002
    [Google Scholar]
  56. CastellarA. CoelhoT.S. SilvaP.E.A. The activity of flavones and oleanolic acid from Lippia lacunosa against susceptible and resistant Mycobacterium tuberculosis strains.Rev. Bras. Farmacogn.201121583584010.1590/S0102‑695X2011005000076
    [Google Scholar]
  57. ShahA. SmithD.L. Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations.Agronomy2020108120910.3390/agronomy10081209
    [Google Scholar]
  58. PawarA. JhaP. ChopraM. ChaudhryU. SalujaD. Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids.Sci. Rep.202010194910.1038/s41598‑020‑57658‑831969615
    [Google Scholar]
  59. Del ValleI. WebsterT.M. ChengH.Y. Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication.Sci. Adv.202065eaax825410.1126/sciadv.aax825432064339
    [Google Scholar]
  60. Coronado-AcevesE.W. GigliarelliG. Garibay-EscobarA. New Isoflavonoids from the extract of Rhynchosia precatoria (Humb. & Bonpl. ex Willd.) DC. and their antimycobacterial activity.J. Ethnopharmacol.20172069210010.1016/j.jep.2017.05.01928506901
    [Google Scholar]
  61. LuoY. JianY. LiuY. JiangS. MuhammadD. WangW. Flavanols from nature: A phytochemistry and biological activity review.Molecules202227371910.3390/molecules2703071935163984
    [Google Scholar]
  62. XuX. DongB. PengL. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis.Front. Microbiol.202213105660810.3389/fmicb.2022.105660836620019
    [Google Scholar]
  63. Jacobo-DelgadoY.M. Rodríguez-CarlosA. SerranoC.J. Rivas-SantiagoB. Mycobacterium tuberculosis cell-wall and antimicrobial peptides: A mission impossible?Front. Immunol.202314119492310.3389/fimmu.2023.119492337266428
    [Google Scholar]
  64. ChiaradiaL. LefebvreC. ParraJ. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane.Sci. Rep.2017711280710.1038/s41598‑017‑12718‑428993692
    [Google Scholar]
  65. ZhangL. ZhaoY. GaoY. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol.Science202036864961211121910.1126/science.aba910232327601
    [Google Scholar]
  66. Lopez-MarinL.M. Nonprotein structures from mycobacteria: Emerging actors for tuberculosis control.Clin. Dev. Immunol.201220121910.1155/2012/91786022611423
    [Google Scholar]
  67. PatinE.C. GeffkenA.C. WillcocksS. Trehalose dimycolate interferes with FcγR-mediated phagosome maturation through Mincle, SHP-1 and FcγRIIB signalling.PLoS One2017124e017497310.1371/journal.pone.017497328384255
    [Google Scholar]
  68. YusookK. WeeranantanapanO. HuaY. KumkraiP. ChudapongseN. Lupinifolin from Derris reticulata possesses bactericidal activity on Staphylococcus aureus by disrupting bacterial cell membrane.J. Nat. Med.201771235736610.1007/s11418‑016‑1065‑228039567
    [Google Scholar]
  69. FragkosM. GanierO. CoulombeP. MéchaliM. DNA replication origin activation in space and time.Nat. Rev. Mol. Cell Biol.201516636037410.1038/nrm400225999062
    [Google Scholar]
  70. DitseZ. DNA Replication in Mycobacterium tuberculosis.Microbiol. Spectr.20175210.1128/microbiolspec.TBTB2‑0027‑201628361736
    [Google Scholar]
  71. PłocinskaR. Korycka-MachalaM. PlocinskiP. DziadekJ. Mycobacterial DNA replication as a target for antituberculosis drug discovery.Curr. Top. Med. Chem.201717192129214210.2174/156802661766617013011434228137234
    [Google Scholar]
  72. NagarajaV. GodboleA.A. HendersonS.R. MaxwellA. DNA topoisomerase I and DNA gyrase as targets for TB therapy.Drug Discov. Today201722351051810.1016/j.drudis.2016.11.00627856347
    [Google Scholar]
  73. DarstS.A. New inhibitors targeting bacterial RNA polymerase.Trends Biochem. Sci.200429415916210.1016/j.tibs.2004.02.00515124627
    [Google Scholar]
  74. ChopraI. Bacterial RNA polymerase: A promising target for the discovery of new antimicrobial agents.Curr. Opin. Investig. Drugs20078860060717668362
    [Google Scholar]
  75. GórniakI. BartoszewskiR. KróliczewskiJ. Comprehensive review of antimicrobial activities of plant flavonoids.Phytochem. Rev.201918124127210.1007/s11101‑018‑9591‑z
    [Google Scholar]
  76. RodríguezB. PachecoL. BernalI. PiñaM. Mechanisms of action of flavonoids: Antioxidant, antibacterial and antifungal properties. Ciencia. Ciencia.Ambiente y Clima202362336610.22206/cac.2023.v6i2.3021
    [Google Scholar]
  77. SuriyanarayananB. Sarojini SanthoshR. Docking analysis insights quercetin can be a non-antibiotic adjuvant by inhibiting Mmr drug efflux pump in Mycobacterium sp. and its homologue EmrE in Escherichia coli.J. Biomol. Struct. Dyn.20153381819183410.1080/07391102.2014.97421125297690
    [Google Scholar]
  78. FangY. LuY. ZangX. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors.Sci. Rep.2016612363410.1038/srep2363427049530
    [Google Scholar]
  79. PlaperA. GolobM. HafnerI. OblakM. ŠolmajerT. JeralaR. Characterization of quercetin binding site on DNA gyrase.Biochem. Biophys. Res. Commun.2003306253053610.1016/S0006‑291X(03)01006‑412804597
    [Google Scholar]
  80. DanielT.M. BatesJ.H. DownesK.A. History of tuberculosis.Tuberculosis.Wiley199410.1128/9781555818357.ch2
    [Google Scholar]
  81. BaldD. KoulA. Respiratory ATP synthesis: The new generation of mycobacterial drug targets?FEMS Microbiol. Lett.201030811710.1111/j.1574‑6968.2010.01959.x20402785
    [Google Scholar]
  82. ZhangY. WadeM.M. ScorpioA. ZhangH. SunZ. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid.J. Antimicrob. Chemother.200352579079510.1093/jac/dkg44614563891
    [Google Scholar]
  83. DoğanŞ.D. GündüzM.G. DoğanH. KrishnaV.S. LherbetC. SriramD. Design and synthesis of thiourea-based derivatives as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors.Eur. J. Med. Chem.202019911240210.1016/j.ejmech.2020.11240232417538
    [Google Scholar]
  84. PrasadM.S. BholeR.P. KhedekarP.B. ChikhaleR.V. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery.Bioorg. Chem.202111510524210.1016/j.bioorg.2021.10524234392175
    [Google Scholar]
  85. JoshiS.D. Synthesis, evaluation and in silico molecular modeling of pyrroyl-1,3,4-thiadiazole inhibitors of InhA.Bioorg. Chem.20155915116710.1016/j.bioorg.2015.03.00125800133
    [Google Scholar]
  86. RožmanK. SosičI. FernandezR. A new ‘golden age’ for the antitubercular target InhA.Drug Discov. Today201722349250210.1016/j.drudis.2016.09.00927663094
    [Google Scholar]
  87. CholletA. MaveyraudL. LherbetC. Bernardes-GénissonV. An overview on crystal structures of InhA protein: Apo-form, in complex with its natural ligands and inhibitors.Eur. J. Med. Chem.201814631834310.1016/j.ejmech.2018.01.04729407960
    [Google Scholar]
  88. PiccaroG. PoceG. BiavaM. GiannoniF. FattoriniL. Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis.J. Antibiot.2015681171171410.1038/ja.2015.5225944535
    [Google Scholar]
  89. LiY. AcharyaA. YangL. Insights into substrate transport and water permeation in the mycobacterial transporter MmpL3.Biophys. J.2023122112342235210.1016/j.bpj.2023.03.01836926696
    [Google Scholar]
  90. MaS. HuangY. XieF. Transport mechanism of Mycobacterium tuberculosis MmpL/S family proteins and implications in pharmaceutical targeting.Biol. Chem.2020401333134810.1515/hsz‑2019‑032631652116
    [Google Scholar]
  91. UmareM.D. KhedekarP.B. ChikhaleR.V. Mycobacterial membrane protein large 3 (MmpL3) inhibitors: A promising approach to combat tuberculosis.ChemMedChem202116203136314810.1002/cmdc.20210035934288519
    [Google Scholar]
  92. GrzegorzewiczA.E. PhamH. GundiV.A.K.B. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane.Nat. Chem. Biol.20128433434110.1038/nchembio.79422344175
    [Google Scholar]
  93. BackusK.M. DolanM.A. BarryC.S. The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions.J. Biol. Chem.201428936250412505310.1074/jbc.M114.58157925028517
    [Google Scholar]
  94. BollaJ.R. Targeting MmpL3 for anti-tuberculosis drug development.Biochem. Soc. Trans.20204841463147210.1042/BST2019095032662825
    [Google Scholar]
  95. SuC.C. KlenoticP.A. CuiM. LyuM. MorganC.E. YuE.W. Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport.PLoS Biol.2021198e300137010.1371/journal.pbio.300137034383749
    [Google Scholar]
  96. TorfsE. PillerT. CosP. CappoenD. Opportunities for overcoming Mycobacterium tuberculosis drug resistance: Emerging mycobacterial targets and host-directed therapy.Int. J. Mol. Sci.20192012286810.3390/ijms2012286831212777
    [Google Scholar]
  97. MakarovV. ManinaG. MikusovaK. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis.Science2009324592880180410.1126/science.117158319299584
    [Google Scholar]
  98. WoluckaB.A. Biosynthesis of D ‐arabinose in mycobacteria – A novel bacterial pathway with implications for antimycobacterial therapy.FEBS J.2008275112691271110.1111/j.1742‑4658.2008.06395.x18422659
    [Google Scholar]
  99. PitonJ. FooC.S.Y. ColeS.T. Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors.Drug Discov. Today201722352653310.1016/j.drudis.2016.09.01427666194
    [Google Scholar]
  100. KollyG.S. BoldrinF. SalaC. Assessing the essentiality of the decaprenyl‐phospho‐ d ‐arabinofuranose pathway in Mycobacterium tuberculosis using conditional mutants.Mol. Microbiol.201492119421110.1111/mmi.1254624517327
    [Google Scholar]
  101. FernandesG.F.S. ThompsonA.M. CastagnoloD. DennyW.A. Dos SantosJ.L. Tuberculosis drug discovery: Challenges and new horizons.J. Med. Chem.202265117489753110.1021/acs.jmedchem.2c0022735612311
    [Google Scholar]
  102. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  103. KozhikkadanD. Taxifolin as dual inhibitor of Mtb DNA gyrase and isoleucyl-tRNA synthetase: In silico molecular docking, dynamics simulation and in vitro assays.In Silico Pharmacol.201861810.1007/s40203‑018‑0045‑530607321
    [Google Scholar]
  104. JucáM.M. Cysne FilhoF.M.S. de AlmeidaJ.C. Flavonoids: Biological activities and therapeutic potential.Nat. Prod. Res.202034569270510.1080/14786419.2018.149358830445839
    [Google Scholar]
  105. TurenneC.Y. Nontuberculous mycobacteria: Insights on taxonomy and evolution.Infect. Genet. Evol.20197215916810.1016/j.meegid.2019.01.01730654178
    [Google Scholar]
  106. AhmedI. JabeenK. HasanR. Identification of non-tuberculous mycobacteria isolated from clinical specimens at a tertiary care hospital: A cross-sectional study.BMC Infect. Dis.201313149310.1186/1471‑2334‑13‑49324148198
    [Google Scholar]
  107. JeonD. Infection source and epidemiology of nontuberculous mycobacterial lung disease.Tuberc. Respir. Dis.20198229410110.4046/trd.2018.002630302953
    [Google Scholar]
  108. RajendranP. PadmapriyadarsiniC. MondalR. Nontuberculous mycobacterium: An emerging pathogen: Indian perspective.Int. J. Mycobacteriol.202110321722710.4103/ijmy.ijmy_141_2134494559
    [Google Scholar]
  109. BaldwinS.L. LarsenS.E. OrdwayD. CassellG. ColerR.N. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases.PLoS Negl. Trop. Dis.2019132e000708310.1371/journal.pntd.000708330763316
    [Google Scholar]
  110. JohansenM.D. HerrmannJ.L. KremerL. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus.Nat. Rev. Microbiol.202018739240710.1038/s41579‑020‑0331‑132086501
    [Google Scholar]
  111. ViljoenA. GutiérrezA.V. DupontC. GhigoE. KremerL. A simple and rapid gene disruption strategy in Mycobacterium abscessus: On the design and application of glycopeptidolipid mutants.Front. Cell. Infect. Microbiol.201886910.3389/fcimb.2018.0006929594066
    [Google Scholar]
  112. GutiérrezA.V. ViljoenA. GhigoE. HerrmannJ.L. KremerL. Glycopeptidolipids, a double-edged sword of the Mycobacterium abscessus complex.Front. Microbiol.20189114510.3389/fmicb.2018.0114529922253
    [Google Scholar]
  113. WallaceJ.R. MangasK.M. PorterJ.L. Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer.PLoS Negl. Trop. Dis.2017114e000555310.1371/journal.pntd.000555328410412
    [Google Scholar]
  114. WuU.I. HollandS.M. Host susceptibility to non-tuberculous mycobacterial infections.Lancet Infect. Dis.201515896898010.1016/S1473‑3099(15)00089‑426049967
    [Google Scholar]
  115. PereiraA.C. RamosB. ReisA.C. CunhaM.V. Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological niches.Microorganisms202089138010.3390/microorganisms809138032916931
    [Google Scholar]
  116. KorabliovienėJ. MauricasM. AmbrozevičienėČ. Mycobacteria produce proteins involved in biofilm formation and growth-affecting processes.Acta Microbiol. Immunol. Hung.201865340541810.1556/030.65.2018.03330024267
    [Google Scholar]
  117. LinY.M. ZhouY. FlavinM.T. ZhouL.M. NieW. ChenF.C. Chalcones and flavonoids as anti-Tuberculosis agents.Bioorg. Med. Chem.20021082795280210.1016/S0968‑0896(02)00094‑912057669
    [Google Scholar]
  118. XieY. YangW. TangF. ChenX. RenL. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism.Curr. Med. Chem.201422113214910.2174/092986732166614091611344325245513
    [Google Scholar]
  119. FarhadiF. KhamenehB. IranshahiM. IranshahyM. Antibacterial activity of flavonoids and their structure–activity relationship: An update review.Phytother. Res.2019331134010.1002/ptr.620830346068
    [Google Scholar]
  120. LiuR. ZhaoB. WangD.E. Nitrogen-containing apigenin analogs: Preparation and biological activity.Molecules20121712147481476410.3390/molecules17121474823519250
    [Google Scholar]
  121. SotoS.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm.Virulence20134322322910.4161/viru.2372423380871
    [Google Scholar]
  122. FernándezL. HancockR.E.W. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance.Clin. Microbiol. Rev.201225466168110.1128/CMR.00043‑1223034325
    [Google Scholar]
  123. BushN.G. Evans-RobertsK. MaxwellA. TopoisomerasesD.N.A. DNA Topoisomerases.Ecosal Plus20156210.1128/ecosalplus.esp‑0010‑201426435256
    [Google Scholar]
  124. WebbM.R. EbelerS.E. Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: Structural determinates of activity.Biochem. J.2004384352754110.1042/BJ2004047415312049
    [Google Scholar]
  125. HartmannM. BerditschM. HaweckerJ. ArdakaniM.F. GerthsenD. UlrichA.S. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy.Antimicrob. Agents Chemother.20105483132314210.1128/AAC.00124‑1020530225
    [Google Scholar]
  126. HurdleJ.G. O’NeillA.J. ChopraI. LeeR.E. Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections.Nat. Rev. Microbiol.201191627510.1038/nrmicro247421164535
    [Google Scholar]
  127. DonadioG. MensitieriF. SantoroV. Interactions with microbial proteins driving the antibacterial activity of flavonoids.Pharmaceutics202113566010.3390/pharmaceutics1305066034062983
    [Google Scholar]
  128. BihareeA. SharmaA. KumarA. JaitakV. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance.Fitoterapia202014610472010.1016/j.fitote.2020.10472032910994
    [Google Scholar]
  129. ReygaertW.C. The antimicrobial possibilities of green tea.Front. Microbiol.2014543410.3389/fmicb.2014.0043425191312
    [Google Scholar]
  130. FathimaA. RaoJ.R. Selective toxicity of catechin—A natural flavonoid towards bacteria.Appl. Microbiol. Biotechnol.2016100146395640210.1007/s00253‑016‑7492‑x27052380
    [Google Scholar]
  131. GuzmanJ.D. EvangelopoulosD. GuptaA. Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay.BMJ Open201336e00267210.1136/bmjopen‑2013‑00267223794563
    [Google Scholar]
  132. NamouchiA. CiminoM. Favre-RochexS. CharlesP. GicquelB. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: Implications for drug discovery.BMC Genomics201718153010.1186/s12864‑017‑3924‑y28705154
    [Google Scholar]
  133. LiX.Z. ZhangL. NikaidoH. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis.Antimicrob. Agents Chemother.20044872415242310.1128/AAC.48.7.2415‑2423.200415215089
    [Google Scholar]
  134. ViveirosM. MartinsM. RodriguesL. Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs.Expert Rev. Anti Infect. Ther.201210998399810.1586/eri.12.8923106274
    [Google Scholar]
  135. ShriramV. KhareT. BhagwatR. ShuklaR. KumarV. Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance.Front. Microbiol.20189299010.3389/fmicb.2018.0299030619113
    [Google Scholar]
  136. StavriM. PiddockL.J.V. GibbonsS. Bacterial efflux pump inhibitors from natural sources.J. Antimicrob. Chemother.20075961247126010.1093/jac/dkl46017145734
    [Google Scholar]
  137. AlavI. SuttonJ.M. RahmanK.M. Role of bacterial efflux pumps in biofilm formation.J. Antimicrob. Chemother.20187382003202010.1093/jac/dky04229506149
    [Google Scholar]
  138. CannalireR. MachadoD. FelicettiT. Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium.Eur. J. Med. Chem.201714032133010.1016/j.ejmech.2017.09.01428964936
    [Google Scholar]
  139. AmaralL. KristiansenJ.E. ViveirosM. AtouguiaJ. Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: A review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy.J. Antimicrob. Chemother.200147550551110.1093/jac/47.5.50511328759
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265361578250504110100
Loading
/content/journals/iddt/10.2174/0118715265361578250504110100
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ACC 2; log P; metabolic syndrome; molecular docking; Mycobacterium tuberculosis; QSAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test