Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

The anti-interference requirements of miniaturized satellite navigation arrays are increasing. The anti-interference ability reducing of small aperture arrays caused by large mutual coupling and large main lobe width may be solved by adopting a quad-arrays antenna.

Objective

Research of multiple interference suppression method is the aim of the paper, and it makes the research of a small four-element satellite navigation array antenna and makes a related analysis of its multiple interference suppression ability.

Methods

The paper, focuses on the structural design of low-coupling polarized array antennas and makes an analysis of mutual coupling between array elements, the compensation technology based on auxiliary sources is proposed.

Results

Experimental analysis of antenna narrowband interference suppression is made. Relevant anti-interference results on four-element antennae are also obtained. The anti-interference ability of four four-element antennae is summarized.

Conclusion

The anti-interference ability of -the four-element antenna is analyzed and summarized in the paper; related results show that a small four-element satellite navigation array antenna can be used in multiple interference suppression in the satellite navigation system.

Loading

Article metrics loading...

/content/journals/eeng/10.2174/0123520965266180231117104439
2025-05-01
2025-09-06
Loading full text...

Full text loading...

References

  1. BalaeiA.T. DempsterA.G. PrestiL.L. Characterization of the Effects of CW and Pulse CW Interference on the GPS Signal Quality.IEEE Trans. Aerosp. Electron. Syst.20094541418143110.1109/TAES.2009.5310308
    [Google Scholar]
  2. BalaeiA.T. MotellaB. DempsterA. A preventative approach to mitigating CW interference in GPS receivers.GPS Solut.200812319920910.1007/s10291‑007‑0082‑8
    [Google Scholar]
  3. De LorenzoD.S. LoS.C. EngeP.K. RifeJ. Calibrating adaptive antenna arrays for high-integrity GPS.GPS Solut.201216222123010.1007/s10291‑011‑0224‑x
    [Google Scholar]
  4. OBrienA.J. GuptaI.J. Mitigation of Adaptive Antenna Induced Bias Errors in GNSS Receivers.IEEE Trans. Aerosp. Electron. Syst.201147152453810.1109/TAES.2011.5705689
    [Google Scholar]
  5. ChurchC.M. GuptaI.J. O’BrienA.J. Adaptive antenna induced biases in GNSS receiversProceedings of ION 63rd Annual Meetings Cambridge, MA, USA, 2007, pp. 204-212.
    [Google Scholar]
  6. ChurchC. Estimation of adaptive antenna induced phase biases in global navigation satellite systems receiver measurements.The Ohio State University2009
    [Google Scholar]
  7. LuZ. NieJ. WanY. OuG. Optimal reference element for interference suppression in GNSS antenna arrays under channel mismatch.IET Digital Library20171171161116910.1049/iet‑rsn.2016.0582
    [Google Scholar]
  8. ChenFeiqiang NieJunwei ZhuXiangwei WangFeixue Impact of reference element selection on performance of power inversion adaptive arrays.2016 IEEE/ION Position, Location and Navigation Symposium (PLANS). 2016 Savannah, GA, USA
    [Google Scholar]
  9. WanY. ChenF. NieJ. SunG. Optimum reference element selection for GNSS power‐inversion adaptive arrays.Electron. Lett.201652201723172510.1049/el.2016.2360
    [Google Scholar]
  10. LuZ. NieJ. ChenF. ChenH. OuG. Adaptive Time Taps of STAP Under Channel Mismatch for GNSS Antenna Arrays.IEEE Trans. Instrum. Meas.201766112813282410.1109/TIM.2017.2728420
    [Google Scholar]
  11. LuZ. NieJ. ChenF. OuG. Impact on Antijamming Performance of Channel Mismatch in GNSS Antenna Arrays Receivers.Int. J. Antennas Propag.201620161910.1155/2016/1909708
    [Google Scholar]
  12. Zainud-DeenS.H. MalhatH.A.E.A. El-ShalabyN.A.A.S. GaberS.M. Circular Polarization Bandwidth Reconfigurable High Gain Planar Plasma Helical Antenna.IEEE Trans. Plasma Sci.20194794274428010.1109/TPS.2019.2931989
    [Google Scholar]
  13. MorlaasC. SounyB. ChaboryA. Helical-Ring Antenna for Hemispherical Radiation in Circular Polarization.IEEE Trans. Antenn. Propag.201563114693470110.1109/TAP.2015.2479640
    [Google Scholar]
  14. FengG. ChenL. XueX. ShiX. Broadband Circularly Polarized Crossed-Dipole Antenna With a Single Asymmetrical Cross-Loop.IEEE Antennas Wirel. Propag. Lett.2017163184318710.1109/LAWP.2017.2767700
    [Google Scholar]
  15. HeY. HeW. WongH. A Wideband Circularly Polarized Cross-Dipole Antenna.IEEE Antennas Wirel. Propag. Lett.2014136770
    [Google Scholar]
  16. PeterS. SuriyakalaC.D. Small-size circular polarized patch antenna.KollamPower and Computing Technologies201710.1109/ICCPCT.2017.8074336
    [Google Scholar]
  17. RayM.K. MandalK. Shorting Pin and Slot Loaded Dual Band Microstrip Antenna for MICS and GPS Applications.IEEE Indian Conference on Antennas and Propogation, 2018 Hyderabad, India10.1109/INCAP.2018.8770851
    [Google Scholar]
  18. WeihuaZ. JianqiW. A Research for Miniaturized Circular Polarization Antenna.2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. 2018 Boston, MA, USA10.1109/APUSNCURSINRSM.2018.8608850
    [Google Scholar]
  19. European Standards IEEE 59 IRE 12, S1 - IRE Standards on Navigation Aids: Direction Finder Measurements.1959Available From: https://www.en-standard.eu/ieee-59-ire-12-s1-ire-standards-on-navigation-aids-direction-finder-measurements-1959-2/
  20. HuY.H. PhanB.C. Frequency estimation error in Pisarenko harmonic decomposition method.Proc. IEEE1988761828410.1109/5.3290
    [Google Scholar]
  21. BurgJ.P. A New Analysis Technique for Time Series Data.Proc. IEEE19887618284
    [Google Scholar]
  22. CaponJ. GreenfieldR.J. LacossR.T. Long-period Signal Processing Results for Large Aperture Seismic Array.Geophysics196934330532910.1190/1.1440014
    [Google Scholar]
  23. SchmidtR. Multiple emitter location and signal parameter estimation.IEEE Trans. Antenn. Propag.198634327628010.1109/TAP.1986.1143830
    [Google Scholar]
  24. TranquillaJ.M. CarrJ.P. Al-RizzoH.M. Analysis of a choke ring groundplane for multipath control in Global Positioning System (GPS) applications.IEEE Trans. Antenn. Propag.199442790591110.1109/8.299591
    [Google Scholar]
  25. DanskinS. BettingerP. JordanT. Multipath Mitigation under Forest Canopies: A Choke Ring Antenna Solution.For. Sci.2009552109116
    [Google Scholar]
  26. ZhongZ.P. ZhangX. LiangJ.J. HanC-Z. FanM-L. HuangG-L. XuW. YuanT. A Compact Dual-Band Circularly Polarized Antenna With Wide Axial-Ratio Beamwidth for Vehicle GPS Satellite Navigation Application.IEEE Trans. Vehicular Technol.20196898683869210.1109/TVT.2019.2920520
    [Google Scholar]
  27. Fan Yang Rahmat-SamiiY. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications.IEEE Trans. Antenn. Propag.200351102936294610.1109/TAP.2003.817983
    [Google Scholar]
  28. LengH.A.N. WenxuanX.I.E. AnminG.O.N.G. YufeiY.A.N.G. Research progress of satellite antenna based on metasurface.2023Available From: https://kns.cnki.net/kcms/detail/51.1267.TN.2023,0323.1042.001.html
  29. YurdusevenO. PodilchakS. Towards Holographic Beam-Forming Metasurface Technology for Next Generation CubeSats.2020 International Conference on UK-China Emerging Technologies (UCET). 2020 Glasgow, UK
    [Google Scholar]
  30. LizhengG. YangW. XueQ. CheW. A ±45-deg Dual-Polarized Dual-Beam Series-Fed Metasurface Antenna Array with Stable Beam Angle.IEEE Trans. Antenn. Propag.2021991
    [Google Scholar]
/content/journals/eeng/10.2174/0123520965266180231117104439
Loading
/content/journals/eeng/10.2174/0123520965266180231117104439
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test