Skip to content
2000
image of Navigating Drug Dynamics: Unleashing On-Chip Pharmacokinetics and Pharmacodynamics

Abstract

Accurate prediction of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) is a key component in using the drug as a therapeutic. Traditionally many and techniques are used for ADMET profiling in pre-clinical studies. Due to the absence of all cellular parameters and inter-species variability, the obtained pre-clinical study results were not reproducible in clinical trials. As a result, both industry and academic researchers find drug discovery and development to be a daunting task due to several constraints. A reliable and simple approach is, therefore, needed for PK-PD studies. The new ray of hope in this field is the Organ-on-a-Chip (OoC) technique. On one side, it is an technique, and on another side, it can reliably produce reliable PK/PD results. In this review, we primarily focused on the application and scope of OoC technology in the field of PK/PD studies. We believe this review will be helpful for future researchers in this domain.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128377867250225073257
2025-03-07
2025-10-01
Loading full text...

Full text loading...

References

  1. Zheng K. Chai M. Luo B. Cheng K. Wang Z. Li N. Shi X. Recent progress of 3D printed vascularized tissues and organs. Smart Mater. Med. 2024 5 2 183 195 10.1016/j.smaim.2024.01.001
    [Google Scholar]
  2. Dey T. Mitra P. Chakraborty B. Sanyal A. Acharjee A. Ghosh A. Mandal D. State of the Art in Integrated Biosensors for Organ-on-a-Chip Applications. Functional Smart Nanomaterials and Their Theranostics Approaches. Singapore Springer 2024 263 303 10.1007/978‑981‑99‑6597‑7_10
    [Google Scholar]
  3. He C. Lu F. Liu Y. Lei Y. Wang X. Tang N. Emergent trends in organ-on-a-chip applications for investigating metastasis within tumor microenvironment: A comprehensive bibliometric analysis. Heliyon 2024 10 1 e23504 10.1016/j.heliyon.2023.e23504 38187238
    [Google Scholar]
  4. Xin Y. Xia K. Wu S. Wang Q. Cheng W. Ji C. Simultaneous determination and pharmacokinetic study of six components in beagle dog plasma by UPLC–MS/MS after oral administration of Astragalus Membranaceus aqueous extract. Biomed. Chromatogr. 2022 36 12 e5488 10.1002/bmc.5488
    [Google Scholar]
  5. Barua R. Biswas N. Das D. Emergent Applications of Organ-on-a-chip (OOAC) Technologies with Artificial Vascular Networks in the 21st Century. Emerging Technologies for Health Literacy and Medical Practice. Jadavpur, India IGI Global 2024 198 219 10.4018/979‑8‑3693‑1214‑8.ch010
    [Google Scholar]
  6. Quintard C. Tubbs E. Jonsson G. Jiao J. Wang J. Werschler N. Laporte C. Pitaval A. Bah T.S. Pomeranz G. Bissardon C. Kaal J. Leopoldi A. Long D.A. Blandin P. Achard J.L. Battail C. Hagelkruys A. Navarro F. Fouillet Y. Penninger J.M. Gidrol X. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat. Commun. 2024 15 1 1452 10.1038/s41467‑024‑45710‑4 38365780
    [Google Scholar]
  7. Kim R. Sung J.H. Recent advances in gut‐ and gut–organ‐axis‐on‐a‐chip models. Adv. Healthc. Mater. 2024 13 21 2302777 10.1002/adhm.202302777 38243887
    [Google Scholar]
  8. Hwangbo H. Chae S. Kim W. Jo S. Kim G.H. Tumor-on-a-chip models combined with mini-tissues or organoids for engineering tumor tissues. Theranostics 2024 14 1 33 55 10.7150/thno.90093 38164155
    [Google Scholar]
  9. Yan J. Li Z. Guo J. Liu S. Guo J. Organ-on-a-chip: A new tool for in vitro research. Biosens. Bioelectron. 2022 216 114626 10.1016/j.bios.2022.114626 35969963
    [Google Scholar]
  10. Wang Y. Gao Y. Pan Y. Zhou D. Liu Y. Yin Y. Yang J. Wang Y. Song Y. Emerging trends in organ-on-a-chip systems for drug screening. Acta Pharm. Sin. B 2023 13 6 2483 2509 10.1016/j.apsb.2023.02.006 37425038
    [Google Scholar]
  11. Zhao Y. Kankala R.K. Wang S.B. Chen A.Z. Multi-organs-on-chips: Towards long-term biomedical investigations. Molecules 2019 24 4 675 10.3390/molecules24040675 30769788
    [Google Scholar]
  12. Ramadan Q. Fardous R.S. Hazaymeh R. Alshmmari S. Zourob M. Pharmacokinetics‐on‐a‐chip: In vitro microphysiological models for emulating of drugs ADME. Adv. Biol. 2021 5 9 2100775 10.1002/adbi.202100775 34323392
    [Google Scholar]
  13. Low L.A. Mummery C. Berridge B.R. Austin C.P. Tagle D.A. Organs-on-chips: Into the next decade. Nat. Rev. Drug Discov. 2021 20 5 345 361 10.1038/s41573‑020‑0079‑3 32913334
    [Google Scholar]
  14. Ramadan Q. Zourob M. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. Biomicrofluidics 2020 14 4 041501 10.1063/5.0011583 32699563
    [Google Scholar]
  15. Yang Y. Chen Y. Wang L. Xu S. Fang G. Guo X. Chen Z. Gu Z. PBPK modeling on organs-on-chips: An overview of recent advancements. Front. Bioeng. Biotechnol. 2022 10 900481 10.3389/fbioe.2022.900481 35497341
    [Google Scholar]
  16. Ahmed T. Organ-on-a-chip microengineering for bio-mimicking disease models and revolutionizing drug discovery. Biosens. Bioelectron. X. 2022 11 100194 10.1016/j.biosx.2022.100194
    [Google Scholar]
  17. Ferrari E. Rasponi M. Liver–Heart on chip models for drug safety. APL Bioeng. 2021 5 3 031505 10.1063/5.0048986 34286172
    [Google Scholar]
  18. Cho K.W. Lee W.H. Kim B.S. Kim D.H. Sensors in heart-on-a-chip: A review on recent progress. Talanta 2020 219 121269 10.1016/j.talanta.2020.121269 32887159
    [Google Scholar]
  19. Shrestha J. Razavi Bazaz S. Aboulkheyr Es H. Yaghobian Azari D. Thierry B. Ebrahimi Warkiani M. Ghadiri M. Lung-on-a-chip: The future of respiratory disease models and pharmacological studies. Crit. Rev. Biotechnol. 2020 40 2 213 230 10.1080/07388551.2019.1710458 31906727
    [Google Scholar]
  20. Francis I. Shrestha J. Paudel K.R. Hansbro P.M. Warkiani M.E. Saha S.C. Recent advances in lung-on-a-chip models. Drug Discov. Today 2022 27 9 2593 2602 10.1016/j.drudis.2022.06.004 35724916
    [Google Scholar]
  21. Kanabekova P. Kadyrova A. Kulsharova G. Microfluidic organ-on-a-chip devices for liver disease modeling in vitro. Micromachines (Basel) 2022 13 3 428 10.3390/mi13030428 35334720
    [Google Scholar]
  22. Messelmani T. Morisseau L. Sakai Y. Legallais C. Le Goff A. Leclerc E. Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. Lab Chip 2022 22 13 2423 2450 10.1039/D2LC00307D 35694831
    [Google Scholar]
  23. Aceves J.O. Heja S. Kobayashi K. Robinson S.S. Miyoshi T. Matsumoto T. Schäffers O.J.M. Morizane R. Lewis J.A. 3D proximal tubule-on-chip model derived from kidney organoids with improved drug uptake. Sci. Rep. 2022 12 1 14997 10.1038/s41598‑022‑19293‑3 36056134
    [Google Scholar]
  24. Zanetti F. Chapter 7 - Kidney-on-a-chip. Organ-on-a-chip. Cambridge, US Academic Press 2020 233 253 10.1016/B978‑0‑12‑817202‑5.00007‑3
    [Google Scholar]
  25. Donkers J.M. Eslami Amirabadi H. van de Steeg E. Intestine-on-a-chip: Next level in vitro research model of the human intestine. Curr. Opin. Toxicol. 2021 25 6 14 10.1016/j.cotox.2020.11.002
    [Google Scholar]
  26. Pimenta J. Ribeiro R. Almeida R. Costa P.F. da Silva M.A. Pereira B. Organ-on-chip approaches for intestinal 3D in vitro modeling. Cell. Mol. Gastroenterol. Hepatol. 2022 13 2 351 367 10.1016/j.jcmgh.2021.08.015 34454168
    [Google Scholar]
  27. Brofiga M. Massobrio P. Brain-on-a-chip: Dream or reality? Front. Neurosci. 2022 16 837623 10.3389/fnins.2022.837623 35310088
    [Google Scholar]
  28. Amirifar L. Shamloo A. Nasiri R. de Barros N.R. Wang Z.Z. Unluturk B.D. Libanori A. Ievglevskyi O. Diltemiz S.E. Sances S. Balasingham I. Seidlits S.K. Ashammakhi N. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials 2022 285 121531 10.1016/j.biomaterials.2022.121531 35533441
    [Google Scholar]
  29. Tutar R. Çelebi-Saltik B. Modeling of artificial 3D human placenta. Cells Tissues Organs 2022 211 4 36 45 10.1159/000511571 33691312
    [Google Scholar]
  30. McCarthy M. Brown T. Alarcon A. Williams C. Wu X. Abbott R.D. Gimble J. Frazier T. Fat-on-a-chip models for research and discovery in obesity and its metabolic comorbidities. Tissue Eng. Part B Rev. 2020 26 6 586 595 10.1089/ten.teb.2019.0261 32216545
    [Google Scholar]
  31. Zhao H. Yan F. Retinal organoids: A next-generation platform for high-throughput drug discovery. Stem Cell Rev. Rep. 2024 20 2 495 508 10.1007/s12015‑023‑10661‑8 38079086
    [Google Scholar]
  32. Kravchenko S.V. Myasnikova V.V. Sakhnov S.N. Application of the organ-on-a-chip technology in experimental ophthalmology. Vestn. Oftalmol. 2023 139 1 114 120 10.17116/oftalma2023139011114 36924523
    [Google Scholar]
  33. Hu Y. Zhang H. Wang S. Cao L. Zhou F. Jing Y. Su J. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact. Mater. 2023 25 29 41 10.1016/j.bioactmat.2023.01.016 37056252
    [Google Scholar]
  34. Herland A. Maoz B.M. Das D. Somayaji M.R. Prantil-Baun R. Novak R. Cronce M. Huffstater T. Jeanty S.S.F. Ingram M. Chalkiadaki A. Benson Chou D. Marquez S. Delahanty A. Jalili-Firoozinezhad S. Milton Y. Sontheimer-Phelps A. Swenor B. Levy O. Parker K.K. Przekwas A. Ingber D.E. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat. Biomed. Eng. 2020 4 4 421 436 10.1038/s41551‑019‑0498‑9 31988459
    [Google Scholar]
  35. Fowler S. Chen W.L.K. Duignan D.B. Gupta A. Hariparsad N. Kenny J.R. Lai W.G. Liras J. Phillips J.A. Gan J. Microphysiological systems for ADME-related applications: Current status and recommendations for system development and characterization. Lab Chip 2020 20 3 446 467 10.1039/C9LC00857H 31932816
    [Google Scholar]
  36. Worth A.P. Computational modelling for the sustainable management of chemicals. Comput. Toxicol. 2020 14 100122 10.1016/j.comtox.2020.100122 32421066
    [Google Scholar]
  37. Pletz J. Blakeman S. Paini A. Parissis N. Worth A. Andersson A.M. Frederiksen H. Sakhi A.K. Thomsen C. Bopp S.K. Physiologically based kinetic (PBK) modelling and human biomonitoring data for mixture risk assessment. Environ. Int. 2020 143 105978 10.1016/j.envint.2020.105978 32763630
    [Google Scholar]
  38. Pistollato F. Carpi D. Mendoza-de Gyves E. Paini A. Bopp S.K. Worth A. Bal-Price A. Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures. Reprod. Toxicol. 2021 105 101 119 10.1016/j.reprotox.2021.08.007 34455033
    [Google Scholar]
  39. Milani N. Parrott N. Galetin A. Fowler S. Gertz M. In silico modeling and simulation of organ‐on‐a‐chip systems to support data analysis and a priori experimental design. CPT Pharmacometrics Syst. Pharmacol. 2024 13 4 524 543 10.1002/psp4.13110 38356302
    [Google Scholar]
  40. Keuper-Navis M. Walles M. Poller B. Myszczyszyn A. van der Made T.K. Donkers J. Eslami Amirabadi H. Wilmer M.J. Aan S. Spee B. Masereeuw R. van de Steeg E. The application of organ-on-chip models for the prediction of human pharmacokinetic profiles during drug development. Pharmacol. Res. 2023 195 106853 10.1016/j.phrs.2023.106853 37473876
    [Google Scholar]
  41. Sun L. Mi K. Hou Y. Hui T. Zhang L. Tao Y. Liu Z. Huang L. Pharmacokinetic and pharmacodynamic drug–drug interactions: Research methods and applications. Metabolites 2023 13 8 897 10.3390/metabo13080897 37623842
    [Google Scholar]
  42. Glassman P.M. Muzykantov V.R. Pharmacokinetic and pharmacodynamic properties of drug delivery systems. J. Pharmacol. Exp. Ther. 2019 370 3 570 580 10.1124/jpet.119.257113 30837281
    [Google Scholar]
  43. R, N.; Aggarwal, A.; Sravani, A.B.; Mallya, P.; Lewis, S. Organ-on-a-chip: An emerging research platform. Organogenesis 2023 19 1 2278236 10.1080/15476278.2023.2278236 37965897
    [Google Scholar]
  44. Deng S. Li C. Cao J. Cui Z. Du J. Fu Z. Yang H. Chen P. Organ-on-a-chip meets artificial intelligence in drug evaluation. Theranostics 2023 13 13 4526 4558 10.7150/thno.87266 37649608
    [Google Scholar]
  45. Zhang L. Xie H. Wang Y. Wang H. Hu J. Zhang G. Pharmacodynamic parameters of pharmacokinetic/pharmacodynamic (PK/PD) integration models. Front. Vet. Sci. 2022 9 860472 10.3389/fvets.2022.860472 35400105
    [Google Scholar]
  46. Stanley L. Chapter 26 - Drug metabolism. Pharmacognosy. Cambridge, US Academic Press 2024 597 624 10.1016/B978‑0‑443‑18657‑8.00029‑3
    [Google Scholar]
  47. Sugiyama Y. Aoki Y. A 20-year research overview: Quantitative prediction of hepatic clearance using the in vitro-in vivo extrapolation approach based on physiologically based pharmacokinetic modeling and extended clearance concept. Drug Metab. Dispos. 2023 51 9 1067 1076 10.1124/dmd.123.001344 37407092
    [Google Scholar]
  48. Jeong Y.S. Jusko W.J. A complete extension of classical hepatic clearance models using fractional distribution parameter fd in physiologically based pharmacokinetics. J. Pharm. Sci. 2024 113 1 95 117 10.1016/j.xphs.2023.05.019 37279835
    [Google Scholar]
  49. Shi A.X. Qu Q. Zhuang H.H. Teng X.Q. Xu W.X. Liu Y.P. Xiao Y.W. Qu J. Individualized antibiotic dosage regimens for patients with augmented renal clearance. Front. Pharmacol. 2023 14 1137975 10.3389/fphar.2023.1137975 37564179
    [Google Scholar]
  50. Demeester C. Robins D. Edwina A.E. Tournoy J. Augustijns P. Ince I. Lehmann A. Vertzoni M. Schlender J.F. Physiologically based pharmacokinetic (PBPK) modelling of oral drug absorption in older adults – an AGePOP review. Eur. J. Pharm. Sci. 2023 188 106496 10.1016/j.ejps.2023.106496 37329924
    [Google Scholar]
  51. Prantil-Baun R. Novak R. Das D. Somayaji M.R. Przekwas A. Ingber D.E. Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips. Annu. Rev. Pharmacol. Toxicol. 2018 58 1 37 64 10.1146/annurev‑pharmtox‑010716‑104748 29309256
    [Google Scholar]
  52. Denninger A. Becker T. Westedt U. Wagner K.G. Advanced in vivo prediction by introducing biphasic dissolution data into PBPK models. Pharmaceutics 2023 15 7 1978 10.3390/pharmaceutics15071978 37514164
    [Google Scholar]
  53. Addissouky T.A. Wang Y. El Tantawy I. El Sayed I. Majeed M. Khalil A.A. Transforming toxicity assessment through microphysiology, bioprinting, and computational modeling. Adv. Clini. Toxicol. 2024 9 1 1 14 10.23880/act‑16000295
    [Google Scholar]
  54. Saorin G. Caligiuri I. Rizzolio F. Microfluidic organoids-on-a-chip: The future of human models. Semin. Cell Dev. Biol. 2023 144 41 54 10.1016/j.semcdb.2022.10.001 36241560
    [Google Scholar]
  55. Rama Varma A. Fathi P. Vascularized microfluidic models of major organ structures and cancerous tissues. Biomicrofluidics 2023 17 6 061502 10.1063/5.0159800 38074952
    [Google Scholar]
  56. Monteduro A.G. Rizzato S. Caragnano G. Trapani A. Giannelli G. Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens. Bioelectron. 2023 231 115271 10.1016/j.bios.2023.115271 37060819
    [Google Scholar]
  57. Kallio S. Vascularization in organ-and body-on-a-chip platforms, Trepo. Available from: https://urn.fi/URN:NBN:fi:tuni-202302242631 2023
    [Google Scholar]
  58. Sunildutt N. Parihar P. Chethikkattuveli Salih A.R. Lee S.H. Choi K.H. Revolutionizing drug development: Harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front. Pharmacol. 2023 14 1139229 10.3389/fphar.2023.1139229 37180709
    [Google Scholar]
  59. Noorani B. Cucullo L. Ahn Y. Kadry H. Bhalerao A. Raut S. Nozohouri E. Chowdhury E.A. Advanced microfluidic vascularized tissues as platform for the study of human diseases and drug development. Curr. Neuropharmacol. 2023 21 3 599 620 10.2174/1570159X20666220706112711 35794768
    [Google Scholar]
  60. Driver R. Mishra S. Organ-on-a-chip technology: An in-depth review of recent advancements and future of whole body-on-chip. Biochip J. 2023 17 1 1 23 10.1007/s13206‑022‑00087‑8
    [Google Scholar]
  61. McAleer C.W. Pointon A. Long C.J. Brighton R.L. Wilkin B.D. Bridges L.R. Narasimhan Sriram N. Fabre K. McDougall R. Muse V.P. Mettetal J.T. Srivastava A. Williams D. Schnepper M.T. Roles J.L. Shuler M.L. Hickman J.J. Ewart L. On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships. Sci. Rep. 2019 9 1 9619 10.1038/s41598‑019‑45656‑4 31270362
    [Google Scholar]
  62. Imura Y. Sato K. Yoshimura E. Micro total bioassay system for ingested substances: Assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal. Chem. 2010 82 24 9983 9988 10.1021/ac100806x 21090751
    [Google Scholar]
  63. Imura Y. Yoshimura E. Sato K. Micro total bioassay system for oral drugs: Evaluation of gastrointestinal degradation, intestinal absorption, hepatic metabolism, and bioactivity. Anal. Sci. 2012 28 3 197 199 10.2116/analsci.28.197 22451356
    [Google Scholar]
  64. Jie M. Li H.F. Lin L. Zhang J. Lin J.M. Integrated microfluidic system for cell co-culture and simulation of drug metabolism. RSC Advances 2016 6 59 54564 54572 10.1039/C6RA10407J
    [Google Scholar]
  65. Shinha K. Nihei W. Ono T. Nakazato R. Kimura H. A pharmacokinetic–pharmacodynamic model based on multi-organ-on-a-chip for drug–drug interaction studies. Biomicrofluidics 2020 14 4 044108 10.1063/5.0011545 34992705
    [Google Scholar]
  66. Liu D. Jiao S. Wei J. Zhang X. Pei Y. Pei Z. Li J. Du Y. Investigation of absorption, metabolism and toxicity of ginsenosides compound K based on human organ chips. Int. J. Pharm. 2020 587 119669 10.1016/j.ijpharm.2020.119669 32702454
    [Google Scholar]
  67. Guerrero Y.A. Desai D. Sullivan C. Kindt E. Spilker M.E. Maurer T.S. Solomon D.E. Bartlett D.W. A microfluidic perfusion platform for in vitro analysis of drug pharmacokinetic-pharmacodynamic (PK-PD) relationships. AAPS J. 2020 22 2 53 10.1208/s12248‑020‑0430‑y 32124093
    [Google Scholar]
  68. Guo Y. Deng P. Chen W. Li Z. Modeling pharmacokinetic profiles for assessment of anti-cancer drug on a microfluidic system. Micromachines (Basel) 2020 11 6 551 10.3390/mi11060551 32486116
    [Google Scholar]
  69. Oleaga C. Riu A. Rothemund S. Lavado A. McAleer C.W. Long C.J. Persaud K. Narasimhan N.S. Tran M. Roles J. Carmona-Moran C.A. Sasserath T. Elbrecht D.H. Kumanchik L. Bridges L.R. Martin C. Schnepper M.T. Ekman G. Jackson M. Wang Y.I. Note R. Langer J. Teissier S. Hickman J.J. Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. Biomaterials 2018 182 176 190 10.1016/j.biomaterials.2018.07.062 30130706
    [Google Scholar]
  70. Foster A.J. Chouhan B. Regan S.L. Rollison H. Amberntsson S. Andersson L.C. Srivastava A. Darnell M. Cairns J. Lazic S.E. Jang K.J. Petropolis D.B. Kodella K. Rubins J.E. Williams D. Hamilton G.A. Ewart L. Morgan P. Integrated in vitro models for hepatic safety and metabolism: Evaluation of a human Liver-Chip and liver spheroid. Arch. Toxicol. 2019 93 4 1021 1037 10.1007/s00204‑019‑02427‑4 30915487
    [Google Scholar]
  71. De Gregorio V. Telesco M. Corrado B. Rosiello V. Urciuolo F. Netti P.A. Imparato G. 2020 Intestine-liver axis on-chip reveals the intestinal protective role on hepatic damage by emulating ethanol first-pass metabolism. Front. Bioeng. Biotechnol. 2020 8 163 10.3389/fbioe.2020.00163 32258006
    [Google Scholar]
  72. Materne E.M. Ramme A.P. Terrasso A.P. Serra M. Alves P.M. Brito C. Sakharov D.A. Tonevitsky A.G. Lauster R. Marx U. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing. J. Biotechnol. 2015 205 36 46 10.1016/j.jbiotec.2015.02.002 25678136
    [Google Scholar]
  73. Maschmeyer I. Lorenz A.K. Schimek K. Hasenberg T. Ramme A.P. Hübner J. Lindner M. Drewell C. Bauer S. Thomas A. Sambo N.S. Sonntag F. Lauster R. Marx U. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 2015 15 12 2688 2699 10.1039/C5LC00392J 25996126
    [Google Scholar]
  74. Oleaga C. Bernabini C. Smith A.S.T. Srinivasan B. Jackson M. McLamb W. Platt V. Bridges R. Cai Y. Santhanam N. Berry B. Najjar S. Akanda N. Guo X. Martin C. Ekman G. Esch M.B. Langer J. Ouedraogo G. Cotovio J. Breton L. Shuler M.L. Hickman J.J. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 2016 6 1 20030 10.1038/srep20030 26837601
    [Google Scholar]
  75. Lee-Montiel F.T. Laemmle A. Dumont L. Lee C.S. Huebsch N. Charwat V. Okochi H. Hancock M.J. Siemons B. Boggess S.C. Integrated hiPSC-based liver and heart microphysiological systems predict unsafe drug-drug interaction. BioRxiv 2020 24 112771 10.1101/2020.05.24.112771
    [Google Scholar]
  76. Rajan S.A.P. Aleman J. Wan M. Pourhabibi Zarandi N. Nzou G. Murphy S. Bishop C.E. Sadri-Ardekani H. Shupe T. Atala A. Hall A.R. Skardal A. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomater. 2020 106 124 135 10.1016/j.actbio.2020.02.015 32068138
    [Google Scholar]
  77. Li Z. Guo Y. Yu Y. Xu C. Xu H. Qin J. Assessment of metabolism-dependent drug efficacy and toxicity on a multilayer organs-on-a-chip. Integr. Biol. 2016 8 10 1022 1029 10.1039/C6IB00162A 27605158
    [Google Scholar]
  78. Corrado B. De Gregorio V. Imparato G. Attanasio C. Urciuolo F. Netti P.A. A three‐dimensional microfluidized liver system to assess hepatic drug metabolism and hepatotoxicity. Biotechnol. Bioeng. 2019 116 5 1152 1163 10.1002/bit.26902 30552666
    [Google Scholar]
  79. Cong Y. Han X. Wang Y. Chen Z. Lu Y. Liu T. Wu Z. Jin Y. Luo Y. Zhang X. Drug toxicity evaluation based on organ-on-a-chip technology: A review. Micromachines (Basel) 2020 11 4 381 10.3390/mi11040381 32260191
    [Google Scholar]
  80. Kühnl J. Tao T.P. Brandmair K. Gerlach S. Rings T. Müller-Vieira U. Przibilla J. Genies C. Jaques-Jamin C. Schepky A. Marx U. Hewitt N.J. Maschmeyer I. Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model. Toxicology 2021 448 152637 10.1016/j.tox.2020.152637 33220337
    [Google Scholar]
  81. Theobald J. Ghanem A. Wallisch P. Banaeiyan A.A. Andrade-Navarro M.A. Taškova K. Haltmeier M. Kurtz A. Becker H. Reuter S. Mrowka R. Cheng X. Wölfl S. Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomater. Sci. Eng. 2018 4 1 78 89 10.1021/acsbiomaterials.7b00417 33418680
    [Google Scholar]
  82. Dehne E.M. Hasenberg T. Marx U. The ascendance of microphysiological systems to solve the drug testing dilemma. Future Sci. OA 2017 3 2 FSO0185 10.4155/fsoa‑2017‑0002 28670475
    [Google Scholar]
  83. Bonaccorsi S. Chapter 15: Organ-on-a-chip Technology Roadmap: Regulatory Framework, Industry Adoption, Key Players, Technol-ogy Transfer, Validation, and Ethical Considerations. Regulatory Framework, Industry Adoption, Key Players, Technology Transfer, Validation, and Ethical Considerations; Royal Society of Chemis-try: Piccadilly, London 2024 25 461 504 10.1039/9781837673476‑00461
    [Google Scholar]
  84. Li Z. Li Q. Zhou C. Lu K. Liu Y. Xuan L. Wang X. Organ-oid-on-a-chip: Current challenges, trends, and future scope toward medicine. Biomicrofluidics 2023 17 5 051505 10.1063/5.0171350 37900053
    [Google Scholar]
  85. Danku A.E. Dulf E.H. Braicu C. Jurj A. Berindan-Neagoe I. Organ-on-a-chip: A survey of technical results and problems. Front. Bioeng. Biotechnol. 2022 10 840674 10.3389/fbioe.2022.840674 35223800
    [Google Scholar]
  86. Kimura H. Ikeda T. Nakayama H. Sakai Y. Fujii T. An on-chip small intestine-liver model for pharmacokinetic studies. SLAS Technol. 2015 20 3 265 273 10.1177/2211068214557812 25385717
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128377867250225073257
Loading
/content/journals/dmbl/10.2174/0118723128377867250225073257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test