Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Accurate prediction of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) is a key component in using the drug as a therapeutic. Traditionally many and techniques are used for ADMET profiling in pre-clinical studies. Due to the absence of all cellular parameters and inter-species variability, the obtained pre-clinical study results were not reproducible in clinical trials. As a result, both industry and academic researchers find drug discovery and development to be a daunting task due to several constraints. A reliable and simple approach is, therefore, needed for PK-PD studies. The new ray of hope in this field is the Organ-on-a-Chip (OoC) technique. On one side, it is an technique, and on another side, it can reliably produce reliable PK/PD results. In this review, we primarily focused on the application and scope of OoC technology in the field of PK/PD studies. We believe this review will be helpful for future researchers in this domain.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128377867250225073257
2025-03-07
2025-11-17
Loading full text...

Full text loading...

References

  1. ZhengK. ChaiM. LuoB. ChengK. WangZ. LiN. ShiX. Recent progress of 3D printed vascularized tissues and organs.Smart Mater. Med.20245218319510.1016/j.smaim.2024.01.001
    [Google Scholar]
  2. DeyT. MitraP. ChakrabortyB. SanyalA. AcharjeeA. GhoshA. MandalD. State of the Art in Integrated Biosensors for Organ-on-a-Chip Applications.Functional Smart Nanomaterials and Their Theranostics Approaches.SingaporeSpringer202426330310.1007/978‑981‑99‑6597‑7_10
    [Google Scholar]
  3. HeC. LuF. LiuY. LeiY. WangX. TangN. Emergent trends in organ-on-a-chip applications for investigating metastasis within tumor microenvironment: A comprehensive bibliometric analysis.Heliyon2024101e2350410.1016/j.heliyon.2023.e2350438187238
    [Google Scholar]
  4. XinY. XiaK. WuS. WangQ. ChengW. JiC. Simultaneous determination and pharmacokinetic study of six components in beagle dog plasma by UPLC–MS/MS after oral administration of Astragalus Membranaceus aqueous extract.Biomed. Chromatogr.20223612e548810.1002/bmc.5488
    [Google Scholar]
  5. BaruaR. BiswasN. DasD. Emergent applications of organ-on-a-chip (OOAC) technologies with artificial vascular networks in the 21st century. Emerging Technologies for Health Literacy and Medical Practice.Jadavpur, IndiaIGI Global202419821910.4018/979‑8‑3693‑1214‑8.ch010
    [Google Scholar]
  6. QuintardC. TubbsE. JonssonG. JiaoJ. WangJ. WerschlerN. LaporteC. PitavalA. BahT.S. PomeranzG. BissardonC. KaalJ. LeopoldiA. LongD.A. BlandinP. AchardJ.L. BattailC. HagelkruysA. NavarroF. FouilletY. PenningerJ.M. GidrolX. A microfluidic platform integrating functional vascularized organoids-on-chip.Nat. Commun.2024151145210.1038/s41467‑024‑45710‑438365780
    [Google Scholar]
  7. KimR. SungJ.H. Recent advances in gut- and gut–organ-axis-on-a-chip models.Adv. Healthc. Mater.20241321230277710.1002/adhm.20230277738243887
    [Google Scholar]
  8. HwangboH. ChaeS. KimW. JoS. KimG.H. Tumor-on-a-chip models combined with mini-tissues or organoids for engineering tumor tissues.Theranostics2024141335510.7150/thno.9009338164155
    [Google Scholar]
  9. YanJ. LiZ. GuoJ. LiuS. GuoJ. Organ-on-a-chip: A new tool for in vitro research.Biosens. Bioelectron.202221611462610.1016/j.bios.2022.11462635969963
    [Google Scholar]
  10. WangY. GaoY. PanY. ZhouD. LiuY. YinY. Yang,] J.; Wang, Y.; Song, Y. Emerging trends in organ-on-a-chip] systems for drug screening.Acta Pharm. Sin. B20231362483250910.1016/j.apsb.2023.02.00637425038
    [Google Scholar]
  11. ZhaoY. KankalaR.K. WangS.B. ChenA.Z. Multi-organs-on-chips: Towards long-term biomedical investigations.Molecules201924467510.3390/molecules2404067530769788
    [Google Scholar]
  12. RamadanQ. FardousR.S. HazaymehR. AlshmmariS. ZourobM. Pharmacokinetics-on-a-chip: In vitro microphysiological models for emulating of drugs ADME.Adv. Biol.202159210077510.1002/adbi.20210077534323392
    [Google Scholar]
  13. LowL.A. MummeryC. BerridgeB.R. AustinC.P. TagleD.A. Organs-on-chips: Into the next decade.Nat. Rev. Drug Discov.202120534536110.1038/s41573‑020‑0079‑332913334
    [Google Scholar]
  14. RamadanQ. ZourobM. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry.Biomicrofluidics202014404150110.1063/5.001158332699563
    [Google Scholar]
  15. YangY. ChenY. WangL. XuS. FangG. GuoX. ChenZ. GuZ. PBPK modeling on organs-on-chips: An overview of recent advancements.Front. Bioeng. Biotechnol.20221090048110.3389/fbioe.2022.90048135497341
    [Google Scholar]
  16. AhmedT. Organ-on-a-chip microengineering for bio-mimicking disease models and revolutionizing drug discovery.Biosens. Bioelectron. X.20221110019410.1016/j.biosx.2022.100194
    [Google Scholar]
  17. FerrariE. RasponiM. Liver–Heart on chip models for drug safety.APL Bioeng.20215303150510.1063/5.004898634286172
    [Google Scholar]
  18. ChoK.W. LeeW.H. KimB.S. KimD.H. Sensors in heart-on-a-chip: A review on recent progress.Talanta202021912126910.1016/j.talanta.2020.12126932887159
    [Google Scholar]
  19. ShresthaJ. Razavi BazazS. Aboulkheyr EsH. Yaghobian AzariD. ThierryB. Ebrahimi WarkianiM. GhadiriM. Lung-on-a-chip: The future of respiratory disease models and pharmacological studies.Crit. Rev. Biotechnol.202040221323010.1080/07388551.2019.171045831906727
    [Google Scholar]
  20. FrancisI. ShresthaJ. PaudelK.R. HansbroP.M. WarkianiM.E. SahaS.C. Recent advances in lung-on-a-chip models.Drug Discov. Today20222792593260210.1016/j.drudis.2022.06.00435724916
    [Google Scholar]
  21. KanabekovaP. KadyrovaA. KulsharovaG. Microfluidic organ-on-a-chip devices for liver disease modeling in vitro.Micromachines (Basel)202213342810.3390/mi1303042835334720
    [Google Scholar]
  22. MesselmaniT. MorisseauL. SakaiY. LegallaisC. Le GoffA. LeclercE. JellaliR. Liver organ-on-chip models for toxicity studies and risk assessment.Lab Chip202222132423245010.1039/D2LC00307D35694831
    [Google Scholar]
  23. AcevesJ.O. HejaS. KobayashiK. RobinsonS.S. MiyoshiT. MatsumotoT. SchäffersO.J.M. MorizaneR. LewisJ.A. 3D proximal tubule-on-chip model derived from kidney organoids with improved drug uptake.Sci. Rep.20221211499710.1038/s41598‑022‑19293‑336056134
    [Google Scholar]
  24. ZanettiF. Chapter 7 - Kidney-on-a-chip.Organ-on-a-chip.Cambridge, USAcademic Press202023325310.1016/B978‑0‑12‑817202‑5.00007‑3
    [Google Scholar]
  25. DonkersJ.M. Eslami AmirabadiH. van de SteegE. Intestine-on-a-chip: Next level in vitro research model of the human intestine.Curr. Opin. Toxicol.20212561410.1016/j.cotox.2020.11.002
    [Google Scholar]
  26. PimentaJ. RibeiroR. AlmeidaR. CostaP.F. da SilvaM.A. PereiraB. Organ-on-chip approaches for intestinal 3D in vitro modeling.Cell. Mol. Gastroenterol. Hepatol.202213235136710.1016/j.jcmgh.2021.08.01534454168
    [Google Scholar]
  27. BrofigaM. MassobrioP. Brain-on-a-chip: Dream or reality?Front. Neurosci.20221683762310.3389/fnins.2022.83762335310088
    [Google Scholar]
  28. AmirifarL. ShamlooA. NasiriR. de BarrosN.R. WangZ.Z. UnluturkB.D. LibanoriA. IevglevskyiO. DiltemizS.E. SancesS. BalasinghamI. SeidlitsS.K. AshammakhiN. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease.Biomaterials202228512153110.1016/j.biomaterials.2022.12153135533441
    [Google Scholar]
  29. TutarR. Çelebi-SaltikB. Modeling of artificial 3D human placenta.Cells Tissues Organs20222114364510.1159/00051157133691312
    [Google Scholar]
  30. McCarthyM. BrownT. AlarconA. WilliamsC. WuX. AbbottR.D. GimbleJ. FrazierT. Fat-on-a-chip models for research and discovery in obesity and its metabolic comorbidities.Tissue Eng. Part B Rev.202026658659510.1089/ten.teb.2019.026132216545
    [Google Scholar]
  31. ZhaoH. YanF. Retinal organoids: A next-generation platform for high-throughput drug discovery.Stem Cell Rev. Rep.202420249550810.1007/s12015‑023‑10661‑838079086
    [Google Scholar]
  32. KravchenkoS.V. MyasnikovaV.V. SakhnovS.N. Application of the organ-on-a-chip technology in experimental ophthalmology.Vestn. Oftalmol.2023139111412010.17116/oftalma202313901111436924523
    [Google Scholar]
  33. HuY. ZhangH. WangS. CaoL. ZhouF. JingY. SuJ. Bone/cartilage organoid on-chip: Construction strategy and application.Bioact. Mater.202325294110.1016/j.bioactmat.2023.01.01637056252
    [Google Scholar]
  34. HerlandA. MaozB.M. DasD. SomayajiM.R. Prantil-BaunR. NovakR. CronceM. HuffstaterT. JeantyS.S.F. IngramM. ChalkiadakiA. Benson ChouD. MarquezS. DelahantyA. Jalili-FiroozinezhadS. MiltonY. Sontheimer-PhelpsA. SwenorB. LevyO. ParkerK.K. PrzekwasA. IngberD.E. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips.Nat. Biomed. Eng.20204442143610.1038/s41551‑019‑0498‑931988459
    [Google Scholar]
  35. FowlerS. ChenW.L.K. DuignanD.B. GuptaA. HariparsadN. KennyJ.R. LaiW.G. LirasJ. PhillipsJ.A. GanJ. Microphysiological systems for ADME-related applications: Current status and recommendations for system development and characterization.Lab Chip202020344646710.1039/C9LC00857H31932816
    [Google Scholar]
  36. WorthA.P. Computational modelling for the sustainable management of chemicals.Comput. Toxicol.20201410012210.1016/j.comtox.2020.10012232421066
    [Google Scholar]
  37. PletzJ. BlakemanS. PainiA. ParissisN. WorthA. AnderssonA.M. FrederiksenH. SakhiA.K. ThomsenC. BoppS.K. Physiologically based kinetic (PBK) modelling and human biomonitoring data for mixture risk assessment.Environ. Int.202014310597810.1016/j.envint.2020.10597832763630
    [Google Scholar]
  38. PistollatoF. CarpiD. Mendoza-de GyvesE. PainiA. BoppS.K. WorthA. Bal-PriceA. Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures.Reprod. Toxicol.202110510111910.1016/j.reprotox.2021.08.00734455033
    [Google Scholar]
  39. MilaniN. ParrottN. GaletinA. FowlerS. GertzM. In silico modeling and simulation of organ-on-a-chip systems to support data analysis and a priori experimental design.CPT Pharmacomet. Syst. Pharmacol.202413452454310.1002/psp4.1311038356302
    [Google Scholar]
  40. Keuper-NavisM. WallesM. PollerB. MyszczyszynA. van der MadeT.K. DonkersJ. EslamiA.H. WilmerM.J. AanS. SpeeB. MasereeuwR. van de SteegE. The application of organ-on-chip models for the prediction of human pharmacokinetic profiles during drug development.Pharmacol. Res.202319510685310.1016/j.phrs.2023.10685337473876
    [Google Scholar]
  41. SunL. MiK. HouY. HuiT. ZhangL. TaoY. LiuZ. HuangL. Pharmacokinetic and pharmacodynamic drug–drug interactions: Research methods and applications.Metabolites202313889710.3390/metabo1308089737623842
    [Google Scholar]
  42. GlassmanP.M. MuzykantovV.R. Pharmacokinetic and pharmacodynamic properties of drug delivery systems.J. Pharmacol. Exp. Ther.2019370357058010.1124/jpet.119.25711330837281
    [Google Scholar]
  43. NithinR. AggarwalA. SravaniA.B. MallyaP. LewisS. Organ-on-a-chip: An emerging research platform.Organogenesis2023191227823610.1080/15476278.2023.227823637965897
    [Google Scholar]
  44. DengS. LiC. CaoJ. CuiZ. DuJ. FuZ. YangH. ChenP. Organ-on-a-chip meets artificial intelligence in drug evaluation.Theranostics202313134526455810.7150/thno.8726637649608
    [Google Scholar]
  45. ZhangL. XieH. WangY. WangH. HuJ. ZhangG. Pharmacodynamic parameters of pharmacokinetic/pharmacodynamic (PK/PD) integration models.Front. Vet. Sci.2022986047210.3389/fvets.2022.86047235400105
    [Google Scholar]
  46. StanleyL. Chapter 26 - Drug metabolism.Pharmacognosy.Cambridge, USAcademic Press202459762410.1016/B978‑0‑443‑18657‑8.00029‑3
    [Google Scholar]
  47. SugiyamaY. AokiY. A 20-year research overview: Quantitative prediction of hepatic clearance using the in vitro-in vivo extrapolation approach based on physiologically based pharmacokinetic modeling and extended clearance concept.Drug Metab. Dispos.20235191067107610.1124/dmd.123.00134437407092
    [Google Scholar]
  48. JeongY.S. JuskoW.J. A complete extension of classical hepatic clearance models using fractional distribution parameter fd in physiologically based pharmacokinetics.J. Pharm. Sci.202411319511710.1016/j.xphs.2023.05.01937279835
    [Google Scholar]
  49. ShiA.X. QuQ. ZhuangH.H. TengX.Q. XuW.X. LiuY.P. XiaoY.W. QuJ. Individualized antibiotic dosage regimens for patients with augmented renal clearance.Front. Pharmacol.202314113797510.3389/fphar.2023.113797537564179
    [Google Scholar]
  50. DemeesterC. RobinsD. EdwinaA.E. TournoyJ. AugustijnsP. InceI. LehmannA. VertzoniM. SchlenderJ.F. Physiologically based pharmacokinetic (PBPK) modelling of oral drug absorption in older adults – an AGePOP review.Eur. J. Pharm. Sci.202318810649610.1016/j.ejps.2023.10649637329924
    [Google Scholar]
  51. Prantil-BaunR. NovakR. DasD. SomayajiM.R. PrzekwasA. IngberD.E. Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips.Annu. Rev. Pharmacol. Toxicol.2018581376410.1146/annurev‑pharmtox‑010716‑10474829309256
    [Google Scholar]
  52. DenningerA. BeckerT. WestedtU. WagnerK.G. Advanced in vivo prediction by introducing biphasic dissolution data into PBPK models.Pharmaceutics2023157197810.3390/pharmaceutics1507197837514164
    [Google Scholar]
  53. AddissoukyT.A. WangY. El TantawyI. El SayedI. MajeedM. KhalilA.A. Transforming toxicity assessment through microphysiology, bioprinting, and computational modeling.Adv. Clin. Toxicol.20249111410.23880/act‑16000295
    [Google Scholar]
  54. SaorinG. CaligiuriI. RizzolioF. Microfluidic organoids-on-a-chip: The future of human models.Semin. Cell Dev. Biol.2023144415410.1016/j.semcdb.2022.10.00136241560
    [Google Scholar]
  55. Rama VarmaA. FathiP. Vascularized microfluidic models of major organ structures and cancerous tissues.Biomicrofluidics202317606150210.1063/5.015980038074952
    [Google Scholar]
  56. MonteduroA.G. RizzatoS. CaragnanoG. TrapaniA. GiannelliG. MaruccioG. Organs-on-chips technologies – A guide from disease models to opportunities for drug development.Biosens. Bioelectron.202323111527110.1016/j.bios.2023.11527137060819
    [Google Scholar]
  57. KallioS. Vascularization in organ-and body-on-a-chip platforms, Trepo.2023Available from: https://urn.fi/URN:NBN:fi:tuni-202302242631
  58. SunilduttN. PariharP. Chethikkattuveli SalihA.R. LeeS.H. ChoiK.H. Revolutionizing drug development: Harnessing the potential of organ-on-chip technology for disease modeling and drug discovery.Front. Pharmacol.202314113922910.3389/fphar.2023.113922937180709
    [Google Scholar]
  59. NooraniB. CuculloL. AhnY. KadryH. BhaleraoA. RautS. NozohouriE. ChowdhuryE.A. Advanced microfluidic vascularized tissues as platform for the study of human diseases and drug development.Curr. Neuropharmacol.202321359962010.2174/1570159X2066622070611271135794768
    [Google Scholar]
  60. DriverR. MishraS. Organ-on-a-chip technology: An in-depth review of recent advancements and future of whole body-on-chip.Biochip J.202317112310.1007/s13206‑022‑00087‑8
    [Google Scholar]
  61. McAleerC.W. PointonA. LongC.J. BrightonR.L. WilkinB.D. BridgesL.R. Narasimhan SriramN. FabreK. McDougallR. MuseV.P. MettetalJ.T. SrivastavaA. WilliamsD. SchnepperM.T. RolesJ.L. ShulerM.L. HickmanJ.J. EwartL. On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships.Sci. Rep.201991961910.1038/s41598‑019‑45656‑431270362
    [Google Scholar]
  62. ImuraY. SatoK. YoshimuraE. Micro total bioassay system for ingested substances: Assessment of intestinal absorption, hepatic metabolism, and bioactivity.Anal. Chem.201082249983998810.1021/ac100806x21090751
    [Google Scholar]
  63. ImuraY. YoshimuraE. SatoK. Micro total bioassay system for oral drugs: Evaluation of gastrointestinal degradation, intestinal absorption, hepatic metabolism, and bioactivity.Anal. Sci.201228319719910.2116/analsci.28.19722451356
    [Google Scholar]
  64. JieM. LiH.F. LinL. ZhangJ. LinJ.M. Integrated microfluidic system for cell co-culture and simulation of drug metabolism.RSC Advances2016659545645457210.1039/C6RA10407J
    [Google Scholar]
  65. ShinhaK. NiheiW. OnoT. NakazatoR. KimuraH. A pharmacokinetic–pharmacodynamic model based on multi-organ-on-a-chip for drug–drug interaction studies.Biomicrofluidics202014404410810.1063/5.001154534992705
    [Google Scholar]
  66. LiuD. JiaoS. WeiJ. ZhangX. PeiY. PeiZ. LiJ. DuY. Investigation of absorption, metabolism and toxicity of ginsenosides compound K based on human organ chips.Int. J. Pharm.202058711966910.1016/j.ijpharm.2020.11966932702454
    [Google Scholar]
  67. GuerreroY.A. DesaiD. SullivanC. KindtE. SpilkerM.E. MaurerT.S. SolomonD.E. BartlettD.W. A microfluidic perfusion platform for in vitro analysis of drug pharmacokinetic-pharmacodynamic (PK-PD) relationships.AAPS J.20202225310.1208/s12248‑020‑0430‑y32124093
    [Google Scholar]
  68. GuoY. DengP. ChenW. LiZ. Modeling pharmacokinetic profiles for assessment of anti-cancer drug on a microfluidic system.Micromachines (Basel)202011655110.3390/mi1106055132486116
    [Google Scholar]
  69. OleagaC. RiuA. RothemundS. LavadoA. McAleerC.W. LongC.J. PersaudK. NarasimhanN.S. TranM. RolesJ. Carmona-MoranC.A. SasserathT. ElbrechtD.H. KumanchikL. BridgesL.R. MartinC. SchnepperM.T. EkmanG. JacksonM. WangY.I. NoteR. LangerJ. TeissierS. HickmanJ.J. Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system.Biomaterials201818217619010.1016/j.biomaterials.2018.07.06230130706
    [Google Scholar]
  70. FosterA.J. ChouhanB. ReganS.L. RollisonH. AmberntssonS. AnderssonL.C. SrivastavaA. DarnellM. CairnsJ. LazicS.E. JangK.J. PetropolisD.B. KodellaK. RubinsJ.E. WilliamsD. HamiltonG.A. EwartL. MorganP. Integrated in vitro models for hepatic safety and metabolism: Evaluation of a human Liver-Chip and liver spheroid.Arch. Toxicol.20199341021103710.1007/s00204‑019‑02427‑430915487
    [Google Scholar]
  71. De GregorioV. TelescoM. CorradoB. RosielloV. UrciuoloF. NettiP.A. ImparatoG. 2020 Intestine-liver axis on-chip reveals the intestinal protective role on hepatic damage by emulating ethanol first-pass metabolism.Front. Bioeng. Biotechnol.2020816310.3389/fbioe.2020.0016332258006
    [Google Scholar]
  72. MaterneE.M. RammeA.P. TerrassoA.P. SerraM. AlvesP.M. BritoC. SakharovD.A. TonevitskyA.G. LausterR. MarxU. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing.J. Biotechnol.2015205364610.1016/j.jbiotec.2015.02.00225678136
    [Google Scholar]
  73. MaschmeyerI. LorenzA.K. SchimekK. HasenbergT. RammeA.P. HübnerJ. LindnerM. DrewellC. BauerS. ThomasA. SamboN.S. SonntagF. LausterR. MarxU. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents.Lab Chip201515122688269910.1039/C5LC00392J25996126
    [Google Scholar]
  74. OleagaC. BernabiniC. SmithA.S.T. SrinivasanB. JacksonM. McLambW. PlattV. BridgesR. CaiY. SanthanamN. BerryB. NajjarS. AkandaN. GuoX. MartinC. EkmanG. EschM.B. LangerJ. OuedraogoG. CotovioJ. BretonL. ShulerM.L. HickmanJ.J. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs.Sci. Rep.2016612003010.1038/srep2003026837601
    [Google Scholar]
  75. Lee-MontielF.T. LaemmleA. DumontL. LeeC.S. HuebschN. CharwatV. OkochiH. HancockM.J. SiemonsB. BoggessS.C. Integrated hiPSC-based liver and heart microphysiological systems predict unsafe drug-drug interaction.BioRxiv20202411277110.1101/2020.05.24.112771
    [Google Scholar]
  76. RajanS.A.P. AlemanJ. WanM. Pourhabibi ZarandiN. NzouG. MurphyS. BishopC.E. Sadri-ArdekaniH. ShupeT. AtalaA. HallA.R. SkardalA. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform.Acta Biomater.202010612413510.1016/j.actbio.2020.02.01532068138
    [Google Scholar]
  77. LiZ. GuoY. YuY. XuC. XuH. QinJ. Assessment of metabolism-dependent drug efficacy and toxicity on a multilayer organs-on-a-chip.Integr. Biol.20168101022102910.1039/C6IB00162A27605158
    [Google Scholar]
  78. CorradoB. De GregorioV. ImparatoG. AttanasioC. UrciuoloF. NettiP.A. A three-dimensional microfluidized liver system to assess hepatic drug metabolism and hepatotoxicity.Biotechnol. Bioeng.201911651152116310.1002/bit.2690230552666
    [Google Scholar]
  79. CongY. HanX. WangY. ChenZ. LuY. LiuT. WuZ. JinY. LuoY. ZhangX. Drug toxicity evaluation based on organ-on-a-chip technology: A review.Micromachines (Basel)202011438110.3390/mi1104038132260191
    [Google Scholar]
  80. KühnlJ. TaoT.P. BrandmairK. GerlachS. RingsT. Müller-VieiraU. PrzibillaJ. GeniesC. Jaques-JaminC. SchepkyA. MarxU. HewittN.J. MaschmeyerI. Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model.Toxicology202144815263710.1016/j.tox.2020.15263733220337
    [Google Scholar]
  81. TheobaldJ. GhanemA. WallischP. BanaeiyanA.A. Andrade-NavarroM.A. TaškovaK. HaltmeierM. KurtzA. BeckerH. ReuterS. MrowkaR. ChengX. WölflS. Liver-kidney-on-chip to study toxicity of drug metabolites.ACS Biomater. Sci. Eng.201841788910.1021/acsbiomaterials.7b0041733418680
    [Google Scholar]
  82. DehneE.M. HasenbergT. MarxU. The ascendance of microphysiological systems to solve the drug testing dilemma.Future Sci. OA201732FSO018510.4155/fsoa‑2017‑000228670475
    [Google Scholar]
  83. BonaccorsiS. Chapter 15: Organ-on-a-chip technology roadmap: regulatory framework, industry adoption, key players, technology transfer, validation, and ethical considerations.Regulatory Framework, Industry Adoption, Key Players, Technology Transfer, Validation, and Ethical ConsiderationsLondonRoyal Society of Chemistry: Piccadilly20172546150410.1039/9781837673476‑00461
    [Google Scholar]
  84. LiZ. LiQ. ZhouC. LuK. LiuY. XuanL. WangX. Organoid-on-a-chip: Current challenges, trends, and future scope toward medicine.Biomicrofluidics202317505150510.1063/5.017135037900053
    [Google Scholar]
  85. DankuA.E. DulfE.H. BraicuC. JurjA. Berindan-NeagoeI. Organ-on-a-chip: A survey of technical results and problems.Front. Bioeng. Biotechnol.20221084067410.3389/fbioe.2022.84067435223800
    [Google Scholar]
  86. KimuraH. IkedaT. NakayamaH. SakaiY. FujiiT. An on-chip small intestine-liver model for pharmacokinetic studies.SLAS Technol.201520326527310.1177/221106821455781225385717
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128377867250225073257
Loading
/content/journals/dmbl/10.2174/0118723128377867250225073257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test