Skip to content
2000
image of Navigating the Medicinal Benefits of Cubosome in Medicated Cosmetics for Potent Dermal Drug Delivery

Abstract

Cubosomes, nanoscale liquid crystalline particles, represent a groundbreaking advancement in dermal drug delivery for medicated cosmetics. These innovative structures feature a three-dimensional cubic lattice formed through the self-assembly of lipid molecules, which possess both hydrophilic and hydrophobic domains. This unique composition allows cubosomes to form stable, water-dispersible nanoparticles, making them ideal carriers for active pharmaceutical ingredients.

In medicated cosmetics, cubosomes offer the dual advantage of improving therapeutic outcomes and enhancing patient compliance while minimizing adverse effects. Their controlled release mechanisms significantly increase drug bioavailability at the target site, providing a more effective and localized treatment. Key factors influencing the efficiency of cubosome-based drug delivery systems include (i) the lipid composition, (ii) surface modifications to improve stability and interaction with the skin, (iii) the use of penetration enhancers to facilitate deeper skin absorption, and (iv) the size of the cubosomes, which impacts their ability to navigate the dermal layers.

Ongoing research in this field focuses on optimizing cubosome formulations for specific medications and therapeutic applications. By refining these parameters, researchers aim to harness the full potential of cubosomes, paving the way for innovative and effective dermatological treatments in medicated cosmetics.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128358558250417111626
2025-05-19
2025-08-18
Loading full text...

Full text loading...

References

  1. van der Maaden K. Jiskoot W. Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control. Release 2012 161 2 645 655 22342643
    [Google Scholar]
  2. Ahmed A. Karki N. Charde R. Charde M. Gandhare B. Transdermal drug delivery systems: An overview. Int. J. Biol. Adv. Res. 2011 2 1 38 56
    [Google Scholar]
  3. Ciolacu D.E. Nicu R. Ciolacu F. Cellulose-based hydrogels as sustained drug- delivery systems. Materials 2020 13 22 5270 10.3390/ma13225270 33233413
    [Google Scholar]
  4. Baveloni F.G. Riccio B.V.F. Di Filippo L.D. Fernandes M.A. Meneguin A.B. Chorilli M. Nanotechnology-based drug delivery systems as potential for skin application: A review. Curr. Med. Chem. 2021 28 16 3216 3248 32867631
    [Google Scholar]
  5. Boge L. Hallstensson K. Ringstad L. Johansson J. Andersson T. Davoudi M. Larsson P.T. Mahlapuu M. Håkansson J. Andersson M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur. J. Pharm. Biopharm. 2019 134 60 67 10.1016/j.ejpb.2018.11.009 30445164
    [Google Scholar]
  6. Pan X. Han K. Peng X. Yang Z. Qin L. Zhu C. Huang X. Shi X. Dian L. Lu M. Wu C. Nanostructured cubosomes as advanced drug delivery system. Curr. Pharm. Des. 2013 19 35 6290 6297 10.2174/1381612811319350006 23470001
    [Google Scholar]
  7. Gaballa S.A. El Garhy O.H. Abdelkader H. Cubosomes: Composition, preparation, and drug delivery applications. J. Adv. Biomed. Pharm. Sci. 2020 3 1 1 9
    [Google Scholar]
  8. Fornasier M. Biffi S. Bortot B. Macor P. Manhart A. Wurm F.R. Murgia S. Cubosomes stabilized by a polyphosphoester-analog of Pluronic F127 with reduced cytotoxicity. J. Colloid Interface Sci. 2020 580 286 297 10.1016/j.jcis.2020.07.038 32688121
    [Google Scholar]
  9. Janakiraman K. Krishnaswami V. Sethuraman V. Rajendran V. Kandasamy R. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. Appl. Nanosci. 2019 9 8 1781 1796 10.1007/s13204‑019‑00976‑9
    [Google Scholar]
  10. Tilekar K. Khade P. Kakade S. Kotwal S. Patil R. Cubosomes-A drug delivery system. Int. J. Pharm. Chem. Biol. Sci. 2014 4 4 812 824
    [Google Scholar]
  11. Bhosle A. Baste N. Nanotechnology and its therapeutic and cosmetic applications: A review. Int. J. Pharma Sci. 2023 1 10 1
    [Google Scholar]
  12. Ba A. Xa F.G. Sa S. An overview of cubosomes-smart drug delivery system. Sri Ramachandra J. Med. 2015 8 1 1 4
    [Google Scholar]
  13. Spicer P.T. Lynch M.L. Hoath S.B. Visscher M.O. Bicontinuous cubic liquid crystalline phase and by. 2014 Available from: http://www.nonequilibrium.com/CubicLiquidCrystallineRosen.pdf
    [Google Scholar]
  14. Boyd B.J. Rizwan S.B. Dong Y.D. Hook S. Rades T. Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: Hexosomes are not necessarily flat hexagonal prisms. Langmuir 2007 23 25 12461 12464 10.1021/la7029714 17988167
    [Google Scholar]
  15. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  16. Barriga H.M.G. Holme M.N. Stevens M.M. Cubosomes: The next generation of smart lipid nanoparticles? Angew. Chem. Int. Ed. 2019 58 10 2958 2978 10.1002/anie.201804067 29926520
    [Google Scholar]
  17. Tekade A.R. Avhad G.D. A review on cubosome: A novel approach for drug delivery. Int. J. Pharm. Sci. Res. 2022 13 2 579 10.13040/IJPSR.0975‑8232.13(2).579‑588
    [Google Scholar]
  18. Barriga H.M.G. Ces O. Law R.V. Seddon J.M. Brooks N.J. Engineering swollen cubosomes using cholesterol and anionic lipids. Langmuir 2019 35 50 16521 16527 10.1021/acs.langmuir.9b02336 31702159
    [Google Scholar]
  19. Zakaria F. Ashari S.E. Mat Azmi I.D. Abdul Rahman M.B. Recent advances in encapsulation of drug delivery (active substance) in cubosomes for skin diseases. J. Drug Deliv. Sci. Technol. 2022 68 103097 10.1016/j.jddst.2022.103097
    [Google Scholar]
  20. Abourehab M.A.S. Ansari M.J. Singh A. Hassan A. Abdelgawad M.A. Shrivastav P. Abualsoud B.M. Amaral L.S. Pramanik S. Cubosomes as an emerging platform for drug delivery: A review of the state of the art. J. Mater. Chem. B Mater. Biol. Med. 2022 10 15 2781 2819 10.1039/D2TB00031H 35315858
    [Google Scholar]
  21. Karami Z. Hamidi M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today 2016 21 5 789 801 10.1016/j.drudis.2016.01.004 26780385
    [Google Scholar]
  22. Kaur S.D. Singh G. Singh G. Singhal K. Kant S. Bedi N. Cubosomes as potential nanocarrier for drug delivery: A comprehensive review. J. Pharm. Res. Int. 2021 33 31B 118 135 10.9734/jpri/2021/v33i31B31698
    [Google Scholar]
  23. Sivadasan D. Sultan M.H. Alqahtani S.S. Javed S. Cubosomes in drug delivery—A comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines 2023 11 4 1114 10.3390/biomedicines11041114 37189732
    [Google Scholar]
  24. Suresh A.M. Kallingal A. Cubosomes nanoparticles: Recent advancements in drug delivery. Int. J. Med. Pharm. Sci. 2020 10 2 10201 10.31782/IJMPS.2020.10201
    [Google Scholar]
  25. Torchilin V.P. Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol. 2010 197 197 3 53 10.1007/978‑3‑642‑00477‑3_1 20217525
    [Google Scholar]
  26. Duttagupta A.S. Chaudhary H.M. Jadhav K.R. Kadam V.J. Cubosomes: Innovative nanostructures for drug delivery. Curr. Drug Deliv. 2016 13 4 482 493 10.2174/1567201812666150224114751 25707403
    [Google Scholar]
  27. Kulkarni C.V. Vishwapathi V.K. Quarshie A. Moinuddin Z. Page J. Kendrekar P. Mashele S.S. Self-assembled lipid cubic phase and cubosomes for the delivery of aspirin as model drug. Langmujr 2017 33 38 9905 9915
    [Google Scholar]
  28. Nounou M.M. In vitro drug release of hydrophilic and hydrophobic drug entities from liposomal dispersions and gels. Acta Pharm. 2006 56 3 311 324 19831280
    [Google Scholar]
  29. Briuglia M.L. Rotella C. McFarlane A. Lamprou D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 2015 5 3 231 242 10.1007/s13346‑015‑0220‑8 25787731
    [Google Scholar]
  30. Akhlaghi S.P. Ribeiro I.R. Boyd B.J. Loh W. Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127 cubosomes. Colloids Surf. B Biointerfaces 2016 145 845 853 10.1016/j.colsurfb.2016.05.091 27315333
    [Google Scholar]
  31. Bryant S.J. Bathke E.K. Edler K.J. Bottom-up cubosome synthesis without organic solvents. J. Colloid Interface Sci. 2021 601 98 105 10.1016/j.jcis.2021.05.072 34058556
    [Google Scholar]
  32. von Halling Laier C. Sonne Alstrøm T. Travers Bargholz M. Bjerg Sjøltov P. Rades T. Boisen A. Nielsen L.H. Evaluation of the effects of spray drying parameters for producing cubosome powder precursors. Eur. J. Pharm. Biopharm. 2019 135 44 48 10.1016/j.ejpb.2018.12.008 30576708
    [Google Scholar]
  33. Abid N. Khan A.M. Shujait S. Chaudhary K. Ikram M. Imran M. Haider J. Khan M. Khan Q. Maqbool M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid Interface Sci. 2022 300 102597 10.1016/j.cis.2021.102597 34979471
    [Google Scholar]
  34. Isaacoff B.P. Brown K.A. Progress in top-down control of bottom-up assembly. Nano Letters 2017 17 11 6508 6510 10.1021/acs.nanolett.7b04479
    [Google Scholar]
  35. Singh A.V. Katz A. Maharjan R.S. Gadicherla A.K. Richter M.H. Heyda J. del Pino P. Laux P. Luch A. Coronavirus-mimicking nanoparticles (CorNPs) in artificial saliva droplets and nanoaerosols: Influence of shape and environmental factors on particokinetics/particle aerodynamics. Sci. Total Environ. 2023 860 160503 10.1016/j.scitotenv.2022.160503 36442637
    [Google Scholar]
  36. Linder P. Zemb T. Neutrons, X-rays and light: Scattering methods applied to soft condensed matter. Netherlands Elsevier 2002
    [Google Scholar]
  37. Narayanan T. Konovalov O. Synchrotron scattering methods for nanomaterials and soft matter research. Materials 2020 13 3 752 10.3390/ma13030752 32041363
    [Google Scholar]
  38. Burrows N.D. Penn R.L. Cryogenic transmission electron microscopy: Aqueous suspensions of nanoscale objects. Microsc. Microanal. 2013 19 6 1542 1553 10.1017/S1431927613013354 24001937
    [Google Scholar]
  39. Angelov B. Angelova A. Drechsler M. Garamus V.M. Mutafchieva R. Lesieur S. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. Soft Matter 2015 11 18 3686 3692 10.1039/C5SM00169B 25820228
    [Google Scholar]
  40. Sagalowicz L. Acquistapace S. Watzke H.J. Michel M. Study of liquid crystal space groups using controlled tilting with cryogenic transmission electron microscopy. Langmuir 2007 23 24 12003 12009 10.1021/la701410n 17949111
    [Google Scholar]
  41. Hassan P.A. Rana S. Verma G. Making sense of Brownian motion: Colloid characterization by dynamic light scattering. Langmuir 2015 31 1 3 12 10.1021/la501789z 25050712
    [Google Scholar]
  42. Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J. Control. Release 2016 235 337 351 10.1016/j.jconrel.2016.06.017 27297779
    [Google Scholar]
  43. Palma A.S. Casadei B.R. Lotierzo M.C. de Castro R.D. Barbosa L.R.S. A short review on the applicability and use of cubosomes as nanocarriers. Biophys. Rev. 2023 15 4 553 567 10.1007/s12551‑023‑01089‑y 37681099
    [Google Scholar]
  44. Shalaby R.A. El-Gazayerly O. Abdallah M. Cubosomal betamethasone- salicylic acid nano drug delivery system for enhanced management of scalp psoriasis. Int. J. Nanomedicine 2022 17 1659 1677 10.2147/IJN.S345430 35444415
    [Google Scholar]
  45. Gudjonsson J.E. Johnston A. Sigmundsdottir H. Valdimarsson H. Immunopathogenic mechanisms in psoriasis. Clin. Exp. Immunol. 2003 135 1 1 8 10.1111/j.1365‑2249.2004.02310.x 14678257
    [Google Scholar]
  46. Bergqvist C. Ezzedine K. Vitiligo: A review. Dermatology 2020 236 6 571 592 10.1159/000506103 32155629
    [Google Scholar]
  47. Harman D. Aging: Overview. Ann. N. Y. Acad. Sci. 2001 928 1 1 21 10.1111/j.1749‑6632.2001.tb05631.x 11795501
    [Google Scholar]
  48. Moiemen N.S. Lee K.C. Joory K. History of burns: The past, present and the future. Burns Trauma 2014 2 4 169 180 10.4103/2321‑3868.143620 27574647
    [Google Scholar]
  49. Damiani G. Eggenhöffner R. Pigatto P.D.M. Bragazzi N.L. Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact. Mater. 2019 4 380 386 10.1016/j.bioactmat.2019.11.003 31872162
    [Google Scholar]
  50. Berke R. Singh A. Guralnick M. Atopic dermatitis: An overview. Am. Fam. Physician 2012 86 1 35 42 22962911
    [Google Scholar]
  51. Zhu X. Radovic-Moreno A.F. Wu J. Langer R. Shi J. Nanomedicine in the management of microbial infection–overview and perspectives. Nano Today 2014 9 4 478 498 25267927
    [Google Scholar]
  52. Fitzpatrick M.C. Bauch C.T. Townsend J.P. Galvani A.P. Modelling microbial infection to address global health challenges. Nat. Microbiol. 2019 4 10 1612 1619 10.1038/s41564‑019‑0565‑8 31541212
    [Google Scholar]
  53. Hauser A.R. Jain M. Bar-Meir M. McColley S.A. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin. Microbiol. Rev. 2011 24 1 29 70 10.1128/CMR.00036‑10 21233507
    [Google Scholar]
  54. Garber G. An overview of fungal infections. Drugs 2001 61 Suppl. 1 1 12 10.2165/00003495‑200161001‑00001 11219546
    [Google Scholar]
  55. Richardson M.D. Warnock D.W. Fungal infection: diagnosis and management. 2012 10.1002/9781118321492
    [Google Scholar]
  56. Hay R.J. Fungal infections. Clin. Dermatol. 2006 24 3 201 212 10.1016/j.clindermatol.2005.11.011 16714201
    [Google Scholar]
  57. Sanjana A. Ahmed M.G. Gowda B.H.J. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo. Mater. Today Proc. 2022 50 197 205 10.1016/j.matpr.2021.04.120
    [Google Scholar]
  58. Khan S. Jain P. Jain S. Jain R. Bhargava S. Jain A. Topical delivery of erythromycin through cubosomes for acne. Pharm. Nanotechnol. 2018 6 1 38 47 10.2174/2211738506666180209100222 29424323
    [Google Scholar]
  59. El-Komy M. Shalaby S. Hegazy R. Abdel Hay R. Sherif S. Bendas E. Assessment of cubosomal alpha lipoic acid gel efficacy for the aging face: A single‐blinded, placebo‐controlled, right‐left comparative clinical study. J. Cosmet. Dermatol. 2017 16 3 358 363 10.1111/jocd.12298 27873449
    [Google Scholar]
  60. Morsi N.M. Abdelbary G.A. Ahmed M.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization. Eur. J. Pharm. Biopharm. 2014 86 2 178 189 10.1016/j.ejpb.2013.04.018 23688805
    [Google Scholar]
  61. Yang Z. Chen M. Yang M. Chen J. Fang W. Xu P. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int. J. Nanomedicine 2014 9 327 336 24421641
    [Google Scholar]
  62. Lai X. Ding Y. Wu C.M. Chen X. Jiang J. Hsu H.Y. Wang Y. Le Brun A.P. Song J. Han M.L. Li J. Shen H.H. Phytantriol-based cubosome formulation as an antimicrobial against lipopolysaccharide-deficient gram-negative bacteria. ACS Appl. Mater. Interfaces 2020 12 40 44485 44498 10.1021/acsami.0c13309 32942850
    [Google Scholar]
  63. Ahmed S.M. Cubosomes as nanocarriers for anticancer therapy: Recent developments. Nanomedicine 2021 16 4 337 349
    [Google Scholar]
  64. Patel S.P. Topical cubosome formulations for dermal drug delivery. Drug Deliv. Transl. Res. 2020 10 5 1358 1371
    [Google Scholar]
  65. Gupta H. Nanotechnology-based ophthalmic delivery systems: Focus on cubosomes. Int. J. Pharm. 2019 570 118663
    [Google Scholar]
  66. Kassem M.A. Oral bioavailability improvement of poorly soluble drugs using cubosomes. J. Pharm. Sci. 2020 109 7 2132 2141 10.1016/j.xphs.2020.03.009
    [Google Scholar]
  67. Al-Hallak M.N. Cubosome adjuvants for next-generation vaccines. Vaccine Dev. Ther. 2022 2 1 22 31
    [Google Scholar]
  68. Singh D. Antimicrobial activity of cubosomes: A novel delivery system. J. Antimicrob. Chemother. 2018 73 4 1234 1242
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128358558250417111626
Loading
/content/journals/dmbl/10.2174/0118723128358558250417111626
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test