Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Cubosomes, nanoscale liquid crystalline particles, represent a groundbreaking advancement in dermal drug delivery for medicated cosmetics. These innovative structures feature a three-dimensional cubic lattice formed through the self-assembly of lipid molecules, which possess both hydrophilic and hydrophobic domains. This unique composition allows cubosomes to form stable, water-dispersible nanoparticles, making them ideal carriers for active pharmaceutical ingredients.

In medicated cosmetics, cubosomes offer the dual advantage of improving therapeutic outcomes and enhancing patient compliance while minimizing adverse effects. Their controlled release mechanisms significantly increase drug bioavailability at the target site, providing a more effective and localized treatment. Key factors influencing the efficiency of cubosome-based drug delivery systems include (i) the lipid composition, (ii) surface modifications to improve stability and interaction with the skin, (iii) the use of penetration enhancers to facilitate deeper skin absorption, and (iv) the size of the cubosomes, which impacts their ability to navigate the dermal layers.

Ongoing research in this field focuses on optimizing cubosome formulations for specific medications and therapeutic applications. By refining these parameters, researchers aim to harness the full potential of cubosomes, paving the way for innovative and effective dermatological treatments in medicated cosmetics.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128358558250417111626
2025-05-19
2025-12-06
Loading full text...

Full text loading...

References

  1. van der MaadenK. JiskootW. BouwstraJ. Microneedle technologies for (trans)dermal drug and vaccine delivery.J. Control. Release2012161264565522342643
    [Google Scholar]
  2. AhmedA. KarkiN. ChardeR. ChardeM. GandhareB. Transdermal drug delivery systems: An overview.Int. J. Biol. Adv. Res.2011213856
    [Google Scholar]
  3. CiolacuD.E. NicuR. CiolacuF. Cellulose-based hydrogels as sustained drug- delivery systems.Materials20201322527010.3390/ma1322527033233413
    [Google Scholar]
  4. BaveloniF.G. RiccioB.V.F. Di FilippoL.D. FernandesM.A. MeneguinA.B. ChorilliM. Nanotechnology-based drug delivery systems as potential for skin application: A review.Curr. Med. Chem.202128163216324832867631
    [Google Scholar]
  5. BogeL. HallstenssonK. RingstadL. JohanssonJ. AnderssonT. DavoudiM. LarssonP.T. MahlapuuM. HåkanssonJ. AnderssonM. Cubosomes for topical delivery of the antimicrobial peptide LL-37.Eur. J. Pharm. Biopharm.2019134606710.1016/j.ejpb.2018.11.00930445164
    [Google Scholar]
  6. PanX. HanK. PengX. YangZ. QinL. ZhuC. HuangX. ShiX. DianL. LuM. WuC. Nanostructured cubosomes as advanced drug delivery system.Curr. Pharm. Des.201319356290629710.2174/138161281131935000623470001
    [Google Scholar]
  7. GaballaS.A. El GarhyO.H. AbdelkaderH. Cubosomes: Composition, preparation, and drug delivery applications.J. Adv. Biomed. Pharm. Sci.20203119
    [Google Scholar]
  8. FornasierM. BiffiS. BortotB. MacorP. ManhartA. WurmF.R. MurgiaS. Cubosomes stabilized by a polyphosphoester-analog of Pluronic F127 with reduced cytotoxicity.J. Colloid Interface Sci.202058028629710.1016/j.jcis.2020.07.03832688121
    [Google Scholar]
  9. JanakiramanK. KrishnaswamiV. SethuramanV. RajendranV. KandasamyR. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis.Appl. Nanosci.2019981781179610.1007/s13204‑019‑00976‑9
    [Google Scholar]
  10. TilekarK. KhadeP. KakadeS. KotwalS. PatilR. Cubosomes-A drug delivery system.Int. J. Pharm. Chem. Biol. Sci.201444812824
    [Google Scholar]
  11. BhosleA. BasteN. Nanotechnology and its therapeutic and cosmetic applications: A review.Int. J. Pharma Sci.20231101
    [Google Scholar]
  12. BaA. XaF.G. SaS. An overview of cubosomes-smart drug delivery system.Sri Ramachandra J. Med.20158114
    [Google Scholar]
  13. SpicerP.T. LynchM.L. HoathS.B. VisscherM.O. Bicontinuous Cubic Liquid Crystalline Phase and Cubosome Personal Care Delivery Systems.2014Available From: https://nonequilibrium.com/pdf/CubicLiquidCrystallineRosen.pdf
    [Google Scholar]
  14. BoydB.J. RizwanS.B. DongY.D. HookS. RadesT. Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: Hexosomes are not necessarily flat hexagonal prisms.Langmuir20072325124611246410.1021/la702971417988167
    [Google Scholar]
  15. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  16. BarrigaH.M.G. HolmeM.N. StevensM.M. Cubosomes: The next generation of smart lipid nanoparticles?Angew. Chem. Int. Ed.201958102958297810.1002/anie.20180406729926520
    [Google Scholar]
  17. TekadeA.R. AvhadG.D. A review on cubosome: A novel approach for drug delivery.Int. J. Pharm. Sci. Res.202213257910.13040/IJPSR.0975‑8232.13(2).579‑588
    [Google Scholar]
  18. BarrigaH.M.G. CesO. LawR.V. SeddonJ.M. BrooksN.J. Engineering swollen cubosomes using cholesterol and anionic lipids.Langmuir20193550165211652710.1021/acs.langmuir.9b0233631702159
    [Google Scholar]
  19. ZakariaF. AshariS.E. MatA.I.D. Abdul RahmanM.B. Recent advances in encapsulation of drug delivery (active substance) in cubosomes for skin diseases.J. Drug Deliv. Sci. Technol.20226810309710.1016/j.jddst.2022.103097
    [Google Scholar]
  20. AbourehabM.A.S. AnsariM.J. SinghA. HassanA. AbdelgawadM.A. ShrivastavP. AbualsoudB.M. AmaralL.S. PramanikS. Cubosomes as an emerging platform for drug delivery: A review of the state of the art.J. Mater. Chem. B Mater. Biol. Med.202210152781281910.1039/D2TB00031H35315858
    [Google Scholar]
  21. KaramiZ. HamidiM. Cubosomes: Remarkable drug delivery potential.Drug Discov. Today201621578980110.1016/j.drudis.2016.01.00426780385
    [Google Scholar]
  22. KaurS.D. SinghG. SinghG. SinghalK. KantS. BediN. Cubosomes as potential nanocarrier for drug delivery: A comprehensive review.J. Pharm. Res. Int.20213331B11813510.9734/jpri/2021/v33i31B31698
    [Google Scholar]
  23. SivadasanD. SultanM.H. AlqahtaniS.S. JavedS. Cubosomes in drug delivery—A comprehensive review on its structural components, preparation techniques and therapeutic applications.Biomedicines2023114111410.3390/biomedicines1104111437189732
    [Google Scholar]
  24. SureshA.M. KallingalA. Cubosomes nanoparticles: Recent advancements in drug delivery.Int. J. Med. Pharm. Sci.20201021020110.31782/IJMPS.2020.10201
    [Google Scholar]
  25. TorchilinV.P. Passive and active drug targeting: Drug delivery to tumors as an example.Handb. Exp. Pharmacol.201019719735310.1007/978‑3‑642‑00477‑3_120217525
    [Google Scholar]
  26. DuttaguptaA.S. ChaudharyH.M. JadhavK.R. KadamV.J. Cubosomes: Innovative nanostructures for drug delivery.Curr. Drug Deliv.201613448249310.2174/156720181266615022411475125707403
    [Google Scholar]
  27. KulkarniC.V. VishwapathiV.K. QuarshieA. MoinuddinZ. PageJ. KendrekarP. MasheleS.S. Self-assembled lipid cubic phase and cubosomes for the delivery of aspirin as model drug.Langmujr2017333899059915
    [Google Scholar]
  28. NounouM.M. In vitro drug release of hydrophilic and hydrophobic drug entities from liposomal dispersions and gels.Acta Pharm.200656331132419831280
    [Google Scholar]
  29. BriugliaM.L. RotellaC. McFarlaneA. LamprouD.A. Influence of cholesterol on liposome stability and on in vitro drug release.Drug Deliv. Transl. Res.20155323124210.1007/s13346‑015‑0220‑825787731
    [Google Scholar]
  30. AkhlaghiS.P. RibeiroI.R. BoydB.J. LohW. Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127 cubosomes.Colloids Surf. B Biointerfaces201614584585310.1016/j.colsurfb.2016.05.09127315333
    [Google Scholar]
  31. BryantS.J. BathkeE.K. EdlerK.J. Bottom-up cubosome synthesis without organic solvents.J. Colloid Interface Sci.20216019810510.1016/j.jcis.2021.05.07234058556
    [Google Scholar]
  32. von Halling LaierC. Sonne AlstromT. TraversB.M. Bjerg SjøltovP. RadesT. BoisenA. NielsenL.H. Evaluation of the effects of spray drying parameters for producing cubosome powder precursors.Eur. J. Pharm. Biopharm.2019135444810.1016/j.ejpb.2018.12.00830576708
    [Google Scholar]
  33. AbidN. KhanA.M. ShujaitS. ChaudharyK. IkramM. ImranM. HaiderJ. KhanM. KhanQ. MaqboolM. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review.Adv. Colloid Interface Sci.202230010259710.1016/j.cis.2021.10259734979471
    [Google Scholar]
  34. IsaacoffB.P. BrownK.A. Progress in top-down control of bottom-up assembly.Nano Letters201717116508651010.1021/acs.nanolett.7b04479
    [Google Scholar]
  35. SinghA.V. KatzA. MaharjanR.S. GadicherlaA.K. RichterM.H. HeydaJ. del PinoP. LauxP. LuchA. Coronavirus-mimicking nanoparticles (CorNPs) in artificial saliva droplets and nanoaerosols: Influence of shape and environmental factors on particokinetics/particle aerodynamics.Sci. Total Environ.202386016050310.1016/j.scitotenv.2022.16050336442637
    [Google Scholar]
  36. LinderP. ZembT. Neutrons, X-rays and light: Scattering methods applied to soft condensed matter.NetherlandsElsevier2002
    [Google Scholar]
  37. NarayananT. KonovalovO. Synchrotron scattering methods for nanomaterials and soft matter research.Materials202013375210.3390/ma1303075232041363
    [Google Scholar]
  38. BurrowsN.D. PennR.L. Cryogenic transmission electron microscopy: Aqueous suspensions of nanoscale objects.Microsc. Microanal20131961542155310.1017/S143192761301335424001937
    [Google Scholar]
  39. AngelovB. AngelovaA. DrechslerM. GaramusV.M. MutafchievaR. LesieurS. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging.Soft Matter201511183686369210.1039/C5SM00169B25820228
    [Google Scholar]
  40. SagalowiczL. AcquistapaceS. WatzkeH.J. MichelM. Study of liquid crystal space groups using controlled tilting with cryogenic transmission electron microscopy.Langmuir20072324120031200910.1021/la701410n17949111
    [Google Scholar]
  41. HassanP.A. RanaS. VermaG. Making sense of Brownian motion: Colloid characterization by dynamic light scattering.Langmuir201531131210.1021/la501789z25050712
    [Google Scholar]
  42. BhattacharjeeS. DLS and zeta potential – What they are and what they are not?J. Control. Release201623533735110.1016/j.jconrel.2016.06.01727297779
    [Google Scholar]
  43. PalmaA.S. CasadeiB.R. LotierzoM.C. de CastroR.D. BarbosaL.R.S. A short review on the applicability and use of cubosomes as nanocarriers.Biophys. Rev.202315455356710.1007/s12551‑023‑01089‑y37681099
    [Google Scholar]
  44. ShalabyR.A. El-GazayerlyO. AbdallahM. Cubosomal betamethasone- salicylic acid nano drug delivery system for enhanced management of scalp psoriasis.Int. J. Nanomedicine2022171659167710.2147/IJN.S34543035444415
    [Google Scholar]
  45. GudjonssonJ.E. JohnstonA. SigmundsdottirH. ValdimarssonH. Immunopathogenic mechanisms in psoriasis.Clin. Exp. Immunol.200313511810.1111/j.1365‑2249.2004.02310.x14678257
    [Google Scholar]
  46. BergqvistC. EzzedineK. Vitiligo: A review.Dermatology2020236657159210.1159/00050610332155629
    [Google Scholar]
  47. HarmanD. Aging: Overview.Ann. N. Y. Acad. Sci.2001928112110.1111/j.1749‑6632.2001.tb05631.x11795501
    [Google Scholar]
  48. MoiemenN.S. LeeK.C. JooryK. History of burns: The past, present and the future.Burns Trauma20142416918010.4103/2321‑3868.14362027574647
    [Google Scholar]
  49. DamianiG. EggenhöffnerR. PigattoP.D.M. BragazziN.L. Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature.Bioact. Mater.2019438038610.1016/j.bioactmat.2019.11.00331872162
    [Google Scholar]
  50. BerkeR. SinghA. GuralnickM. Atopic dermatitis: An overview.Am. Fam. Physician2012861354222962911
    [Google Scholar]
  51. ZhuX. Radovic-MorenoA.F. WuJ. LangerR. ShiJ. Nanomedicine in the management of microbial infection–overview and perspectives.Nano Today20149447849825267927
    [Google Scholar]
  52. FitzpatrickM.C. BauchC.T. TownsendJ.P. GalvaniA.P. Modelling microbial infection to address global health challenges.Nat. Microbiol.20194101612161910.1038/s41564‑019‑0565‑831541212
    [Google Scholar]
  53. HauserA.R. JainM. Bar-MeirM. McColleyS.A. Clinical significance of microbial infection and adaptation in cystic fibrosis.Clin. Microbiol. Rev.2011241297010.1128/CMR.00036‑1021233507
    [Google Scholar]
  54. GarberG. An overview of fungal infections.Drugs200161Suppl. 111210.2165/00003495‑200161001‑0000111219546
    [Google Scholar]
  55. RichardsonM.D. WarnockD.W. Fungal infection: diagnosis and management.(4th ed.)Wiley-Blackwell201210.1002/9781118321492
    [Google Scholar]
  56. HayR.J. Fungal infections.Clin. Dermatol.200624320121210.1016/j.clindermatol.2005.11.01116714201
    [Google Scholar]
  57. SanjanaA. AhmedM.G. GowdaB.H.J. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo.Mater. Today Proc.20225019720510.1016/j.matpr.2021.04.120
    [Google Scholar]
  58. KhanS. JainP. JainS. JainR. BhargavaS. JainA. Topical delivery of erythromycin through cubosomes for acne.Pharm. Nanotechnol.201861384710.2174/221173850666618020910022229424323
    [Google Scholar]
  59. El-KomyM. ShalabyS. HegazyR. Abdel HayR. SherifS. BendasE. Assessment of cubosomal alpha lipoic acid gel efficacy for the aging face: A single-blinded, placebo-controlled, right-left comparative clinical study.J. Cosmet. Dermatol.201716335836310.1111/jocd.1229827873449
    [Google Scholar]
  60. MorsiN.M. AbdelbaryG.A. AhmedM.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization.Eur. J. Pharm. Biopharm.201486217818910.1016/j.ejpb.2013.04.01823688805
    [Google Scholar]
  61. YangZ. ChenM. YangM. ChenJ. FangW. XuP. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection.Int. J. Nanomedicine2014932733624421641
    [Google Scholar]
  62. LaiX. DingY. WuC.M. ChenX. JiangJ. HsuH.Y. WangY. Le BrunA.P. SongJ. HanM.L. LiJ. ShenH.H. Phytantriol-based cubosome formulation as an antimicrobial against lipopolysaccharide-deficient gram-negative bacteria.ACS Appl. Mater. Interfaces20201240444854449810.1021/acsami.0c1330932942850
    [Google Scholar]
  63. AhmedS.M. Cubosomes as nanocarriers for anticancer therapy: Recent developments.Nanomedicine2021164337349
    [Google Scholar]
  64. PatelS.P. Topical cubosome formulations for dermal drug delivery.Drug Deliv. Transl. Res.202010513581371
    [Google Scholar]
  65. GuptaH. Nanotechnology-based ophthalmic delivery systems: Focus on cubosomes.Int. J. Pharm.2019570118663
    [Google Scholar]
  66. KassemM.A. Oral bioavailability improvement of poorly soluble drugs using cubosomes.J. Pharm. Sci.202010972132214110.1016/j.xphs.2020.03.009
    [Google Scholar]
  67. Al-HallakM.N. Cubosome adjuvants for next-generation vaccines.Vaccine Dev. Ther.2022212231
    [Google Scholar]
  68. SinghD. Antimicrobial activity of cubosomes: A novel delivery system.J. Antimicrob. Chemother.201873412341242
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128358558250417111626
Loading
/content/journals/dmbl/10.2174/0118723128358558250417111626
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test