Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Infrared spectroscopy has emerged as a powerful analytical technique with diverse applications in the pharmaceutical and bio-allied domains. This article provides an in-depth exploration of the method's utility in pharmaceutical applications, including identification, moisture content determination, and assay of pharmaceutical compounds. Additionally, it delves into the extensive role of infrared spectroscopy in bio-allied research, encompassing the investigation of structural arrangements, interactions, mobility, and dynamics of biomolecules. In the realm of pharmaceuticals, infrared spectroscopy stands as a reliable tool for the identification of compounds, ensuring the authenticity and quality control of drug formulations. The capacity to measure moisture content is crucial in ensuring the stability and efficacy of medicinal goods. Furthermore, the assay of pharmaceutical compounds by infrared spectroscopy offers a rapid and precise means of quantifying active ingredients, supporting the development and production of pharmaceutical formulations. In the bio-allied field, the versatility of infrared spectroscopy becomes evident in its contribution to understanding the intricate details of biomolecular structures and interactions. The method plays a pivotal role in investigating the structural arrangements of macromolecules, shedding light on the complexities of biological systems. Additionally, infrared spectroscopy facilitates the assessment of body fluids, enabling non-invasive diagnostics and monitoring of health conditions. The article also explores the application of infrared spectroscopy in the analysis of blood, providing valuable insights into hematological parameters and contributing to diagnostic methodologies. The method's wide-ranging influence on healthcare and forensic sciences is demonstrated by its promise in cancer detection, forensic investigations, and hematological illness monitoring.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128333332250207051737
2025-02-26
2025-11-17
Loading full text...

Full text loading...

References

  1. AtkinsP. De Paula J. Physical chemistry.8th edOxford, UKOxford University Press2006
    [Google Scholar]
  2. HofM. Basics of optical spectroscopy.Handbook of spectroscopy GauglitzG. Vo-DinhT. Weinheim: WILEY-VCH VerlagGmbH & CoGermany200339e4710.1002/3527602305.ch3
    [Google Scholar]
  3. BettiniA. A course in classical physics. Waves and light.Springer20164
    [Google Scholar]
  4. SvanbergS. Atomic and molecular spectroscopy. Basic aspects and practical applications.ChamSpringer2001
    [Google Scholar]
  5. GrabskaJ. IshigakiM. BecK.B. WojcikM.J. OzakiY. Structure and near- infrared spectra of saturated and unsaturated carboxylic acids. An insight from anharmonic DFT calculations.J. Phys. Chem. A.2017121183437e345110.1021/acs.jpca.7b02053
    [Google Scholar]
  6. IngleJ.D.J. CrouchS.R. Spectrochemical analysis.NJPrentice Hall1988
    [Google Scholar]
  7. MayerhöferT.G. HöferS. PoppJ. Deviations from Beer’s law on the microscale – nonadditivity of absorption cross sections.Phys. Chem. Chem. Phys.201921199793980110.1039/C9CP01987A31025671
    [Google Scholar]
  8. LuypaertJ. MassartD.L. HeydenV.Y. Near-infrared spectroscopy applications in pharmaceutical analysis.Talanta200772386588310.1016/j.talanta.2006.12.02319071701
    [Google Scholar]
  9. AndreM. Multivariate analysis and classification of the chemical quality of 7-aminocephalosporanic acid using near-infrared reflectance spectroscopy.Anal. Chem.200375143460346710.1021/ac026393x14570198
    [Google Scholar]
  10. BlancoM. RomeroM.A. Near-infrared libraries in the pharmaceutical industry: A solution for identity confirmation.Analyst2001126122212221710.1039/b105012p11814204
    [Google Scholar]
  11. UlmschneiderM. PénigaultE. Direct identification of key intermediates in containers using Fourier-transform near-infrared spectroscopy through the protective polyethylene primary packaging.Analysis2000282136140
    [Google Scholar]
  12. DreassiE. CeramelliG. CortiP. LonardiS. PerruccioP.L. Near-infrared reflectance spectrometry in the determination of the physical state of primary materials in pharmaceutical production.Analyst199512041005100810.1039/an9952001005
    [Google Scholar]
  13. GustafssonC. NyströmC. LennholmH. BonferoniM.C. CaramellaC.M. Characteristics of hydroxypropyl methylcellulose influencing compactibility and prediction of particle and tablet properties by infrared spectroscopy.J. Pharm. Sci.200392349450410.1002/jps.1032312587111
    [Google Scholar]
  14. GrunewaldH. KurowskiC. TimmD. GrummischU. MeyhackU. Rapid non-destructive raw material identification in the cosmetic industry with near-infrared spectroscopy.J. Near. Infrared. Spectrosc.19986AA215A22210.1255/jnirs.197
    [Google Scholar]
  15. MroczykW.B. MichalskiK.M. Application of modern computer methods for recognition of chemical compounds in NIRS.Comput. Chem.199822111912210.1016/S0097‑8485(97)00042‑9
    [Google Scholar]
  16. WargoD.J. DrennenJ.K. Near-infrared spectroscopic characterization of pharmaceutical powder blends.J. Pharm. Biomed. Anal.199614111415142310.1016/0731‑7085(96)01739‑68877847
    [Google Scholar]
  17. CandolfiA. MaesschalckD.R. Jouan-RimbaudD. HaileyP.A. MassartD.L. The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra.J. Pharm. Biomed. Anal.199921111513210.1016/S0731‑7085(99)00125‑910701919
    [Google Scholar]
  18. PluggeW. van der VliesC. Near-infrared spectroscopy as an alternative to assess compliance of ampicillin trihydrate with compendial specifications.J. Pharm. Biomed. Anal.199311643544210.1016/0731‑7085(93)80154‑S8399514
    [Google Scholar]
  19. KreftK. KozamernikB. UrlebU. Qualitative determination of polyvinylpyrrolidone type by near-infrared spectrometry.Int. J. Pharm.199917711610.1016/S0378‑5173(98)00265‑810205599
    [Google Scholar]
  20. EbubeN.K. ThosarS.S. RobertsR.A. KemperM.S. RubinovitzR. MartinD.L. ReierG.E. WheatleyT.A. ShuklaA.J. Application of near-infrared spectroscopy for nondestructive analysis of Avicel powders and tablets.Pharm. Dev. Technol.199941192610.1080/1083745990898422010027209
    [Google Scholar]
  21. KrämerK. EbelS. Application of NIR reflectance spectroscopy for the identification of pharmaceutical excipients.Anal. Chim. Acta2000420215516110.1016/S0003‑2670(00)00877‑1
    [Google Scholar]
  22. LangkildeF.W. SvantessonA. Identification of celluloses with Fourier-Transform (FT) mid-infrared, FT-Raman and near-infrared spectrometry.J. Pharm. Biomed. Anal.1995134-540941410.1016/0731‑7085(95)01298‑Y9696549
    [Google Scholar]
  23. BlancoM. VillarA. Development and validation of a method for the polymorphic analysis of pharmaceutical preparations using near infrared spectroscopy.J. Pharm. Sci.200392482383010.1002/jps.1033712661067
    [Google Scholar]
  24. BlancoM. VillarA. Polymorphic analysis of a pharmaceutical preparation by NIR spectroscopy.Analyst2000125122311231410.1039/b005746k11219073
    [Google Scholar]
  25. AldridgeP.K. EvansC.L. WardH.W.II ColganS.T. BoyerN. GemperlineP.J. Near-IR detection of polymorphism and process-related substances.Anal. Chem.1996686997100210.1021/ac950993x
    [Google Scholar]
  26. BradfieldK.B. ForbesR.A. Development and validation of an analytical method for identification of granulated nicarbazin by near infrared reflectance spectroscopy.J. Near Infrared Spectrosc.199751416510.1255/jnirs.99
    [Google Scholar]
  27. BlancoM. EustaquioA. GonzálezJ.M. SerranoD. Identification and quantitation assays for intact tablets of two related pharmaceutical preparations by reflectance near-infrared spectroscopy: Validation of the procedure.J. Pharm. Biomed. Anal.200022113914810.1016/S0731‑7085(99)00274‑510727133
    [Google Scholar]
  28. DreassiE. CeramelliG. SaviniL. CortiP. PerruccioP.L. LonardiS. Application of near-infrared reflectance analysis to the integrated control of antibiotic tablet production.Analyst1995120231932310.1039/an9952000319
    [Google Scholar]
  29. BlancoM. CoelloJ. IturriagaH. MaspochS. de la PezuelaC. RussoE. Control analysis of a pharmaceutical preparation by near-infrared reflectance spectroscopy.Anal. Chim. Acta1994298218319110.1016/0003‑2670(94)00275‑4
    [Google Scholar]
  30. ForbesR.A. PersingerM.L. SmithD.R. Development and validation of analytical methodology for near-infrared conformance testing of pharmaceutical intermediates.J. Pharm. Biomed. Anal.199615331532710.1016/S0731‑7085(96)01875‑48951691
    [Google Scholar]
  31. LaasonenM. Harmia-PulkkinenT. SimardC.L. MichielsE. RäsänenM. VuorelaH. Fast identification of Echinacea purpurea dried roots using near-infrared spectroscopy.Anal. Chem.200274112493249910.1021/ac011108f12069228
    [Google Scholar]
  32. KudoM. WattR.A. MoffatA.C. Rapid identification of Digitalis purpurea using near-infrared reflectance spectroscopy.J. Pharm. Pharmacol.200052101271127710.1211/002235700177725211092572
    [Google Scholar]
  33. Ionita-ManzatuM ScarlatI VasilescuM PuicaM BlagoiG IlieM Non invasive analysis of natural resin extracts.Near. Infrared. Spectrosc.19986AA211A21410.1255/jnirs.196
    [Google Scholar]
  34. HerkertT. PrinzH. KovarK.A. One hundred percent online identity check of pharmaceutical products by near-infrared spectroscopy on the packaging line.Eur. J. Pharm. Biopharm.200151191610.1016/S0939‑6411(00)00126‑011154898
    [Google Scholar]
  35. BlancoM. CoelloJ. IturriagaH. MaspochS. RoviraE. Determination of water in ferrous lactate by near infrared reflectance spectroscopy with a fibre-optic probe.J. Pharm. Biomed. Anal.199716225526210.1016/S0731‑7085(97)00049‑69408841
    [Google Scholar]
  36. ZhouX. HinesP. BorerM.W. Moisture determination in hygroscopic drug substances by near infrared spectroscopy.J. Pharm. Biomed. Anal.199817221922510.1016/S0731‑7085(97)00182‑99638573
    [Google Scholar]
  37. DunkoA. DovletoglouA. Moisture assay of an antifungal by near-infrared diffuse reflectance spectroscopy.J. Pharm. Biomed. Anal.200228114515410.1016/S0731‑7085(01)00642‑211861117
    [Google Scholar]
  38. ParrisJ. AiriauC. EscottR. RydzakJ. CrocombeR. Monitoring API drying operations with NIR.Spectroscopy20052023442
    [Google Scholar]
  39. HicksM.B. ZhouG.X. LiebermanD.R. AntonucciV. GeZ. ShiY.J. CameronM. LynchJ.E. In situ moisture determination of a cytotoxic compound during process optimization.J. Pharm. Sci.200392352953510.1002/jps.1031812587114
    [Google Scholar]
  40. SánchezM.S. BertranE. SarabiaL.A. OrtizM.C. BlancoM. CoelloJ. Quality control decisions with near infrared data.Chemom. Intell. Lab. Syst.2000531-2698010.1016/S0169‑7439(00)00094‑0
    [Google Scholar]
  41. ZhouG.X. GeZ. DorwartJ. IzzoB. KukuraJ. BickerG. WyvrattJ. Determination and differentiation of surface and bound water in drug substances by near infrared spectroscopy.J. Pharm. Sci.20039251058106510.1002/jps.1037512712426
    [Google Scholar]
  42. AiraksinenS. KarjalainenM. ShevchenkoA. WestermarckS. LeppänenE. RantanenJ. YliruusiJ. Role of water in the physical stability of solid dosage formulations.J. Pharm. Sci.200594102147216510.1002/jps.2041116136577
    [Google Scholar]
  43. JonesJ.A. LastI.R. MacDonaldB.F. PrebbleK.A. Development and transferability of near-infrared methods for determination of moisture in a freeze-dried injection product.J. Pharm. Biomed. Anal.19931111-121227123110.1016/0731‑7085(93)80108‑D8123738
    [Google Scholar]
  44. LastI.R. PrebbleK.A. Suitability of near-infrared methods for the determination of moisture in a freeze-dried injection product containing different amounts of the active ingredient.J. Pharm. Biomed. Anal.19931111-121071107610.1016/0731‑7085(93)80084‑E8123715
    [Google Scholar]
  45. LinT.P. HsuC.C. Determination of residual moisture in lyophilized protein pharmaceuticals using a rapid and non-invasive method: Near infrared spectroscopy.PDA J. Pharm. Sci. Technol.200256419620512181804
    [Google Scholar]
  46. DreassiE. CeramelliG. CortiP. PerruccioP.L. LonardiS. Application of near-infrared reflectance spectrometry to the analytical control of pharmaceuticals: Ranitidine hydrochloride tablet production.Analyst1996121221922210.1039/an99621002198849039
    [Google Scholar]
  47. BerntssonO. ZackrissonG. ÖstlingG. Determination of moisture in hard gelatin capsules using near-infrared spectroscopy: Applications to at-line process control of pharmaceutics.J. Pharm. Biomed. Anal.199715789590010.1016/S0731‑7085(96)01926‑79160255
    [Google Scholar]
  48. BroadN.W. JeeR.D. MoffatA.C. EavesM.J. MannW.C. DzikiW. Non-invasive determination of ethanol, propylene glycol and water in a multi-component pharmaceutical oral liquid by direct measurement through amber plastic bottles using Fourier transform near-infrared spectroscopy.Analyst2000125112054205810.1039/b006789j11193093
    [Google Scholar]
  49. SeminD.J. MaloneT.J. PaleyM.T. WoodsP.W. A novel approach to determine water content in DMSO for a compound collection repository.SLAS Discov.200510656857210.1177/108705710527636916103417
    [Google Scholar]
  50. MiwaA. YajimaT. ItaiS. Prediction of suitable amount of water addition for wet granulation.Int. J. Pharm.20001951-2819210.1016/S0378‑5173(99)00376‑210675686
    [Google Scholar]
  51. FrakeP. GreenhalghD. GriersonS.M. HempenstallJ.M. RuddD.R. Process control and end-point determination of a fluid bed granulation by application of near infra-red spectroscopy.Int. J. Pharm.19971511758010.1016/S0378‑5173(97)04894‑1
    [Google Scholar]
  52. RantanenJ. RäsänenE. TenhunenJ. KänsäkoskiM. MannermaaJ.P. YliruusiJ. In-line moisture measurement during granulation with a four-wavelength near infrared sensor: An evaluation of particle size and binder effects.Eur. J. Pharm. Biopharm.200050227127610.1016/S0939‑6411(00)00096‑510962238
    [Google Scholar]
  53. RantanenJ. LehtolaS. RametP. MannermaaJ.P. YliruusiJ. On-line monitoring of moisture content in an instrumented fluidized bed granulator with a multi-channel NIR moisture sensor.Powd. Technol.992163170
    [Google Scholar]
  54. LuukkonenP. RantanenJ. MakelaK. RasanenE. TenhunenJ. Characterization of wet massing behavior of silicified microcrystalline cellulose and alpha-lactose monohydrate using near-infrared spectroscopy.Pharm. Dev. Technol.2001611910.1081/PDT‑10000000711247268
    [Google Scholar]
  55. LiW. WorosilaG.D. WangW. MascaroT. Determination of polymorph conversion of an active pharmaceutical ingredient in wet granulation using NIR calibration models generated from the premix blends.J. Pharm. Sci.200594122800280610.1002/jps.2050116258990
    [Google Scholar]
  56. DerbyshireH.M. FeldmanY. BlandC.R. BroadheadJ. SmithG. A study of the molecular properties of water in hydrated mannitol.J. Pharm. Sci.20029141080108810.1002/jps.1011111948547
    [Google Scholar]
  57. StephensonG.A. ForbesR.A. Reutzel-EdensS.M. Characterization of the solid state: Quantitative issues.Adv. Drug Deliv. Rev.2001481679010.1016/S0169‑409X(01)00099‑011325477
    [Google Scholar]
  58. ForinaM. CasolinoM.C. de la Pezuela MartinezC. Multivariate calibration: Applications to pharmaceutical analysis.J. Pharm. Biomed. Anal.1998181-2213310.1016/S0731‑7085(98)00153‑89863940
    [Google Scholar]
  59. BlancoM. CoelloJ. IturriagaH. MaspochS. de la PezuelaC. Calibration in near infrared diffuse reflectance spectroscopy: A comparative study of various methods.J. Near Infrared Spectrosc.199752677510.1255/jnirs.100
    [Google Scholar]
  60. Jouan-RimbaudD. WalczakB. MassartD.L. LastI.R. PrebbleK.A. Comparison of multivariate methods based on latent vectors and methods based on wavelength selection for the analysis of near-infrared spectroscopic data.Anal. Chim. Acta1995304328529510.1016/0003‑2670(94)00590‑I
    [Google Scholar]
  61. BlancoM. CoelloJ. IturriagaH. MaspochS. SerranoD. Near-infrared analytical control of pharmaceuticals: A single calibration model from mixed phase to coated tablets.Analyst1998123112307231210.1039/a805946b10396808
    [Google Scholar]
  62. BlancoM. CoelloJ. MontoliuI. RomeroM.A. Orthogonal signal correction in near infrared calibration.Anal. Chim. Acta2001434112513210.1016/S0003‑2670(01)00820‑0
    [Google Scholar]
  63. AbrahamssonC. JohanssonJ. SparénA. LindgrenF. Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets.Chemom. Intell. Lab. Syst.2003691-231210.1016/S0169‑7439(03)00064‑9
    [Google Scholar]
  64. GoicoecheaH.C. OlivieriA.C. A comparison of orthogonal signal correction and net analyte preprocessing methods. Theoretical and experimental study.Chemom. Intell. Lab. Syst.2001562738110.1016/S0169‑7439(01)00110‑1
    [Google Scholar]
  65. CogdillR.P. AndersonC.A. Efficient spectroscopic calibration using net analyte signal and pure component projection methods.J. Near Infr. Spect.2005133119131
    [Google Scholar]
  66. GottfriesJ. DepuiH. FranssonM. JongeneelenM. JosefsonM. LangkildeF.W. WitteD.T. Vibrational spectrometry for the assessment of active substance in metoprolol tablets: A comparison between transmission and diffuse reflectance near-infrared spectrometry.J. Pharm. Biomed. Anal.199614111495150310.1016/0731‑7085(96)01800‑68877855
    [Google Scholar]
  67. NikolichK. SergidesC. PittasA. The application of near infrared reflectance spectroscopy (NIRS) for the quantitative analysis of hydrocortisone in primary materials.J. Serb. Chem. Soc.200166318919810.2298/JSC0103189N
    [Google Scholar]
  68. LonardiS. VivianiR. MosconiL. BernuzziM. CortiP. DreassiE. MurratzuC. CorbiniG. Drug analysis by near-infra-red reflectance spectroscopy. Determination of the active ingredient and water content in antibiotic powders.J. Pharm. Biomed. Anal.19897330330810.1016/0731‑7085(89)80097‑42488631
    [Google Scholar]
  69. JacobssonS.P. CarlssonM. JönssonU. NilssonG. Quantitative determination of sulfasalazine by near-infrared spectroscopy and multivariate analysis in reflectance mode with a fibre-optic probe.J. Pharm. Biomed. Anal.1995134-541541710.1016/0731‑7085(95)01304‑49696550
    [Google Scholar]
  70. BerntssonO. DanielssonL.G. JohanssonM.O. FolestadS. Quantitative determination of content in binary powder mixtures using diffuse reflectance near infrared spectrometry and multivariate analysis.Anal. Chim. Acta20004191455410.1016/S0003‑2670(00)00975‑2
    [Google Scholar]
  71. DijibaY.K. NiemczykT.M. Determination of ephedrine hydrochloride in mixtures of ephedrine hydrochloride and pseudoephedrine hydrochloride using near infrared spectroscopy.J. Near Infrared Spectrosc.200513315516010.1255/jnirs.468
    [Google Scholar]
  72. BećK.B. GrabskaJ. HuckC.W. Biomolecular and bioanalytical applications of infrared spectroscopy – A review.Anal. Chim. Acta2020113315017710.1016/j.aca.2020.04.01532993867
    [Google Scholar]
  73. MovasaghiZ. RehmanS. RehmanU.D.I. ur Rehman DI. Fourier transform infrared (FTIR) spectroscopy of biological tissues.Appl. Spectrosc. Rev.200843213417910.1080/05704920701829043
    [Google Scholar]
  74. KrimmS. BandekarJ. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins.Adv. Protein Chem.19863818136410.1016/S0065‑3233(08)60528‑83541539
    [Google Scholar]
  75. BarthA. Infrared spectroscopy of proteins.Biochim. Biophys. Acta Bioenerg.2007176791073110110.1016/j.bbabio.2007.06.00417692815
    [Google Scholar]
  76. AmiD. MereghettiP. LeriM. GiorgettiS. NatalelloA. DogliaS.M. StefaniM. BucciantiniM. A FTIR microspectroscopy study of the structural and biochemical perturbations induced by natively folded and aggregated transthyretin in HL-1 cardiomyocytes.Sci. Rep.2018811250810.1038/s41598‑018‑30995‑530131519
    [Google Scholar]
  77. UsoltsevD. SitnikovaV. KajavaA. UspenskayaM. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions.Biomolecules20199835910.3390/biom908035931409012
    [Google Scholar]
  78. Olsztyńska-JanusS. PietruszkaA. KiełbowiczZ. CzarneckiM.A. ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect.Spectrochim. Acta A Mol. Biomol. Spectrosc.2018188374910.1016/j.saa.2017.07.00128689077
    [Google Scholar]
  79. MeadeA.D. HoweO. UnterreinerV. SockalingumG.D. ByrneH.J. LyngF.M. Vibrational spectroscopy in sensing radiobiological effects: Analyses of targeted and non-targeted effects in human keratinocytes.Faraday Discuss.201618721323410.1039/C5FD00208G27043923
    [Google Scholar]
  80. Gourion-ArsiquaudS. MarcottC. HuQ. BoskeyA.L. Studying variations in bone composition at nano-scale resolution: A preliminary report.Calcif. Tissue Int.201495541341810.1007/s00223‑014‑9909‑925155443
    [Google Scholar]
  81. KrummelA.T. ZanniM.T. DNA vibrational coupling revealed with two-dimensional infrared spectroscopy: Insight into why vibrational spectroscopy is sensitive to DNA structure.J. Phys. Chem. B200611028139911400010.1021/jp062597w16836352
    [Google Scholar]
  82. MiddletonC.T. MarekP. CaoP. ChiuC. SinghS. WoysA.M. PabloD.J.J. RaleighD.P. ZanniM.T. Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor.Nat. Chem.20124535536010.1038/nchem.129322522254
    [Google Scholar]
  83. BakerM.J. HussainS.R. LovergneL. UntereinerV. HughesC. ŁukaszewskiR.A. ThiéfinG. SockalingumG.D. Developing and understanding biofluid vibrational spectroscopy: A critical review.Chem. Soc. Rev.20164571803181810.1039/C5CS00585J26612430
    [Google Scholar]
  84. LovergneL. BouzyP. UntereinerV. GarnotelR. BakerM.J. ThiéfinG. SockalingumG.D. Biofluid infrared spectro-diagnostics: Pre-analytical considerations for clinical applications.Faraday Discuss.201618752153710.1039/C5FD00184F27048927
    [Google Scholar]
  85. BassanP. SachdevaA. ShanksJ.H. BrownM.D. ClarkeN.W. GardnerP. Automated high-throughput assessment of prostate biopsy tissue using infrared spectroscopic chemical imaging. Proc. SPIE.J. Med. Imag.2014904190410D10.1117/12.2043290
    [Google Scholar]
  86. ChanK.L.A. KazarianS.G. Attenuated total reflection Fouriertransform infrared (ATR-FTIR) imaging of tissues and live cells.Chem. Soc. Rev.2016451850e186410.1039/c5cs00515a
    [Google Scholar]
  87. VirklerK. LednevI.K. Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene.Forensic Sci. Int.20091881-311710.1016/j.forsciint.2009.02.01319328638
    [Google Scholar]
  88. WeberK. The use of chemiluminescence of Luminol in forensic medicine and toxicology. I. Identification of blood stains.Dtsch. Z. Gesamte Gerichtl. Med.19665734104235994184
    [Google Scholar]
  89. WatsonN. The analysis of body fluids, crime scene to court; the essentials of forensic science.Cambridge, UKRoyal Society of Chemist2004377.e413
    [Google Scholar]
  90. OrphanouC.M. Walton-WilliamsL. MountainH. CassellaJ. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy.Forensic. Sci. Int.2015252e10e1610.1016/j.forsciint.2015.04.020
    [Google Scholar]
  91. MistekE. LednevI.K. Identification of species’ blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy.Anal. Bioanal. Chem.2015407247435744210.1007/s00216‑015‑8909‑626195028
    [Google Scholar]
  92. MistekE. LednevI.K. FT-IR spectroscopy for identification of biological stains for forensic purposes.Spectroscopy2018338819
    [Google Scholar]
  93. MalinsD.C. PolissarN.L. GunselmanS.J. Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage.Proc. Natl. Acad. Sci. USA19969362557256310.1073/pnas.93.6.25578637913
    [Google Scholar]
  94. LeeL.S. ChiC.W. LiuH.C. ChengC.L. LiM.J. LinS.Y. Assessment of protein conformation in human benign and malignant astrocytomas by reflectance Fourier transform infrared microspectroscopy.Oncol. Res.1998101232710.3727/0965040087840460729613454
    [Google Scholar]
  95. WoodB.R. QuinnM.A. TaitB. AshdownM. HislopT. RomeoM. McNaughtonD. FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies.Biospectroscopy199842759110.1002/(SICI)1520‑6343(1998)4:2<75::AID‑BSPY1>3.0.CO;2‑R9557903
    [Google Scholar]
  96. AndrusP.G.L. StricklandR.D. Cancer grading by Fourier transform infrared spectroscopy.Biospectroscopy199841374610.1002/(SICI)1520‑6343(1998)4:1<37::AID‑BSPY4>3.0.CO;2‑P9547013
    [Google Scholar]
  97. WongP.T.T.A.I.P. Conference proceedings.Press. Sci. Tech.199430914311434
    [Google Scholar]
  98. BenedettiE. PalatresiM.P. VergaminiP. PapineschiF. SpremollaG. New possibilities of research in chronic lymphatic leukemia by means of fourier transform-infrared spectroscopy-II.Leuk. Res.1985981001100810.1016/0145‑2126(85)90070‑04046631
    [Google Scholar]
  99. RaoufG.A. ElkhateebW.F. ToumahH. QuariM. JaouniS. ElkebbaK. Infrared spectroscopy of human bone marrow: Evidence of structural changes during acute leukemia.Inter. J. Nano Biomat.2009211910.1504/IJNBM.2009.027724
    [Google Scholar]
  100. ChaberR. KowalA. JakubczykP. ArthurC. ŁachK. Wojnarowska-NowakR. KuszK. ZawlikI. PaszekS. CebulskiJ. A preliminary study of FTIR spectroscopy as a potential non-invasive screening tool for pediatric precursor B lymphoblastic leukemia.Molecules2021264117410.3390/molecules2604117433671817
    [Google Scholar]
  101. LiuK.Z. TsangK.S. LiC.K. ShawR.A. MantschH.H. Infrared spectroscopic identification of beta-thalassemia.Clin. Chem.20034971125113210.1373/49.7.112512816909
    [Google Scholar]
  102. GulekenZ. CeylanZ. AdayA. BayrakA.G. Hindilerdenİ.Y. NalçacıM. JakubczykP. JakubczykD. DepciuchJ. FTIR- based serum structure analysis in molecular diagnostics of essential thrombocythemia disease.J. Photochem. Photobiol. B202324511273410.1016/j.jphotobiol.2023.11273437295134
    [Google Scholar]
  103. MovasaghiZ. RehmanS. RehmanU.D.I. Dr. Fourier transform infrared (FTIR) spectroscopy of biological tissues.Appl. Spectrosc. Rev.200843213417910.1080/05704920701829043
    [Google Scholar]
  104. NaumannD. HelmD. LabischinskiH. Microbiological characterizations by FT-IR spectroscopy.Nature19913516321818210.1038/351081a01902911
    [Google Scholar]
  105. EllisD.I. GoodacreR. Metabolic fingerprinting in disease diagnosis: Biomedical applications of infrared and Raman spectroscopy.Analyst2006131887588510.1039/b602376m17028718
    [Google Scholar]
  106. HelmD. LabischinskiH. NaumannD. Elaboration of a procedure for identification of bacteria using Fourier-Transform IR spectral libraries: A stepwise correlation approach.J. Microbiol. Methods199114212714210.1016/0167‑7012(91)90042‑O
    [Google Scholar]
  107. BoschA. MinA. Fourier transform infrared spectroscopy for rapid identification of nonfermenting gramnegative bacteria isolated from sputum samples from cystic fibrosis patients.J. Clin. Microbiol.20084620082535e2546
    [Google Scholar]
  108. EssendoubiM. ToubasD. LepouseC. LeonA. BourgeadeF. PinonJ.M. ManfaitM. SockalingumG.D. Epidemiological investigation and typing of Candida glabrata clinical isolates by FTIR spectroscopy.J. Microbiol. Methods200771332533110.1016/j.mimet.2007.09.01818022718
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128333332250207051737
Loading
/content/journals/dmbl/10.2174/0118723128333332250207051737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test