Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Background

Stability-indicating methods are essential in pharmaceutical analysis to ensure the efficacy and safety of drugs throughout their shelf life. Atenolol and indapamide, both widely prescribed for hypertension, require robust analytical methods for the detection and quantification of their degradation products. Ensuring their stability is vital to maintaining therapeutic efficacy and safety, necessitating thorough analytical methods. A stability-indicating HPLC method facilitates the assessment of degradation products, contributing significantly to pharmaceutical quality control measures. HPLC is widely preferred due to its high precision, accuracy, and ability to separate complex mixtures effectively.

Objective

The objective of this study was to develop and validate a sensitive and robust stability-indicating HPLC method for simultaneously identifying atenolol and indapamide, even in the presence of their degradation products. The method proposed can enable comprehensive analysis under various stress conditions to monitor the stability and efficacy of the pharmaceutical compounds.

Methods

Chromatographic separation was achieved using a Shim-pack C column (250 × 4.6 mm i.d., 5 μm), with a mobile phase consisting of acetonitrile, methanol, and phosphate buffer (20:30:50 v/v/v) at pH 3.5. Detection was performed at 254 nm using a photodiode array (PDA) detector, with the column temperature maintained at 30°C. Atenolol and indapamide were subjected to stress testing under acidic, alkaline, oxidative, thermal, and photolytic conditions to evaluate degradation behavior. Specificity was confirmed through peak purity analysis.

Results

The developed HPLC method provided excellent resolution, with retention times of atenolol and indapamide being 2.69 minutes and 10.07 minutes, respectively. Both drugs showed sensitivity to acidic, basic, and oxidative conditions, but they remained stable under thermal and photolytic stress. Degradation kinetics under acidic, alkaline, and oxidative conditions demonstrated the method's effectiveness in identifying degradation pathways and products. No interference from excipients or degradation products was observed, confirming the method's specificity. The technique achieved larger eco-analytical scale (78.5) and AGREE (0.59) scores compared to previously reported methods, indicating reduced environmental impact through eco-friendly solvents, minimized waste, and improved energy efficiency.

Conclusion

The developed stability-indicating HPLC method successfully identified and quantified atenolol and indapamide in the presence of degradation products. It offered high specificity, precision, and robustness, making it ideal for routine pharmaceutical analysis. The method distinguished between the active drugs and degradation products under various stress conditions, ensuring the long-term stability and efficacy of atenolol and indapamide formulations. These findings can significantly contribute to pharmaceutical quality control, ensuring drugs’ safety and effectiveness.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128346156250217055422
2025-03-13
2025-10-01
Loading full text...

Full text loading...

References

  1. BasileJ. BlochM.J. BakrisG.L. WhiteW.B. KuninsL. FormanJ.P. Overview of hypertension in adults.Up To Date201915659
    [Google Scholar]
  2. TziomalosK. Secondary hypertension: Novel insights.Curr. Hypertens. Rev.2020161111110.2174/157340211566619041616111631038070
    [Google Scholar]
  3. HallJ.E. OmotoA.C.M. WangZ. MoutonA. LiX. HallM.E. Pathophysiology of Hypertension. Hypertens. A companion to Braunwald’s Hear. Dis.United StatesElsevier2023718610.1016/B978‑0‑323‑88369‑6.00005‑0
    [Google Scholar]
  4. MuketeB.N. FerdinandK.C. Polypharmacy in older adults with hypertension: A comprehensive review.J. Clin. Hypertens.2016181101810.1111/jch.1262426215211
    [Google Scholar]
  5. BenetosA. RossignolP. CherubiniA. JolyL. GrodzickiT. RajkumarC. StrandbergT.E. PetrovicM. Polypharmacy in the aging patient.JAMA2015314217018010.1001/jama.2015.751726172896
    [Google Scholar]
  6. MungerM.A. Polypharmacy and combination therapy in the management of hypertension in elderly patients with co-morbid diabetes mellitus.Drugs Aging2010271187188310.2165/11538650‑000000000‑0000020964461
    [Google Scholar]
  7. GruetterC.A. AtenololxPharm: The Comprehensive Pharmacology ReferenceAmsterdam, NetherlandsElsevier20071610.1016/B978‑008055232‑3.61259‑0
    [Google Scholar]
  8. KaddouraR. PatelA. Revisiting beta-blocker therapy in heart failure with preserved ejection fraction.Curr. Probl. Cardiol.2023481210201510.1016/j.cpcardiol.2023.10201537544622
    [Google Scholar]
  9. RehmanB. SanchezD.P. PatelP. ShahS. Atenolol.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  10. DivitiisO.D. SommaS.D. PetittoM. FazioS. LigouriV. Indapamide and atenolol in the treatment of hypertension: Double-blind comparative and combination study.Curr. Med. Res. Opin.19838749350010.1185/030079983091097886354604
    [Google Scholar]
  11. MannJ.F. Choice of drug therapy in primary (essential) hypertension: Recommendations.Up-To-Date2015129
    [Google Scholar]
  12. SassardJ. BataillardA. McIntyreH. An overview of the pharmacology and clinical efficacy of indapamide sustained release.Fundam. Clin. Pharmacol.200519663764510.1111/j.1472‑8206.2005.00377.x16313275
    [Google Scholar]
  13. KhoyiM. WestfallD. IndapamidexPharm: The Comprehensive Pharmacology ReferenceAmsterdam, NetherlandsElsevier20071510.1016/B978‑008055232‑3.61927‑0
    [Google Scholar]
  14. Drugs Controller General of India. Fixed Dose Combinations Approved By DCG (I) Since 1961 to 28th.2019Available from: https://cdsco.gov.in/opencms/opencms/en/Approval_new/FDC-New-Drugs-Marketing/
  15. Indapamide1991Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Indapamide
  16. MillerR.B. A validated high-performance liquid chromatographic method for the determination of atenolol in whole blood.J. Pharm. Biomed. Anal.1991910-1284985310.1016/0731‑7085(91)80012‑X1822203
    [Google Scholar]
  17. GumustasM. OzkanS.A. A validated stability-indicating RP-LC method for the simultaneous determination of amlodipine and perindopril in tablet dosage form and their stress degradation behavior under ICH-recommended stress conditions.J. AOAC Int.201396475175710.5740/jaoacint.11‑01024000747
    [Google Scholar]
  18. AbreuD.L.R.P. CastroD.S.A.C. PedrazzoliJ.Jr Atenolol quantification in human plasma by high-performance liquid chromatography: Application to bioequivalence study.AAPS PharmSci20035211612210.1208/ps05022112866946
    [Google Scholar]
  19. YilmazB. ArslanS. AsciA. HPLC method for determination of atenolol in human plasma and application to a pharmacokinetic study in Turkey.J. Chromatogr. Sci.2012501091491910.1093/chromsci/bms09022718748
    [Google Scholar]
  20. SpanakisM. NiopasI. Determination of atenolol in human plasma by HPLC with fluorescence detection: Validation and application in a pharmacokinetic study.J. Chromatogr. Sci.201351212813210.1093/chromsci/bms11622729617
    [Google Scholar]
  21. BarotT.G. PrajapatiV. PatelP.K. ShahN. PatelL.D. A validated RP-HPLC method for simultaneous estimation of indapamide impurity (methyl nitrosoindoline) API form.Int. J. Pharm. Tech. Res.2009112871296
    [Google Scholar]
  22. CeresoleR. MoyanoM.A. PizzornoM.T. SegallA.I. Validated reversed-phase HPLC method for the determination of atenolol in the presence of its major degradation product.J. Liq. Chromatogr. Relat. Technol.200629203009301910.1080/10826070600983393
    [Google Scholar]
  23. MohammedN.S. Method development and validation of atenolol using two HPLC systems.Int. J. Pharm. Sci. Res.2017810001006
    [Google Scholar]
  24. ChatterjeeD.J. LiW.Y. HurstA.K. KodaR.T. High-performance liquid chromatographic method for determination of atenolol from human plasma and urine: Simultaneous fluorescence and ultraviolet detection.J. Liq. Chromatogr.199518479180610.1080/10826079508009273
    [Google Scholar]
  25. ChiuF.C.K. ZhangJ.N. LiR.C. RaymondK. Efficient assay for the determination of atenolol in human plasma and urine by high-performance liquid chromatography with fluorescence detection.J. Chromatogr., Biomed. Appl.1997691247347710.1016/S0378‑4347(96)00454‑99174286
    [Google Scholar]
  26. WeichA. Carvalho De OliveiraD. MeloD.J. GoebelK. ClariceM. BuenoR. Validation of UV spectrophotometric and HPLC methods for quantitative determination of atenolol in pharmaceutical preparations.Lat. Am. J. Pharm.200726765770
    [Google Scholar]
  27. ElkadyE.F. FouadM.A. FaquihA.A.E. A versatile stability-indicating liquid chromatographic method for the simultaneous determination of atenolol, hydrochlorothiazide and chlorthalidone.Curr. Pharm. Anal.20201681037105110.2174/1573412915666190523122525
    [Google Scholar]
  28. ChinnaswamyC.R. GurupadayyaB. RaikarP. Bioanalytical method development of atenolol enantiomers: Stereoselective behavior in rabbit plasma by RP-UFLC Method.Curr. Pharm. Anal.202117449550210.2174/1573412916666191231101339
    [Google Scholar]
  29. HangT.J. ZhaoW. LiuJ. SongM. XieY. ZhangZ. ShenJ. ZhangY. A selective HPLC method for the determination of indapamide in human whole blood: Application to a bioequivalence study in Chinese volunteers.J. Pharm. Biomed. Anal.200640120220510.1016/j.jpba.2005.06.03516111851
    [Google Scholar]
  30. HegheșS.C. RusL.M. RusL-L. BojițăM.T. IugaC.A. HPLC-UV determination of indapamide in the presence of its main synthesis and degradation impurities. Method validation.Farmacia201765755760
    [Google Scholar]
  31. LegorburuM.J. AlonsoR.M. JiménezR.M. OrtizE. Quantitative determination of indapamide in pharmaceuticals and urine by high-performance liquid chromatography with amperometric detection.J. Chromatogr. Sci.199937828328710.1093/chromsci/37.8.28310457602
    [Google Scholar]
  32. DuB. PangL. LiH. MaS. LiY. JiaX. ZhangZ. Chiral liquid chromatography resolution and stereoselective pharmacokinetic study of indapamide enantiomers in rats.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2013932889110.1016/j.jchromb.2013.06.00723831701
    [Google Scholar]
  33. ZendelovskaD. StafilovT. StefovaM. Optimization of a solid-phase extraction method for determination of indapamide in biological fluids using high-performance liquid chromatography.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2003788119920610.1016/S1570‑0232(02)01017‑612668086
    [Google Scholar]
  34. PannuH.K.H. MahajanM.P. SawantS.D. Validated RP-HPLC method for the determination of indapamide in bulk and tablet dosage form.Der. Pharma. Chem.201249961002
    [Google Scholar]
  35. MillerB.R. DadgarD. LalandeM. High-performance liquid chromatographic method for the determination of indapamide in human whole blood.J. Chromatogr., Biomed. Appl.1993614229329810.1016/0378‑4347(93)80321‑T8314942
    [Google Scholar]
  36. AteşZ. ÖzdenT. ÖzilhanS. ErenS. Improved ultra-performance LC determination of indapamide in human plasma.Chromatographia200766S111912210.1365/s10337‑007‑0300‑0
    [Google Scholar]
  37. PatelR.A. PatelM.P. RajH. ShahN. Development and validation of stability indicating high performance liquid chromatographic method for indapamide.Asi. J. Phar. Tech.20155315816410.5958/2231‑5713.2015.00023.9
    [Google Scholar]
  38. GandhiS.V. KaradM.M. DeshpandeP.B. Development and validation of stability-indicating RP-HPLC method for determination of indapamide and amlodipine besylate.Ind. J. Pharm. Educ. Res.201448485310.5530/ijper.48.2.7
    [Google Scholar]
  39. Fernandez-CarballidoA. BarciaE. Cordoba-DiazD. Cordoba-DiazM. NegroS. Lisinopril-loaded chitosan nanoparticles and indapamide in hard gelatine capsules: Simultaneous HPLC quantification.Curr. Pharm. Anal.2014101101910.2174/157341291001140102104350
    [Google Scholar]
  40. PalP. SawaikarL. KenyS. ZambrekarS. GaudeS. Simultaneous estimation of indapamide and atenolol by two different Ultraviolet spectroscopic methods.Indian J. Pharm. Sci.202486389690310.36468/pharmaceutical‑sciences.1346
    [Google Scholar]
  41. FernandesN. NimdeoM.S. ChoudhariV.P. KulkarniR.R. PandeV.V. NikaljeA.G. Dual wavelength and simultaneous equation spectrophotometric methods for estimation of atenolol and indapamide in their combined dosage form.Int. J. Chem. Sci.200862935
    [Google Scholar]
  42. RaniG.T. SankarD.G. KadgapathiP. SatyanarayanaB. A validated RP-HPLC method for simultaneous estimation of atenolol and indapamide in pharmaceutical formulations.J. Chem.2011831238124510.1155/2011/121420
    [Google Scholar]
  43. BahetiK.G. ShahN. ShaikhS. Ion-pairing reverse-phase high performance liquid chromatography method for simultaneous estimation of atenolol and indapamide in bulk and combined dosage form.Indian J. Pharm. Sci.201274327127410.4103/0250‑474X.10607623439934
    [Google Scholar]
  44. ParusuT. PonneriV. RP-HPLC method for simultaneous determination of atenolol and indapamide in pharmaceutical dosage forms, human blood and milk.Eur. J. Chem.20123213814210.5155/eurjchem.3.2.138‑142.537
    [Google Scholar]
  45. DubeyN. JainD.K. SolankiB. Simultaneous estimation of atenolol and indapamide in combined tablet dosage form using RP-HPLC.Int. J. Biomed. Pharm. Sci.201154042
    [Google Scholar]
  46. RaniU.N. SarojaN. RaniC.H.J. New validated RP-HPLC method for simultaneous estimation of atenolol and indapamide in tablets.World J. Pharm. Res.2015410571065
    [Google Scholar]
  47. YadavS.S. RaoJ.R. Use of micellar mobile phase for the chromatographic simultaneous determination of atenolol and indapamide in pharmaceutical dosage form.Int. J. Pharma Bio Sci.20123645655
    [Google Scholar]
  48. MehtaA. JainN.K. HPLC method validation for estimation of Atenolol and Indapamide in tablet dosage form.Int. J. Pharm. Life. Sci.20211289
    [Google Scholar]
  49. SunithaN. HemanthaN. BabuM.S.R.P. HPLC estimation of atenolol and indapamide in bulk and pharmaceutical dosage form simultaneously.Int. Clin. Med. Case. Rep. J. Res. Artic.20232123
    [Google Scholar]
  50. GuptaK.R. WankhedeS.B. TajneM.R. WadodkarS.G. High performance thin layer chromatographic estimation of atenolol and indapamide from pharmaceutical dosage form.Asian J. Chem.20071941834187
    [Google Scholar]
  51. RaoJ.R. YadavS.S. Simultaneous HPTLC analysis of atenolol and indapamide in tablet formulation.Pharm. Glob. Int. J. Compr. Pharm.2011914
    [Google Scholar]
  52. GuptaM.K. GhugeA. ParabM. Al-RefaeiY. KhandareA. DandN. WaghmareN. A comparative review on High-Performance Liquid Chromatography (HPLC), Ultra Performance Liquid Chromatography (UPLC) & High-Performance Thin Layer Chromatography (HPTLC) with current updates.Curr. Issues Pharm. Med. Sci.202235422422810.2478/cipms‑2022‑0039
    [Google Scholar]
  53. Buldukİ. Comparison of HPLC and UV spectrophotometric methods for quantification of favipiravir in pharmaceutical formulations.Iran. J. Pharm. Res.2021203576510.22037/IJPR.2020.114199.1472534903969
    [Google Scholar]
  54. LoescherC.M. MortonD.W. RazicS. Agatonovic-KustrinS. High performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) for the qualitative and quantitative analysis of Calendula officinalis—Advantages and limitations.J. Pharm. Biomed. Anal.201498525910.1016/j.jpba.2014.04.02324880991
    [Google Scholar]
  55. SomkuwarK. SabaleP. SawaleV. RahangdaleP. Comparative study of UV spectroscopy, RP-HPLC and HPTLC methods for quantification of antiviral drug lamivudine in tablet formulation.Future J. Pharm. Sci.20241018110.1186/s43094‑024‑00651‑z
    [Google Scholar]
  56. AkabariA.H. MistryP. PatelS.K. SuratiJ. PatelS.P. ShahU. Simultaneous estimation of fimasartan potassium trihydrate and atorvastatin calcium with greenness assessment using HPLC and UV spectrophotometric methods.Green Analyt. Chem.2023610006710.1016/j.greeac.2023.100067
    [Google Scholar]
  57. AkabariA.H. GajiwalaH. PatelS.K. SuratiJ. SolankiD. ShahK.V. PatelT.J. PatelS.P. Stability-indicating TLC-densitometric and HPLC methods for simultaneous determination of teneligliptin and pioglitazone in pharmaceutical dosage forms with eco-friendly assessment.J. Chromatogr. Sci.2024632bmae03810.1093/chromsci/bmae03838836346
    [Google Scholar]
  58. BhangareD. RajputN. JadavT. SahuA.K. TekadeR.K. SenguptaP. Systematic strategies for degradation kinetic study of pharmaceuticals: An issue of utmost importance concerning current stability analysis practices.J. Anal. Sci. Technol.2022131710.1186/s40543‑022‑00317‑6
    [Google Scholar]
  59. EdreesF.H. DrazM.E. SaadA.S. HammadS.F. MohamedH.M. A sustainable approach for the degradation kinetics study and stability assay of the SARS-CoV-2 oral antiviral drug Molnupiravir.Sci. Rep.2023131879710.1038/s41598‑023‑34537‑637258556
    [Google Scholar]
  60. ICH. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use ich harmonised tripartite guideline validation of analytical procedures: Text and methodology q2(r1).Fed. Regist.199762962746327467
    [Google Scholar]
  61. NiaziS. Validation of analytical procedures.Farm. Glas.200950707310.3109/9781420081275‑11
    [Google Scholar]
  62. Food and Drug Administration. Q2(R1) Validation of Analytical Procedures: Text and Methodology Guidance for Industry.2005Available from: https://www.fda.gov/media/152208/download
    [Google Scholar]
  63. ICH Q1A (R2) Stability testing of new drug substances and drug products - Scientific guideline.2003Available from: https://www.ema.europa.eu/en/ich-q1a-r2-stability-testing-new-drug- substances-drug-products-scientific-guideline
  64. BlessyM. PatelR.D. PrajapatiP.N. AgrawalY.K. Development of forced degradation and stability indicating studies of drugs—A review.J. Pharm. Anal.20144315916510.1016/j.jpha.2013.09.00329403878
    [Google Scholar]
  65. KogawaC.A. Q1B photostability testing of new drug substances and products. U.S. Food and Drug Administration.2020Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q1b-photostability-testing-new-drug-substances-and-products
  66. NgwaG. Forced degradation as an integral part of HPLC stability-indicating method development.Drug Deliv Technol2010105659
    [Google Scholar]
  67. AkabariA.H. ShahD.R. ShahS.A. SuhagiaB.N. Kinetic determinations of pitavastatin calcium by stability indicating HPTLC method.J. Liq. Chromatogr. Relat. Technol.201538452153110.1080/10826076.2014.917665
    [Google Scholar]
  68. Center for drug evaluation and research (CDER) reviewer guidance’ validation of chromatographic methods.1994Available from: https://www.academia.edu/7135290/Center_for_Drug_Evaluation_and_Research_CDER_Reviewer_Guidance_Validation_of_Chromatographic_Methods
  69. WigginsD.E. System suitability in an optimized HPLC system.J. Liq. Chromatogr.19911416-173045306010.1080/01483919108049375
    [Google Scholar]
  70. EL-MallaS.F. MansourF.R. ElbastawissyA.B.B. ElagamyS.H. Development of a stability indicating high-performance liquid chromatography method for determination of cenobamate: Study of basic degradation kinetics.BMC Chem.20241817410.1186/s13065‑024‑01177‑4
    [Google Scholar]
  71. Pena-PereiraF. WojnowskiW. TobiszewskiM. AGREE—analytical greenness metric approach and software.Anal. Chem.20209214100761008210.1021/acs.analchem.0c0188732538619
    [Google Scholar]
  72. BasuA. DasB. BasakK. ChakrabortyM. BasuS. Development & validation of stability indicating High Performance Liquid Chromatographic method for simultaneous estimation of atenolol & indapamide in tablet dosage form.J. Pharm. Res.2011416771680
    [Google Scholar]
  73. KrzekJ. KwiecieńA. ŻylewskiM. Stability of atenolol, acebutolol and propranolol in acidic environment depending on its diversified polarity.Pharm. Dev. Technol.200611440941610.1080/1083745060077010617101511
    [Google Scholar]
  74. GovindanK. SumanasekaraV.D.W. JangA. Mechanisms for degradation and transformation of β-blocker atenolol via electrocoagulation, electro-Fenton, and electro-Fenton-like processes.Environ. Sci. Water Res. Technol.2020651465148110.1039/D0EW00114G
    [Google Scholar]
  75. PalaricC. MoliniéR. CailleuD. FontaineJ.X. MathironD. MesnardF. GutY. RenaudT. PetitA. PilardS. A deeper investigation of drug degradation mixtures using a combination of MS and NMR data: Application to indapamide.Molecules2019249176410.3390/molecules2409176431067700
    [Google Scholar]
  76. AttiaK.A.M. NassarM.W.I. Sharaf El-DinM.M.K. MohamadA.A.A. KaddahM.M.Y. A stability-indicating QTRAP LC-MS/MS method for identification and structural characterization of degradation products of indapamide.Anal. Methods2016881836185110.1039/C5AY03075G
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128346156250217055422
Loading
/content/journals/dmbl/10.2174/0118723128346156250217055422
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test