Skip to content
2000
Volume 25, Issue 25
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

As Artificial Intelligence (AI) technology rapidly advances, its application in pharmaceutical formulation design and Drug Delivery Systems (DDS) is expanding, revealing significant potential. AI technology has played a role in optimizing drug design, enhancing research and development efficiency, and improving the safety profiles of pharmaceutical products, thereby supporting the realization of personalized medicine. This article systematically examines the foundational applications and principles of AI in pharmaceutical formulation, while also evaluating its role in key areas such as drug development, manufacturing, quality control, and ADME/T (absorption, distribution, metabolism, excretion, and toxicity) prediction. In particular, AI can enhance prediction accuracy for drug solubility, stability, and bioavailability, while optimizing novel DDS through Machine Learning (ML) models, such as nanocarrier design and personalized drug release control. Furthermore, AI has been pivotal in advancing intelligent manufacturing technologies, including three-dimensional printing (3D printing) and continuous manufacturing. Finally, the article explores the opportunities and challenges presented by AI in drug development, regulation, and policymaking. Overall, AI's integration promises to revolutionize pharmaceutical development and regulatory practices.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266373236250411060857
2025-04-24
2025-12-26
Loading full text...

Full text loading...

References

  1. PhilipA.K. FaiyazuddinM., Eds.; A Handbook of Artificial Intelligence in Drug Delivery.United KingdomAcademic Press202318
    [Google Scholar]
  2. TokarzP. Artificial intelligence-powered pulse sequences in nuclear magnetic resonance and magnetic resonance imaging: Historical trends, current innovations and perspectives.Sci. Rad.202431305210.58332/scirad2024v3i1a04
    [Google Scholar]
  3. LambertiM.J. WilkinsonM. DonzantiB.A. WohlhieterG.E. ParikhS. WilkinsR.G. GetzK. A study on the application and use of artificial intelligence to support drug development.Clin. Ther.20194181414142610.1016/j.clinthera.2019.05.01831248680
    [Google Scholar]
  4. HassanS.A.H. AlmalikiM.N.S. HusseinZ.A. AlbehadiliH.M. BanoonS.R. Al-AbboodiA. Al-SaadyM. Development of nanotechnology by artificial intelligence: A comprehensive review.J. Nanostructures2023134915932
    [Google Scholar]
  5. DharamsiA. NavaleA.M. JambhekarS.S. Chapter 2 General considerations on artificial intelligence.A Handbook of Artificial Intelligence in Drug Delivery.LondonAcademic Press202393410.1016/B978‑0‑323‑89925‑3.00002‑2
    [Google Scholar]
  6. SachaG.M. VaronaP. Artificial intelligence in nanotechnology.Nanotechnology2013244545200210.1088/0957‑4484/24/45/45200224121558
    [Google Scholar]
  7. VidhyaK.S. SultanaA. M, N.K.; Rangareddy, H. Artificial intelligence’s impact on drug discovery and development from bench to bedside.Cureus20231510e4748610.7759/cureus.4748637881323
    [Google Scholar]
  8. MarziS.J. SchilderB.M. NottA. FrigerioC.S. Willaime-MorawekS. BucholcM. HangerD.P. JamesC. LewisP.A. LouridaI. NobleW. Rodriguez-AlgarraF. SharifJ.A. TsalenchukM. WinchesterL.M. YamanÜ. YaoZ. RansonJ.M. LlewellynD.J. Artificial intelligence for neurodegenerative experimental models.Alzheimers Dement.202319125970598710.1002/alz.1347937768001
    [Google Scholar]
  9. DeoriC. HujuriL. SarmaG. SonowalT. Artificial intelligence (ai): Its role in drug discovery and novel drug delivery system.Int. J. Sci. Res.202413214261430
    [Google Scholar]
  10. VisanA.I. NegutI. Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery.Life202414223310.3390/life1402023338398742
    [Google Scholar]
  11. ShanbhogueM.H. ThirumaleshwarS. TegginamathP.K. SomareddyH.K. Artificial intelligence in pharmaceutical field - a critical review.Curr. Drug Deliv.202118101456146610.2174/156720181866621061710061334139981
    [Google Scholar]
  12. SuriyaampornP. PamornpathomkulB. PatrojanasophonP. NgawhirunpatT. RojanarataT. OpanasopitP. The artificial intelligence-powered new era in pharmaceutical research and development: A review.AAPS PharmSciTech202425618810.1208/s12249‑024‑02901‑y39147952
    [Google Scholar]
  13. CovaT. VitorinoC. FerreiraM. NunesS. Rondon-VillarrealP. PaisA. Artificial intelligence and quantum computing as the next pharma disruptors.Methods Mol. Biol.2022239032134710.1007/978‑1‑0716‑1787‑8_1434731476
    [Google Scholar]
  14. MishraB. KumarM. JhaA. BhartiK. Artificial intelligence in design, optimization, and performance prediction of pharmaceutical formulations: A paradigm shift in development of nanomedicines.Global J. Nanomed202053001003
    [Google Scholar]
  15. NarayananR.R. DurgaN. NagalakshmiS. Impact of Artificial Intelligence (AI) on Drug Discovery and Product Development.Indian J. Pharma. Educ. Res.2022563sSuppl.s387s39710.5530/ijper.56.3s.146
    [Google Scholar]
  16. dos Santos NascimentoI.J. AquinoD.T.M. JúniorD.S.E.F. Computer-aided drug design of anti-inflammatory agents targeting microsomal prostaglandin E 2 synthase-1 (mPGES-1).Curr. Med. Chem.202229335397541910.2174/092986732966622031712294835301943
    [Google Scholar]
  17. da Silva-JúniorE.F. dos Santos NascimentoI.J. TNF-α inhibitors from natural compounds: An overview, cadd approaches, and their exploration for anti-inflammatory agents.Comb. Chem. High Throughput Screen.202225142317234010.2174/138620732466621071516594334269666
    [Google Scholar]
  18. ZhongF. XingJ. LiX. LiuX. FuZ. XiongZ. LuD. WuX. ZhaoJ. TanX. LiF. LuoX. LiZ. ChenK. ZhengM. JiangH. Artificial intelligence in drug design.Sci. China Life Sci.201861101191120410.1007/s11427‑018‑9342‑230054833
    [Google Scholar]
  19. DongJ. WuZ. XuH. OuyangD. FormulationA.I. A novel web-based platform for drug formulation design driven by artificial intelligence.Brief. Bioinform.2024251110
    [Google Scholar]
  20. ParadisoS.P. DelaneyK.T. FredricksonG.H. Swarm intelligence platform for multiblock polymer inverse formulation design.ACS Macro Lett.20165897297610.1021/acsmacrolett.6b0049435607214
    [Google Scholar]
  21. MetwallyA.A. HathoutR.M. Computer-assisted drug formulation design: Novel approach in drug delivery.Mol. Pharm.20151282800281010.1021/mp500740d26107396
    [Google Scholar]
  22. RosaV. HoD. Sabino-SilvaR. SiqueiraW.L. SilikasN. Fighting viruses with materials science: Prospects for antivirus surfaces, drug delivery systems and artificial intelligence.Dent. Mater.202137349650710.1016/j.dental.2020.12.00433441249
    [Google Scholar]
  23. PouyanfarN. AhmadiM. AyyoubzadehS.M. Ghorbani-BidkorpehF. Drug delivery system tailoring via metal-organic framework property prediction using machine learning: A disregarded approach.Mater. Today Commun.20243810793810.1016/j.mtcomm.2023.107938
    [Google Scholar]
  24. BanniganP. AldeghiM. BaoZ. HäseF. Aspuru-GuzikA. AllenC. Machine learning directed drug formulation development.Adv. Drug Deliv. Rev.202117511380610.1016/j.addr.2021.05.01634019959
    [Google Scholar]
  25. NoorainS. SrivastavaV. ParveenB. ParveenR. Artificial intelligence in drug formulation and development: Applications and future prospects.Curr. Drug Metab.202324962263410.2174/011389200226578623092106220537779408
    [Google Scholar]
  26. AliK.A. MohinS.K. MondalP. GoswamiS. GhoshS. ChoudhuriS. Influence of artificial intelligence in modern pharmaceutical formulation and drug development.Future J. Pharm. Sci.20241015310.1186/s43094‑024‑00625‑1
    [Google Scholar]
  27. MostafaE.A. AzimM.A. ElZaherA.A. ElKadyE.F. FouadM.A. GhazyF.H. RadiE.A. El Makarim SalehM.A. KerdawyE.A.M. Correlating physico-chemical properties of analytes with Hansen solubility parameters of solvents using machine learning algorithm for predicting suitable extraction solvent.Sci. Rep.20241411874110.1038/s41598‑024‑68981‑939138274
    [Google Scholar]
  28. HagbaniA.T. AlshehriS. BawazeerS. Advanced modeling of pharmaceutical solubility in solvents using artificial intelligence techniques: Assessment of drug candidate for nanonization processing.Front. Med.202411143567510.3389/fmed.2024.143567539104858
    [Google Scholar]
  29. JadhavA.B. GonjariI.D. MoreP.K. JagdaleD.B. YamatkarS.M. Use of artificial intelligence in novel dissolution enhancement techniques.Int. J. Novel Res. Dev.202492c487c500
    [Google Scholar]
  30. SimõesM.F. SilvaG. PintoA.C. FonsecaM. SilvaN.E. PintoR.M.A. SimõesS. Artificial neural networks applied to quality-by-design: From formulation development to clinical outcome.Eur. J. Pharm. Biopharm.202015228229510.1016/j.ejpb.2020.05.01232442736
    [Google Scholar]
  31. AllenC. BanniganP. Does artificial intelligence have the potential to transform drug formulation development?J. Control. Release2019311-31232632710.1016/j.jconrel.2019.10.01931622691
    [Google Scholar]
  32. HesslerG. BaringhausK.H. Artificial intelligence in drug design.Molecules20182310252010.3390/molecules2310252030279331
    [Google Scholar]
  33. NagS. BaidyaA.T.K. MandalA. MathewA.T. DasB. DeviB. KumarR. Deep learning tools for advancing drug discovery and development.3 Biotech202212511010.1007/s13205‑022‑03165‑8
    [Google Scholar]
  34. PavaniA. NaushadS.M. KumarR.M. SrinathM. MalempatiA.R. KutalaV.K. Artificial neural network-based pharmacogenomic algorithm for warfarin dose optimization.Pharmacogenomics201617212113110.2217/pgs.15.16126666467
    [Google Scholar]
  35. AundhiaC. ParmarG. TaleleC. ShahN. TaleleD. Impact of artificial intelligence on drug development and delivery.Curr. Top. Med. Chem.20242410.2174/011568026632452224072505363439136506
    [Google Scholar]
  36. HassanzadehP. AtyabiF. DinarvandR. The significance of artificial intelligence in drug delivery system design.Adv. Drug Deliv. Rev.2019151-15216919010.1016/j.addr.2019.05.00131071378
    [Google Scholar]
  37. SreenivasuluA. SelvamJ.D. SajithS. VasumathyM. BarwantM.M. AlagarsamyS. AhamedN.M.I. comprehensive revision on the nanocarrier drug delivery systems with special reference to artificial intelligence.Int. J. Health Sci.20226S37163719310.53730/ijhs.v6nS3.7734
    [Google Scholar]
  38. HeydariS. MasoumiN. EsmaeeliE. AyyoubzadehS.M. Ghorbani-BidkorpehF. AhmadiM. Artificial intelligence in nanotechnology for treatment of diseases.J. Drug Target.202432101247126610.1080/1061186X.2024.239341739155708
    [Google Scholar]
  39. OriM.O. EkpanF.M. SamuelH.S. EgwuatuO.P. Integration of artificial intelligence in nanomedicine.Eurasian J. Sci. Technol.20211188104
    [Google Scholar]
  40. OsialM. PregowskaA. The application of artificial intelligence in magnetic hyperthermia based research. Fut.Inter.2022141235610.3390/fi14120356
    [Google Scholar]
  41. SerovN. VinogradovV. Artificial intelligence to bring nanomedicine to life.Adv. Drug Deliv. Rev.202218411419410.1016/j.addr.2022.11419435283223
    [Google Scholar]
  42. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics1507191637514102
    [Google Scholar]
  43. GaoJ. KarpJ.M. LangerR. JoshiN. The future of drug delivery.Chem. Mater.202335235936310.1021/acs.chemmater.2c0300337799624
    [Google Scholar]
  44. AdirO. PoleyM. ChenG. FroimS. KrinskyN. ShkloverJ. Shainsky-RoitmanJ. LammersT. SchroederA. Integrating artificial intelligence and nanotechnology for precision cancer medicine.Adv. Mater.20203213190198910.1002/adma.20190198931286573
    [Google Scholar]
  45. OwhC. HoD. LohX.J. XueK. Towards machine learning for hydrogel drug delivery systems.Trends Biotechnol.202341447647910.1016/j.tibtech.2022.09.01936376126
    [Google Scholar]
  46. TanP. ChenX. ZhangH. WeiQ. LuoK. Artificial intelligence aids in development of nanomedicines for cancer management.Semin. Cancer Biol.202389617510.1016/j.semcancer.2023.01.00536682438
    [Google Scholar]
  47. HiminiucL.M. TomaB.F. PopoviciR. GrigoreA.M. HamodA. VolovatC. VolovatS. NicaI. VasincuD. AgopM. TirnovanuM. OchiuzL. NeguraA. GrigoreM. Update on the use of nanocarriers and drug delivery systems and future directions in cervical cancer.J. Immunol. Res.2022202211110.1155/2022/163690835571568
    [Google Scholar]
  48. HasanzadehA. HamblinM.R. KianiJ. NooriH. HardieJ.M. KarimiM. ShafieeH. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines?Nano Today20224710166510.1016/j.nantod.2022.10166537034382
    [Google Scholar]
  49. LeeJ.W. Maria-SolanoM.A. VuT.N.L. YoonS. ChoiS. Big data and artificial intelligence (AI) methodologies for computer-aided drug design (CADD).Biochem. Soc. Trans.202250124125210.1042/BST2021124035076690
    [Google Scholar]
  50. DasK.P. J, C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges.Front. Med. Technol.20234106714410.3389/fmedt.2022.106714436688144
    [Google Scholar]
  51. WangJ. WenY. ZhangY. WangZ. JiangY. DaiC. WuL. LengD. HeS. BoX. An interpretable artificial intelligence framework for designing synthetic lethality-based anti-cancer combination therapies.J. Adv. Res.20246532934310.1016/j.jare.2023.11.03538043609
    [Google Scholar]
  52. WangW. YeZ. GaoH. OuyangD. Computational pharmaceutics - A new paradigm of drug delivery.J. Control. Release202133811913610.1016/j.jconrel.2021.08.03034418520
    [Google Scholar]
  53. ZhaoF. LuJ. JinX. WangZ. SunY. GaoD. LiX. LiuR. Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: Characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation.Colloids Surf. B Biointerfaces201817228829710.1016/j.colsurfb.2018.08.04630173096
    [Google Scholar]
  54. GormleyA.J. Machine learning in drug delivery.J. Control. Release2024373233010.1016/j.jconrel.2024.06.04538909704
    [Google Scholar]
  55. NovaV.M. LinT.P. ShanehsazzadehS. JainK. NgS.C.Y. WackerR. ChichaklyK. WackerM.G. Nanomedicine ex machina: Between model-informed development and artificial intelligence.Front. Digit. Health2022479934110.3389/fdgth.2022.79934135252958
    [Google Scholar]
  56. DalwadiS. ThakkarV. PrajapatiB. Optimizing neuroprotective nano-structured lipid carriers for transdermal delivery through artificial neural network.Pharm. Nanotechnol.202413118419810.2174/012211738529496924032605231238616760
    [Google Scholar]
  57. SuriyaampornP. PamornpathomkulB. WongprayoonP. RojanarataT. NgawhirunpatT. OpanasopitP. The artificial intelligence and design of experiment assisted in the development of progesterone-loaded solid-lipid nanoparticles for transdermal drug delivery.Pharmacia20247111210.3897/pharmacia.71.e123549
    [Google Scholar]
  58. KastureK. ShendeP. Amalgamation of artificial intelligence with nanoscience for biomedical applications.Arch. Comput. Methods Eng.20233084667468510.1007/s11831‑023‑09948‑3
    [Google Scholar]
  59. BenkőE. IličI.G. KristóK. RegdonG.Jr CsókaI. Pintye-HódiK. SrčičS. SoványT. Predicting drug release rate of implantable matrices and better understanding of the underlying mechanisms through experimental design and artificial neural network-based modelling.Pharmaceutics202214222810.3390/pharmaceutics1402022835213961
    [Google Scholar]
  60. GholapA.D. UddinM.J. FaiyazuddinM. OmriA. GowriS. KhalidM. Advances in artificial intelligence for drug delivery and development: A comprehensive review.Comput. Biol. Med.202417810870210.1016/j.compbiomed.2024.10870238878397
    [Google Scholar]
  61. MalekiM. Amani-TehranM. LatifiM. MathurS. Drug release profile in core–shell nanofibrous structures: A study on Peppas equation and artificial neural network modeling.Comput. Methods Prog Biomed.201411319210010.1016/j.cmpb.2013.09.00324252468
    [Google Scholar]
  62. SinghA.V. AnsariM.H.D. RosenkranzD. MaharjanR.S. KriegelF.L. GandhiK. KanaseA. SinghR. LauxP. LuchA. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine.Adv. Healthc. Mater.2020917190186210.1002/adhm.20190186232627972
    [Google Scholar]
  63. SinghA.V. VarmaM. LauxP. ChoudharyS. DatusaliaA.K. GuptaN. LuchA. GandhiA. KulkarniP. NathB. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: A comprehensive review.Arch. Toxicol.202397496397910.1007/s00204‑023‑03471‑x36878992
    [Google Scholar]
  64. SinghA.V. RosenkranzD. AnsariM.H.D. SinghR. KanaseA. SinghS.P. JohnstonB. TentschertJ. LauxP. LuchA. Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction.Adv. Intell. Syst.2020212207012510.1002/aisy.202070125
    [Google Scholar]
  65. TranT.T.V. TayaraH. ChongK.T. Recent studies of artificial intelligence on in silico drug absorption.J. Chem. Inf. Model.202363206198621110.1021/acs.jcim.3c0096037819031
    [Google Scholar]
  66. KumarR. SharmaA. SiddiquiM.H. TiwariR.K. Prediction of human intestinal absorption of compounds using artificial intelligence techniques.Curr. Drug Discov. Technol.201714424425410.2174/157016381466617040416091128382857
    [Google Scholar]
  67. DudasB. MitevaM.A. Computational and artificial intelligence-based approaches for drug metabolism and transport prediction.Trends Pharmacol. Sci.2024451395510.1016/j.tips.2023.11.00138072723
    [Google Scholar]
  68. AliR. BalamuraliM. VaraminiP. Deep learning-based artificial intelligence to investigate targeted nanoparticles’ uptake in tnbc cells.Int. J. Mol. Sci.202223241607010.3390/ijms23241607036555718
    [Google Scholar]
  69. ChouW.C. ChenQ. YuanL. ChengY.H. HeC. Monteiro-RiviereN.A. RiviereJ.E. LinZ. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice.J. Control. Release2023361536310.1016/j.jconrel.2023.07.04037499908
    [Google Scholar]
  70. Diéguez-SantanaK. RasulevB. González-DíazH. Towards rational nanomaterial design by predicting drug–nanoparticle system interaction vs. bacterial metabolic networks.Environ. Sci. Nano2022941391141310.1039/D1EN00967B
    [Google Scholar]
  71. ZhangC. MouM. ZhouY. ZhangW. LianX. ShiS. LuM. SunH. LiF. WangY. ZengZ. LiZ. ZhangB. QiuY. ZhuF. GaoJ. Biological activities of drug inactive ingredients.Brief. Bioinform.2022235bbac16010.1093/bib/bbac16035524477
    [Google Scholar]
  72. WangN. SunH. DongJ. OuyangD. PharmD.E. PharmD.E. A new expert system for drug-excipient compatibility evaluation.Int. J. Pharm.202160712096210.1016/j.ijpharm.2021.12096234339812
    [Google Scholar]
  73. WinklerD.A. Role of artificial intelligence and machine learning in nanosafety.Small20201636200188310.1002/smll.20200188332537842
    [Google Scholar]
  74. ChandrasekaranK. KakaniV. KokkaracheduV. SyedahamedA.H.H. PalaniS. ArumugamS. ShanmugamA. KimS. KimK. Toxicological assessment of divalent ion-modified ZnO nanomaterials through artificial intelligence and in vivo study.Aquat. Toxicol.202426710682610.1016/j.aquatox.2023.10682638219502
    [Google Scholar]
  75. QaderiA. DadgarN. MansouriH. AlaviS.E. Koohi Moftakhari EsfahaniM. AkbarzadehA. Modeling and prediction of cytotoxicity of artemisinin for treatment of the breast cancer by using artificial neural networks.Springerplus20132134010.1186/2193‑1801‑2‑34023961405
    [Google Scholar]
  76. WrightM.R. Opportunities and considerations in the application of artificial intelligence to pharmacokinetic prediction.Methods Mol. Biol.2022239046148210.1007/978‑1‑0716‑1787‑8_2134731483
    [Google Scholar]
  77. YangC. SharmaK. MowR.J. BolayE. SrinivasanA. MerlinD. Unleashing the potential of oral deliverable nanomedicine in the treatment of inflammatory bowel disease.Cell. Mol. Gastroenterol. Hepatol.202418210133310.1016/j.jcmgh.2024.03.00538490294
    [Google Scholar]
  78. KambojS. KumarA. TripathiA. KarpagavalliL. TyagiM. SharmaA. ThellyM.T. BhattP. Convergence of artificial intelligence and nanoparticle delivery systems: Enhancing curcumin's potential in targeted cancer therapy.Afr. J. Biol. Sci.,20246Si3712726
    [Google Scholar]
  79. YacoubA.S. AmmarH.O. IbrahimM. MansourS.M. HoffyE.N.M. Artificial intelligence-assisted development of in situ forming nanoparticles for arthritis therapy via intra-articular delivery.Drug Deliv.20222911423143610.1080/10717544.2022.206988235532141
    [Google Scholar]
  80. NoorainL. NguyenV. KimH.W. NguyenL.T.B. A machine learning approach for PLGA nanoparticles in antiviral drug delivery.Pharmaceutics202315249510.3390/pharmaceutics1502049536839817
    [Google Scholar]
  81. Martinez-BorrajoR. Diaz-RodriguezP. LandinM. Rationalized design to explore the full potential of PLGA microspheres as drug delivery systems.Drug Deliv.2023301221986410.1080/10717544.2023.221986437272488
    [Google Scholar]
  82. KarahanG. TanE. Danışman-KalındemirtaşF. Erdem-KurucaS. KarakuşS. Kappa carrageenan/PEG-halloysite nanocomposites: Surface characterization with an artificial intelligence technique, antimicrobial, and anticancer properties.J. Drug Deliv. Sci. Technol.20227510361510.1016/j.jddst.2022.103615
    [Google Scholar]
  83. HamiltonS. KingstonB.R. Applying artificial intelligence and computational modeling to nanomedicine.Curr. Opin. Biotechnol.20248510304310.1016/j.copbio.2023.10304338091874
    [Google Scholar]
  84. DawoudM.H.S. FayezA.M. MohamedR.A. SweedN.M. Optimization of nanovesicular carriers of a poorly soluble drug using factorial design methodology and artificial neural network by applying quality by design approach.Pharm. Dev. Technol.202126101035105010.1080/10837450.2021.198000934514957
    [Google Scholar]
  85. TomitakaA. VashistA. KolishettiN. NairM. Machine learning assisted-nanomedicine using magnetic nanoparticles for central nervous system diseases.Nanoscale Adv.20235174354436710.1039/D3NA00180F37638161
    [Google Scholar]
  86. GovindanB. SabriM.A. HaiA. BanatF. HaijaM.A. A review of advanced multifunctional magnetic nanostructures for cancer diagnosis and therapy integrated into an artificial intelligence approach.Pharmaceutics202315386810.3390/pharmaceutics1503086836986729
    [Google Scholar]
  87. BrakoF. NkwoM. Leveraging artificial intelligence for better translation of fibre-based pharmaceutical systems into real-world benefits.Pharm. Dev. Technol.202429879380410.1080/10837450.2024.239542239166418
    [Google Scholar]
  88. MozafariN. MozafariN. DehshahriA. AzadiA. Knowledge gaps in generating cell-based drug delivery systems and a possible meeting with artificial intelligence.Mol. Pharm.20232083757377810.1021/acs.molpharmaceut.3c0016237428824
    [Google Scholar]
  89. GreenbergZ.F. GraimK.S. HeM. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery.Adv. Drug Deliv. Rev.202319911497410.1016/j.addr.2023.11497437356623
    [Google Scholar]
  90. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics1404088335456717
    [Google Scholar]
  91. WadeJ.B. MiesleJ.E. AvilésS.L. SenM. Exploring the wet granulation growth regime map – validating the boundary between nucleation and induction.Chem. Eng. Res. Des.202015646947710.1016/j.cherd.2020.02.024
    [Google Scholar]
  92. LópezM.C.A. PeetersK. ImpeV.J. Data-driven modeling of the spray drying process: Process monitoring and prediction of the particle size in pharmaceutical production.ACS Omega2024924256782569310.1021/acsomega.3c0803238911742
    [Google Scholar]
  93. ParkS.Y. KimS.J. ParkC.H. KimJ. LeeD.Y. Data‐driven prediction models for forecasting multistep ahead profiles of mammalian cell culture toward bioprocess digital twins.Biotechnol. Bioeng.202312092494250810.1002/bit.2840537079452
    [Google Scholar]
  94. HontiB. FarkasA. NagyZ.K. PatakiH. NagyB. Explainable deep recurrent neural networks for the batch analysis of a pharmaceutical tableting process in the spirit of Pharma 4.0.Int. J. Pharm.202466212450910.1016/j.ijpharm.2024.12450939048040
    [Google Scholar]
  95. MatheR. CasianT. TomuţăI. Multivariate feed forward process control and optimization of an industrial, granulation based tablet manufacturing line using historical data.Int. J. Pharm.202059111998810.1016/j.ijpharm.2020.11998833080308
    [Google Scholar]
  96. AnderssonD. EdlundC. CorbettB. SjögrenR. Adaptable control policies for variable liquid chromatography columns using deep reinforcement learning.Sci. Rep.20231311127010.1038/s41598‑023‑38145‑237438376
    [Google Scholar]
  97. ReyesS.J. LemireL. MolinaR.S. RoyM. L’Ecuyer-CoelhoH. MartynovaY. CassB. VoyerR. DurocherY. HenryO. PhamP.L. Multivariate data analysis of process parameters affecting the growth and productivity of stable Chinese hamster ovary cell pools expressing SARS‐COV ‐2 spike protein as vaccine antigen in early process development.Biotechnol. Prog.2024405e346710.1002/btpr.346738660973
    [Google Scholar]
  98. SinghK. NainwalN. ChitmeH.R. A review on recent advancements in pharmaceutical technology transfer of tablets from an Indian perspective.Ann. Pharm. Fr.2024S0003-45092400108110.1016/j.pharma.2024.08.00139127322
    [Google Scholar]
  99. SuQ. GaneshS. MorenoM. BommireddyY. GonzalezM. ReklaitisG.V. NagyZ.K. A perspective on quality-by-control (QbC) in pharmaceutical continuous manufacturing.Comput. Chem. Eng.201912521623110.1016/j.compchemeng.2019.03.00136845965
    [Google Scholar]
  100. ArdenN.S. FisherA.C. TynerK. YuL.X. LeeS.L. KopchaM. Industry 4.0 for pharmaceutical manufacturing: Preparing for the smart factories of the future.Int. J. Pharm.202160212055410.1016/j.ijpharm.2021.12055433794326
    [Google Scholar]
  101. ChavezP.F. StaufferF. EeckmanF. BostijnN. DidionD. SchaeferC. YangH. AalamatE.Y. LoriesX. WarmanM. MathieuB. MantanusJ. Control strategy definition for a drug product continuous wet granulation process: Industrial case study.Int. J. Pharm.202262412197010.1016/j.ijpharm.2022.12197035781027
    [Google Scholar]
  102. GerzonG. ShengY. KirkitadzeM. Process analytical technologies – advances in bioprocess integration and future perspectives.J. Pharm. Biomed. Anal.202220711437910.1016/j.jpba.2021.11437934607168
    [Google Scholar]
  103. LiuP. JinH. ChenY. WangD. YanH. WuM. ZhaoF. ZhuW. Process analytical technologies and self-optimization algorithms in automated pharmaceutical continuous manufacturing.Chin. Chem. Lett.202435310887710.1016/j.cclet.2023.108877
    [Google Scholar]
  104. NagyB. GalataD.L. FarkasA. NagyZ.K. Application of artificial neural networks in the process analytical technology of pharmaceutical manufacturing—a review.AAPS J.20222447410.1208/s12248‑022‑00706‑035697951
    [Google Scholar]
  105. NikitaS. ThakurG. JesubalanN.G. KulkarniA. YezhuvathV.B. RathoreA.S. AI-ML applications in bioprocessing: ML as an enabler of real time quality prediction in continuous manufacturing of mAbs.Comput. Chem. Eng.202216410789610.1016/j.compchemeng.2022.107896
    [Google Scholar]
  106. MészárosL.A. MadarászL. FiczereM. BicsárR. FarkasA. NagyZ.K. UV/VIS-imaging of white caffeine tablets for prediction of CQAs: API content, crushing strength, friability, disintegration time and dissolution profile.Int. J. Pharm.202466312456510.1016/j.ijpharm.2024.12456539117063
    [Google Scholar]
  107. BaiG. ZhangT. HouY. DingG. JiangM. LuoG. From quality markers to data mining and intelligence assessment: A smart quality-evaluation strategy for traditional Chinese medicine based on quality markers.Phytomedicine20184410911610.1016/j.phymed.2018.01.01729426601
    [Google Scholar]
  108. BiswasA.A. DhondaleM.R. AgrawalA.K. SerranoD.R. MishraB. KumarD. Advancements in microneedle fabrication techniques: Artificial intelligence assisted 3D-printing technology.Drug Deliv. Transl. Res.20241461458147910.1007/s13346‑023‑01510‑938218999
    [Google Scholar]
  109. OloweM. ParupelliS.K. DesaiS. A review of 3D-printing of microneedles.Pharmaceutics20221412269310.3390/pharmaceutics1412269336559187
    [Google Scholar]
  110. BagdeA. DevS. MadhaviK. SriramL. SpencerS.D. KalvalaA. NathaniA. SalauO. Mosley-KellumK. DalvaigariH. RajaramanS. KunduA. SinghM. SinghM. Biphasic burst and sustained transdermal delivery in vivo using an AI-optimized 3D-printed MN patch.Int. J. Pharm.202363612264710.1016/j.ijpharm.2023.12264736754185
    [Google Scholar]
  111. ElbadawiM. GustaffsonT. GaisfordS. BasitA.W. 3D printing tablets: Predicting printability and drug dissolution from rheological data.Int. J. Pharm.202059011986810.1016/j.ijpharm.2020.11986832950668
    [Google Scholar]
  112. CastroM.B. ElbadawiM. OngJ.J. PollardT. SongZ. GaisfordS. PérezG. BasitA.W. CabalarP. GoyanesA. Machine learning predicts 3D printing performance of over 900 drug delivery systems.J. Control. Release202133753054510.1016/j.jconrel.2021.07.04634339755
    [Google Scholar]
  113. SharmaK.S. Artificial intelligence assisted fabrication of 3D, 4D and 5D printed formulations or devices for drug delivery.Curr. Drug Deliv.202320675276910.2174/156720182066622120714095636503474
    [Google Scholar]
  114. PuglieseR. RegondiS. Artificial intelligence-empowered 3D and 4D printing technologies toward smarter biomedical materials and approaches.Polymers20221414279410.3390/polym1414279435890571
    [Google Scholar]
  115. BhattacharjeeG. GohilN. ShuklaM. SharmaS. ManiI. PandyaA. ChuD.T. BuiN.L. ThiY.V.N. KhambhatiK. MauryaR. RamakrishnaS. SinghV. Exploring the potential of microfluidics for next-generation drug delivery systems.OpenNano20231210015010.1016/j.onano.2023.100150
    [Google Scholar]
  116. EgorovE. PietersC. Korach-RechtmanH. ShkloverJ. SchroederA. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems.Drug Deliv. Transl. Res.202111234535210.1007/s13346‑021‑00929‑233585972
    [Google Scholar]
  117. MachalM.L. Risks and benefits associated with the primary functions of artificial intelligence powered autoinjectors.Front. Med. Technol.20246133105810.3389/fmedt.2024.133105838645777
    [Google Scholar]
  118. SoltaniM. KashkooliM.F. SouriM. HarofteZ.S. HaratiT. KhademA. PourH.M. RaahemifarK. Enhancing clinical translation of cancer using nanoinformatics.Cancers20211310248110.3390/cancers1310248134069606
    [Google Scholar]
  119. HabeebM. YouH.W. UmapathiM. RavikumarK.K. Hariyadi; Mishra, S. Strategies of Artificial intelligence tools in the domain of nanomedicine.J. Drug Deliv. Sci. Technol.20249110515710.1016/j.jddst.2023.105157
    [Google Scholar]
  120. RaiA. ShahK. DewanganH.K. Review on the artificial intelligence-based nanorobotics targeted drug delivery system for brain-specific targeting.Curr. Pharm. Des.202329443519353110.2174/011381612827924823121017205338111114
    [Google Scholar]
  121. Oualikene-GoninW. JaulentM.C. ThierryJ.P. Oliveira-MartinsS. BelgodèreL. MaisonP. AnkriJ. Artificial intelligence integration in the drug lifecycle and in regulatory science: Policy implications, challenges and opportunities.Front. Pharmacol.202415143716710.3389/fphar.2024.143716739156111
    [Google Scholar]
  122. NaikG.G. JagtapV.A. Two heads are better than one: Unravelling the potential Impact of Artificial Intelligence in nanotechnology.Nano TransMed2024310004110.1016/j.ntm.2024.100041
    [Google Scholar]
  123. JayatungaM.K.P. XieW. RuderL. SchulzeU. MeierC. AI in small-molecule drug discovery: A coming wave?Nat. Rev. Drug Discov.202221317517610.1038/d41573‑022‑00025‑135132242
    [Google Scholar]
  124. "Insilico Medicine's AI-designed drug ISM3412 receives FDA IND approval"2024Available From: https://www.news-medical
  125. FDAArtificial intelligence for drug development.2025Available from: https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/artificial-intelligence-drug-development
/content/journals/ctmc/10.2174/0115680266373236250411060857
Loading
/content/journals/ctmc/10.2174/0115680266373236250411060857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test