Skip to content
2000
Volume 25, Issue 25
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Herbal medicinal compounds have fewer side effects than modern drugs. Herbal materials are primary medicines and have strong antibacterial characteristics, thus most people throughout the world utilize them. Poor solubility, low bioavailability, instability in the biological environment, and substantial first-pass metabolism are some of the challenges associated with delivering plant/herbal medicinal compounds as pharmaceuticals. The use of appropriate nanotechnology for attachment or encapsulation can circumvent these drawbacks of herbal medications. To efficiently administer herbal medications, nanoparticulate formulations such as microemulsions, solid lipid nanoparticles, polymeric nanoparticles, liposomes, and proliposomes are being considered. This article aims to effectively examine the ability of herbal drugs that contain NP to combat microorganisms as well as a variety of herbal plants with antibacterial properties, including thyme, clove, garlic, mallow, chamomile, and mentha pulegium. This comprehensive analysis is timely and necessary since nanotechnology is a promising prospect in infectious disease treatment. Additionally, recent advances in producing herbal medicine formulations based on nanoparticle technologies are also summarised in this review article.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266366494250411164750
2025-04-23
2025-12-26
Loading full text...

Full text loading...

References

  1. ScheepmakerJ.W.A. BusschersM. SundhI. EilenbergJ. ButtT.M. Sense and nonsense of the secondary metabolites data requirements in the EU for beneficial microbial control agents.Biol. Control201913610400510.1016/j.biocontrol.2019.104005
    [Google Scholar]
  2. DastjerdiR. MontazerM. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties.Colloids Surf. B Biointerfaces201079151810.1016/j.colsurfb.2010.03.02920417070
    [Google Scholar]
  3. YangZ.C. WangB.C. YangX.S. WangQ. RanL. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus.Colloids Surf. B Biointerfaces2005412-3798110.1016/j.colsurfb.2004.10.03315737531
    [Google Scholar]
  4. ParhamS. WicaksonoD.H.B. BagherbaigiS. LeeS.L. NurH. Antimicrobial treatment of different metal oxide nanoparticles: A critical review.J. Chin. Chem. Soc. (Taipei)201663438539310.1002/jccs.201500446
    [Google Scholar]
  5. HuhA.J. KwonY.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.J. Control. Release2011156212814510.1016/j.jconrel.2011.07.00221763369
    [Google Scholar]
  6. ShaikhS. NazamN. RizviS.M.D. AhmadK. BaigM.H. LeeE.J. ChoiI. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance.Int. J. Mol. Sci.20192010246810.3390/ijms2010246831109079
    [Google Scholar]
  7. PanieriE. SantoroM.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells.Cell Death Dis.201676e225310.1038/cddis.2016.10527277675
    [Google Scholar]
  8. ParhamS. NematiM. SadirS. BagherbaigiS. WicaksonoD.H.B. NurH. In situ synthesis of silver nanoparticles for Ag‐NP/cotton nanocomposite and its bactericidal effect.J. Chin. Chem. Soc. (Taipei)201764111286129310.1002/jccs.201700157
    [Google Scholar]
  9. ParhamS. WicaksonoD.H.B. NurH. A proposed mechanism of action of textile/Al2O3–TiO2 bimetal oxide nanocomposite as an antimicrobial agent.J. Text. Inst.2019110579179810.1080/00405000.2018.1526445
    [Google Scholar]
  10. PohlP. DzimitrowiczA. JedryczkoD. Szymczycha-MadejaA. WelnaM. JamrozP. The determination of nlms in herbal teas and medicinal plant formulations and their tisanes.J. Pharm. Biomed. Anal.201613032633510.1016/j.jpba.2016.01.04226830083
    [Google Scholar]
  11. AliD. VermaS. MalviyaR. MishraS. SundramS. Implications of herbal components in the treatment of neurological disorders.Curr. Nutr. Food Sci.202420667768610.2174/1573401319666230821102546
    [Google Scholar]
  12. Ismail IidI. KumarS. ShuklaS. KumarV. SharmaR. Putative antidiabetic herbal food ingredients: Nutra/functional properties, bioavailability and effect on metabolic pathways.Trends Food Sci. Technol.20209731734010.1016/j.tifs.2020.01.017
    [Google Scholar]
  13. SarataleR.G. BenelliG. KumarG. KimD.S. SarataleG.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale) evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens.Environ. Sci. Pollut. Res. Int.20182511103921040610.1007/s11356‑017‑9581‑528699009
    [Google Scholar]
  14. BansalK. SundramS. MalviyaR. Herbal components inspiring current lifestyle disease treatment: Role of nutraceuticals.Curr. Drug Res. Rev.202416211112710.2174/258997751566623051214202037183457
    [Google Scholar]
  15. RenisheyaJ.J.M.T. JohnsonM. MaryU.M. ArthyA. Antibacterial activity of ethanolic extracts of selected medicinal plants against human pathogens.Asian Pac. J. Trop. Biomed.201111S76S7810.1016/S2221‑1691(11)60128‑7
    [Google Scholar]
  16. SrinivasanD. NathanS. SureshT. Lakshmana PerumalsamyP. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine.J. Ethnopharmacol.200174321722010.1016/S0378‑8741(00)00345‑711274820
    [Google Scholar]
  17. HamillF.A. ApioS. MubiruN.K. Bukenya-ZirabaR. MosangoM. MaganyiO.W. SoejartoD.D. Traditional herbal drugs of Southern Uganda, II: Literature analysis and antimicrobial assays.J. Ethnopharmacol.2003841577810.1016/S0378‑8741(02)00289‑112499078
    [Google Scholar]
  18. Burnett-BoothroydS.C. McCarthyB.J. Antimicrobial treatments of textiles for hygiene and infection control applications: an industrial perspective.Textiles for Hygiene and Infection Control.Woodhead Publishing Series in Textiles2011196209
    [Google Scholar]
  19. IslamS. ThangaduraiD. AdetunjiC.O. NwankwoW. KadiriO. MakindeS. MichaelO.S. AnaniO.A. AdetunjiJ.B. Nanomaterials and nanocoatings for alternative antimicrobial therapy.Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications.Springer202010.1007/978‑3‑030‑11155‑7_3‑1
    [Google Scholar]
  20. LammersT. AimeS. HenninkW.E. StormG. KiesslingF. Theranostic Nanomedicine.Acc. Chem. Res.201144101029103810.1021/ar200019c21545096
    [Google Scholar]
  21. MoraesA.C.M. Araujo LimaB. Fonseca de FariaA. BrocchiM. Luiz AlvesO. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus.Int. J. Nanomedicine2015106847686110.2147/IJN.S9066026586946
    [Google Scholar]
  22. Margulis-GoshenK. MagdassiS. Nanotechnology: an advanced approach to the development of potent insecticides.Advanced Technologies for Managing Insect Pests201329531410.1007/978‑94‑007‑4497‑4_15
    [Google Scholar]
  23. AllenT.M. CullisP.R. Drug delivery systems: Entering the mainstream.Science200430356651818182210.1126/science.109583315031496
    [Google Scholar]
  24. KawabataY. WadaK. NakataniM. YamadaS. OnoueS. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications.Int. J. Pharm.2011420111010.1016/j.ijpharm.2011.08.03221884771
    [Google Scholar]
  25. MeranZ. BesinisA. De PeraltaT. HandyR.D. Antifungal properties and biocompatibility of silver nanoparticle coatings on silicone maxillofacial prostheses in vitro.J. Biomed. Mater. Res. B Appl. Biomater.201810631038105110.1002/jbm.b.3391729524329
    [Google Scholar]
  26. BanachM. Pulit-ProciakJ. Proecological method for the preparation of metal nanoparticles.J. Clean. Prod.20171411030103910.1016/j.jclepro.2016.09.180
    [Google Scholar]
  27. ChatterjeeA.K. ChakrabortyR. BasuT. Mechanism of antibacterial activity of copper nanoparticles.Nanotechnology2014251313510110.1088/0957‑4484/25/13/13510124584282
    [Google Scholar]
  28. PanS.Y. LitscherG. GaoS.H. ZhouS.F. YuZ.L. ChenH.Q. ZhangS.F. TangM.K. SunJ.N. KoK.M. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources.Evid. Based Complement. Alternat. Med.20142014152534010.1155/2014/52534024872833
    [Google Scholar]
  29. UptonR. DavidB. GafnerS. GlaslS. Botanical ingredient identification and quality assessment: Strengths and limitations of analytical techniques.Phytochem. Rev.20201951157117710.1007/s11101‑019‑09625‑z
    [Google Scholar]
  30. MushtaqS. AbbasiB.H. UzairB. AbbasiR. Natural products as reservoirs of novel therapeutic agents.EXCLI J.20181742045129805348
    [Google Scholar]
  31. DekeboA. Introductory chapter: Plant extracts.Plant Extracts201910.5772/intechopen.85493
    [Google Scholar]
  32. PieprzycaE. SkowronekR. NižnanskýĽ. CzekajP. Synthetic cathinones: From natural plant stimulant to new drug of abuse.Eur. J. Pharmacol.202087517301210.1016/j.ejphar.2020.17301232087255
    [Google Scholar]
  33. BodekerG. GhatK.K. BurleyJ. VantommeP. Medicinal plants for forest conservation and health care; Food and Agriculture Organization.FAO1997
    [Google Scholar]
  34. WatkinsR. WuL. ZhangC. DavisR.M. XuB. Natural product-based nanomedicine: recent advances and issues.Int. J. Nanomedicine2015106055607426451111
    [Google Scholar]
  35. KumadohD.O. Ofori-KwakyeK.W. Dosage forms of herbal medicinal products and their stability considerations-an overview.J Crit Rev.20174418
    [Google Scholar]
  36. MishraA. ArunK. Development of herbal tablet formulation: Systematic approach.Altern. Integr. Med.20198110.4172/2327‑5162.1000275
    [Google Scholar]
  37. PouloseN. SajayanA. RavindranA. SreechithraT.V. VardhanV. SelvinJ. KiranG.S. Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: With improved antioxidant and wound healing properties.J. Photochem. Photobiol. B202020511181610.1016/j.jphotobiol.2020.11181632070822
    [Google Scholar]
  38. ChenS. LiQ. McClementsD.J. HanY. DaiL. MaoL. GaoY. Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion.Food Hydrocoll.20209910533410.1016/j.foodhyd.2019.105334
    [Google Scholar]
  39. ZhangQ.W. LinL.G. YeW.C. Techniques for extraction and isolation of natural products: a comprehensive review.Chin. Med.20181312010.1186/s13020‑018‑0177‑x29692864
    [Google Scholar]
  40. ShermanP.W. BillingJ. Darwinian gastronomy: Why we use spices: Spices taste good because they are good for us.Bioscience199949645346310.2307/1313553
    [Google Scholar]
  41. RosenblumA. MarschL.A. JosephH. PortenoyR.K. Opioids and the treatment of chronic pain: Controversies, current status, and future directions.Exp. Clin. Psychopharmacol.200816540541610.1037/a001362818837637
    [Google Scholar]
  42. ReddyB.A. Digitalis therapy in patients with congestive heart failure.Int. J. Pharm. Sci. Rev. Res.2010329095
    [Google Scholar]
  43. ZhangD. YangR. WangS. DongZ. Paclitaxel: New uses for an old drug.Drug Des. Devel. Ther.2014827928424591817
    [Google Scholar]
  44. GilbertP. Compassion and cruelty: A biopsychosocial approach.Compassion: Conceptualisations, research and use in psychotherapy.Routledge200597410.4324/9780203003459
    [Google Scholar]
  45. TanneJ. Paracetamol causes most liver failure in UK and US.BMJ20063327542628.210.1136/bmj.332.7542.628‑a
    [Google Scholar]
  46. HayE.M. PatersonS.M. LewisM. HosieG. CroftP. Pragmatic randomised controlled trial of local corticosteroid injection and naproxen for treatment of lateral epicondylitis of elbow in primary care.BMJ1999319721596496810.1136/bmj.319.7215.96410514160
    [Google Scholar]
  47. LeskoS.M. MitchellA.A. An assessment of the safety of pediatric ibuprofen. A practitioner-based randomized clinical trial.JAMA19952731292993310.1001/jama.1995.035203600430377884951
    [Google Scholar]
  48. MannJ.F. GoerigM. BruneK. LuftF.C. Ibuprofen as an over-the-counter drug: Is there a risk for renal injury?Clin. Nephrol.1993391168428401
    [Google Scholar]
  49. MoghalN.E. HegdeS. EasthamK.M. Ibuprofen and acute renal failure in a toddler.Arch. Dis. Child.200489327627710.1136/adc.2002.02414114977711
    [Google Scholar]
  50. GuptaB. SharmaP.K. MalviyaR. MishraP.S. Curcumin and curcumin derivatives for therapeutic applications: In vitro and in vivo studies.Curr. Nutr. Food Sci.202420101189120410.2174/0115734013281379231228061438
    [Google Scholar]
  51. TzimaK. MakrisD. NikiforidisC.V. MourtzinosI. Potential use of rosemary, propolis and thyme as natural food preservatives.J. Nutr. Health201516
    [Google Scholar]
  52. PiccagliaR. MarottiM. GiovanelliE. DeansS.G. EagleshamE. Antibacterial and antioxidant properties of Mediterranean aromatic plants.Ind. Crops Prod.199321475010.1016/0926‑6690(93)90010‑7
    [Google Scholar]
  53. OlivieroM. RomildeI. BeatriceM.M. MatteoV. GiovannaN. ConsueloA. ClaudioC. GiorgioS. FilippoM. MassimoN. Evaluations of thyme extract effects in human normal bronchial and tracheal epithelial cell lines and in human lung cancer cell line.Chem. Biol. Interact.201625612513310.1016/j.cbi.2016.06.02427369807
    [Google Scholar]
  54. KoksalE. BursalE. GulcinI. KorkmazM. CaglayanC. GorenA.C. AlwaselS.H. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry.Int. J. Food Prop.201620310.1080/10942912.2016.1168438
    [Google Scholar]
  55. MartinsN. BarrosL. Santos-BuelgaC. SilvaS. HenriquesM. FerreiraI.C.F.R. Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation.Food Chem.201516713113710.1016/j.foodchem.2014.06.09425148969
    [Google Scholar]
  56. GavaricN. MozinaS.S. KladarN. BozinB. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism.J. Essent. Oil-Bear. Plants20151841013102110.1080/0972060X.2014.971069
    [Google Scholar]
  57. Ghaderi-GhahfarokhiM. BarzegarM. SahariM.A. AziziM.H. Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage.Food Bioprocess Technol.2016971187120110.1007/s11947‑016‑1708‑z
    [Google Scholar]
  58. El-GuendouzS. AazzaS. Anahi DandlenS. MajdoubN. LyoussiB. RaposoS. Dulce AntunesM. GomesV. Graça MiguelM. Antioxidant activity of thyme waste extract in O/W emulsions.Antioxidants20198824310.3390/antiox808024331349645
    [Google Scholar]
  59. TohidiB. RahimmalekM. TrindadeH. Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran.Ind. Crops Prod.2019134899910.1016/j.indcrop.2019.02.038
    [Google Scholar]
  60. GömöriC. VidácsA. KerekesE.B. Nacsa-FarkasE. BöszörményiA. VágvölgyiC. KrischJ. Altered antimicrobial and anti-biofilm forming effect of thyme essential oil due to changes in composition.Nat. Prod. Commun.2018134483487
    [Google Scholar]
  61. AhmadiR. AlizadehA. KetabchiS. Antimicrobial activity of the essential oil of Thymus kotschyanus grown wild in Iran.IJB20156323924810.12692/ijb/6.3.239‑248
    [Google Scholar]
  62. DivyaB.J. SumanB. VenkataswamyM. ThyagarajuK. A study on phytochemicals, functional groups and mineral composition of Allium sativum (garlic) cloves.Int. J. Curr. Pharm. Res.201793424510.22159/ijcpr.2017.v9i3.18888
    [Google Scholar]
  63. ShaafS. SharmaR. KilianB. WaltherA. ÖzkanH. KaramiE. MohammadiB. Genetic structure and eco-geographical adaptation of garlic landraces (Allium sativum L.) in Iran.Genet. Resour. Crop Evol.20146181565158010.1007/s10722‑014‑0131‑4
    [Google Scholar]
  64. MartinsN. PetropoulosS. FerreiraI.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review.Food Chem.2016211415010.1016/j.foodchem.2016.05.02927283605
    [Google Scholar]
  65. FratianniF. OmbraM.N. CozzolinoA. RiccardiR. SpignoP. TremonteP. CoppolaR. NazzaroF. Phenolic constituents, antioxidant, antimicrobial and anti-proliferative activities of different endemic Italian varieties of garlic (Allium sativum L.).J. Funct. Foods20162124024810.1016/j.jff.2015.12.019
    [Google Scholar]
  66. KhanM.S. QuershiN.A. JabeenF. AsgharM.S. ShakeelM. Analysis of minerals profile, phenolic compounds and potential of Garlic (Allium sativum) as antioxidant scavenging the free radicals.Int. J. Biosci.201684728210.12692/ijb/8.4.72‑82
    [Google Scholar]
  67. OnyeoziriU.P. RomanusE.N. OnyekachukwuU.I. Assessment of antioxidant capacities and phenolic contents of nigerian cultivars of onions (Allium cepa L) and garlic (Allium sativum L).Pak. J. Pharm. Sci.20162941183118827393431
    [Google Scholar]
  68. KhanumF. AnilakumarK.R. ViswanathanK.R. Anticarcinogenic properties of garlic: A review.Crit. Rev. Food Sci. Nutr.200444647948810.1080/1040869049088670015615431
    [Google Scholar]
  69. GhasemiK. BolandnazarS. TabatabaeiS.J. PirdashtiH. ArzanlouM. EbrahimzadehM.A. FathiH. Antioxidant properties of garlic as affected by selenium and humic acid treatments.N. Z. J. Crop Hortic. Sci.201543317318110.1080/01140671.2014.991743
    [Google Scholar]
  70. BatciogluK. YilmazZ. SatilmisB. UyumluA.B. ErkalH.S. YucelN. GunalS. SerinM. DemirtasH. Investigation of in vivo radioprotective and in vitro antioxidant and antimicrobial activity of garlic (Allum sativum).Eur. Rev. Med. Pharmacol. Sci.201216Suppl. 3475722957418
    [Google Scholar]
  71. CelliniL. Di CampliE. MasulliM. Di BartolomeoS. AllocatiN. Inhibition of Helicobacter pylori by garlic extract (Allium sativum).FEMS Immunol. Med. Microbiol.199613427327710.1111/j.1574‑695X.1996.tb00251.x8739190
    [Google Scholar]
  72. LemarK.M. PassaO. AonM.A. CortassaS. MüllerC.T. PlummerS. O’RourkeB. LloydD. Allyl alcohol and garlic(Allum sativum) extract produce oxidative stress in Candida albicans.Microbiology (Reading)2005151103257326510.1099/mic.0.28095‑016207909
    [Google Scholar]
  73. AhsanM. IslamS.N. Garlic: A broad-spectrum antibacterial agent effective against common pathogenic bacteria.Fitoterapia674374376
    [Google Scholar]
  74. HanafyM.S. ShalabyS.M. el-FoulyM.A. Abd el-AzizM.I. SolimanF.A. Effect of garlic on lead contents in chicken tissues.Dtsch. Tierarztl. Wochenschr.199410141571588205968
    [Google Scholar]
  75. YoshidaH. IwataN. KatsuzakiH. NaganawaR. IshikawaK. FukudaH. FujinoT. SuzukiA. Antimicrobial activity of a compound isolated from an oil-macerated garlic extract.Biosci. Biotechnol. Biochem.19986251014101710.1271/bbb.62.10149648236
    [Google Scholar]
  76. ImaiJ. IdeN. NagaeS. MoriguchiT. MatsuuraH. ItakuraY. Antioxidant and radical scavenging effects of aged garlic extract and its constituents.Planta Med.199460541742010.1055/s‑2006‑9595227997468
    [Google Scholar]
  77. AdetumbiM.A. LauB.H.S. Alliumsativum (garlic): A natural antibiotic.Med. Hypotheses198312322723710.1016/0306‑9877(83)90040‑36366484
    [Google Scholar]
  78. VenugopalP. VenugopalT. Antidermatophytic activity of garlic (Allum sativum)in vitro.Int. J. Dermatol.199534427827910.1111/j.1365‑4362.1995.tb01597.x7790146
    [Google Scholar]
  79. WeberN. AndersenD. NorthJ. MurrayB. LawsonL. HughesB. In vitro virucidal effects of Allium sativum (garlic) extract and compounds.Planta Med.199258541742310.1055/s‑2006‑9615041470664
    [Google Scholar]
  80. FromtlingR.A. BulmerG.S. In vitro effect of aqueous extract of garlic(Allum sativum) on the growth and viability of Cryptococcus neoformans.Mycologia197870239740510.1080/00275514.1978.12020240353553
    [Google Scholar]
  81. PrasadG. SharmaV.D. Efficacy of garlic(Allum sativum) treatment against experimental candidiasis in chicks.Br. Vet. J.1980136544845110.1016/S0007‑1935(17)32186‑37225771
    [Google Scholar]
  82. MkaddemM. BoussaidM. FadhelN.B. Variability of Volatiles in Tunisian Mentha pulegium L. (Lamiaceae).J. Essent. Oil Res.200719321121410.1080/10412905.2007.9699263
    [Google Scholar]
  83. VaghardoostR. GhavamiY. SoboutiB. The effect of Mentha pulegium on healing of burn wound injuries in rat.World J. Plast. Surg.201981435010.29252/wjps.8.1.4330873361
    [Google Scholar]
  84. TeixeiraB. MarquesA. RamosC. BatistaI. SerranoC. MatosO. NengN.R. NogueiraJ.M.F. SaraivaJ.A. NunesM.L. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil.Ind. Crops Prod.2012361818710.1016/j.indcrop.2011.08.011
    [Google Scholar]
  85. HassanpouraghdamM.B. AkhgariA.B. AazamiM.A. Emarat-PardazJ. New menthone type of Mentha pulegium L. volatile oil from northwest Iran.Czech J. Food Sci.201129328529010.17221/165/2009‑CJFS
    [Google Scholar]
  86. Morteza-SemnaniK. SaeediM. AkbarzadehM. Chemical composition and antimicrobial activity of the essential oil of Mentha pulegium L.J. Essent. Oil-Bear. Plants201114220821310.1080/0972060X.2011.10643923
    [Google Scholar]
  87. PetrakisE.A. KimbarisA.C. PappasC.S. TarantilisP.A. PolissiouM.G. Quantitative determination of pulegone in pennyroyal oil by FT-IR spectroscopy.J. Agric. Food Chem.20095721100441004810.1021/jf902605219817373
    [Google Scholar]
  88. SarikurkcuC. EryigitF. CengizM. TepeB. CakirA. MeteE. Screening of the antioxidant activity of the essential oil and methanol extract of Mentha pulegium L. from Turkey.Spectrosc. Lett.201245535235810.1080/00387010.2012.666701
    [Google Scholar]
  89. HadiM.Y. HameedI.H. IbraheamI.A. Mentha pulegium: medicinal uses, anti-hepatic, antibacterial, antioxidant effect and analysis of bioactive natural compounds: A review.Res. J. Pharm. Technol.201710103580358410.5958/0974‑360X.2017.00648.5
    [Google Scholar]
  90. SalemN. SritiJ. BachrouchO. MsaadaK. KhammassiS. HammamiM. SelmiS. BoushihE. OuertaniM. HachaniN. AbderrabaM. Phenological stage effect on phenolic composition and repellent potential of Mentha pulegium against Tribolium castaneum and Lasioderma serricorne.Asian Pac. J. Trop. Biomed.20188420721610.4103/2221‑1691.231283
    [Google Scholar]
  91. FerreresF. BernardoJ. AndradeP.B. SousaC. Gil-IzquierdoA. ValentãoP. Pennyroyal and gastrointestinal cells: Multi-target protection of phenolic compounds against t-BHP-induced toxicity.RSC Advances2015552415764158410.1039/C5RA02710A
    [Google Scholar]
  92. AbdelliM. MoghraniH. AbounA. MaachiR. Algerian Mentha pulegium L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities.Ind. Crops Prod.20169419720510.1016/j.indcrop.2016.08.042
    [Google Scholar]
  93. GaeiniZ. TaghinezhadM. SohrabvandiS. MortazavianA.M. MahdaviS.M. Healthful characteristics of pennyroyal essential oil.Arch. adv. biosci201344
    [Google Scholar]
  94. BonyadianM. MoshtaghiH. Bacteriocidal activity of some plants essential oils against Bacillus cereus,Salmonella typhimurium, Listeria monocytogenes and Yersinia enterocolitica.Res. J. Microbiol.200831134865310.3923/jm.2008.648.653
    [Google Scholar]
  95. YusufU. MuhammadM. Antibacterial properties of Mentha pulegium.South. Asian Res. J. Med. Sci.201914345
    [Google Scholar]
  96. ZhouY.X. XinH.L. RahmanK. WangS.J. PengC. ZhangH. Portulaca oleracea L.: A review of phytochemistry and pharmacological effects.BioMed Res. Int.20152015192563125692148
    [Google Scholar]
  97. a AnkitM.R. SourcesS.A. Sources, properties, and pharmacological effects of quercetin.Curr. Nutr. Food Sci.2022185457465
    [Google Scholar]
  98. b JaiswalS. RajwadeD. A Review on Portulaca oleracea (Nonia bhaji): A wonderful weed of Chhattisgarh.Res. J. Pharm Technol.2017107415242010.5958/0974‑360X.2017.00426.7
    [Google Scholar]
  99. DongC.X. HayashiK. LeeJ.B. HayashiT. Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L.Chem. Pharm. Bull. (Tokyo)201058450751010.1248/cpb.58.50720410633
    [Google Scholar]
  100. ParhamS. KharaziA.Z. Bakhsheshi-RadH.R. NurH. IsmailA.F. SharifS. RamaKrishna, S.; Berto, F. RAntioxidant, antimicrobial and antiviral properties of herbal materials.Antioxidants2020912130910.3390/antiox912130933371338
    [Google Scholar]
  101. SupriyaJ. KishorG. AniketG. Phytochemical screening and antimicrobial activity of Portulaca quadrifida linn.Asian J. Pharm. Clin. Res.201912788110.22159/ajpcr.2019.v12i3.27587
    [Google Scholar]
  102. KhanamB. BegumW. TipoF.A. Pharmacological profile, phytoconstituents, and traditional uses of Khurfa (Portulaca oleracea L.): Unani perspective.J. Pharm. Innov.20198367372
    [Google Scholar]
  103. LondonkarR. NayakaH.B. Phytochemical and antimicrobial activities of Portulaca oleracea L.J. Pharm. Res.201141035533555
    [Google Scholar]
  104. MasoodiM.H. AhmadB. MirS.R. ZargarB.A. TabasumN. Portulaca oleracea L. a review.J. Pharm. Res.20114930443048
    [Google Scholar]
  105. RadünzM. da TrindadeM.L.M. CamargoT.M. RadünzA.L. BorgesC.D. GandraE.A. HelbigE. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil.Food Chem.201927618018610.1016/j.foodchem.2018.09.17330409582
    [Google Scholar]
  106. Heredia-GuerreroJ.A. CeseracciuL. Guzman-PuyolS. PaulU.C. Alfaro-PulidoA. GrandeC. VezzulliL. BandieraT. BertorelliR. RussoD. AthanassiouA. BayerI.S. Antimicrobial, antioxidant, and waterproof RTV silicone-ethyl cellulose composites containing clove essential oil.Carbohydr. Polym.201819215015810.1016/j.carbpol.2018.03.05029691007
    [Google Scholar]
  107. AldabaanN.A. TurakaniB. MahnashiM.H. ShaikhI.A. AlhazmiA.Y. AlmasoudiH.H. AbdulazizO. KhuwajaG. KhanA.A. BasavegowdaN. DafallaS.E. MuddapurU.M. IqubalS.M.S. Evaluation of antimicrobial, anticancer, antidiabetic, antioxidant activities and silver nanoparticles synthesized from Indian Clove- Syzygium aromaticum leaf extract.J. King Saud Univ. Sci.202436410314210.1016/j.jksus.2024.103142
    [Google Scholar]
  108. CuiH. ZhangC. LiC. LinL. Antimicrobial mechanism of clove oil on Listeria monocytogenes.Food Control20189414014610.1016/j.foodcont.2018.07.007
    [Google Scholar]
  109. LiW. ChenH. HeZ. HanC. LiuS. LiY. Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions.Lebensm. Wiss. Technol.2015621394710.1016/j.lwt.2015.01.012
    [Google Scholar]
  110. NikousalehA. PrakashJ. Antioxidant components and properties of dry heat treated clove in different extraction solvents.J. Food Sci. Technol.20165341993200010.1007/s13197‑015‑2113‑827413226
    [Google Scholar]
  111. JahanianE. Clove bud oil: A novel herbal medicine for future kidney researches.Ann Res Antioxid201612
    [Google Scholar]
  112. AktharM.S. DegagaB. AzamT. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review.J. Issues Issn.20142350158817
    [Google Scholar]
  113. BandaraV. WeinsteinS.A. WhiteJ. EddlestonM. A review of the natural history, toxinology, diagnosis and clinical management of Nerium oleander (common oleander) and Thevetia peruviana (yellow oleander) poisoning.Toxicon201056327328110.1016/j.toxicon.2010.03.02620438743
    [Google Scholar]
  114. RajbharN. KumarA. Pharmacological importance of Thevetia peruviana.Int. J. Pharma Sci.201431260
    [Google Scholar]
  115. ColemanM.J. SindelB.M. van der MeulenA.W. ReeveI.J. The risks associated with weed spread in Australia and implications for natural areas.Nat. Areas J.201131436837610.3375/043.031.0407
    [Google Scholar]
  116. AbeF. IwaseY. YamauchiT. YaharaS. NoharaT. Flavonol sinapoyl glycosides from leaves of Thevetia peruviana.Phytochemistry199540257758110.1016/0031‑9422(95)00316‑Y7546562
    [Google Scholar]
  117. NegiJ.S. Pramod SinghP.S. HPLC fingerprinting of highly demanding medicinal plant Swertia: an overview.Int. J. Med. Arom. Plants3333337
    [Google Scholar]
  118. AhmadT. HamidA. SharmaA. BhardwajU. Thevetia peruviana: A multipurpose medicinal plant: A review.Int. J. Adv. Res. (Indore)20175848649310.21474/IJAR01/5081
    [Google Scholar]
  119. MustafaA. AliM. New steroidal lactones and homomonoterpenic glucoside from fruits of Malva sylvestris L.Acta Pol. Pharm.201168339340121648194
    [Google Scholar]
  120. PaulD. A review on biological activities of common Mallow (Malva sylvestris L.).J. Life Sci.2016415
    [Google Scholar]
  121. WalterC.Y. ShinwariZ.K. AfzalI.M. MalikR.N. Antibacterial activity in herbal products used in Pakistan.Pak. J. Bot.201143155162
    [Google Scholar]
  122. ZareP. MahmoudiR. ShadfarS. EhsaniA. AfrazehY. SaeedanA. NiyazpourF. PourmandB.S. Efficacy of chloroform, ethanol and water extracts of medicinal plants, Malva sylvestris and Malva neglecta on some bacterial and fungal contaminants of wound infections.J. Med. Plants Res.201262945504552
    [Google Scholar]
  123. MohammedH.J. Screening of antibacterial properties for some Iraqi plants against Salmonella typhimurium.Iraqi J. Vet. Sci. Med.2011352283510.30539/iraqijvm.v35i2.572
    [Google Scholar]
  124. NasiriE. HosseinimehrS.J. AzadbakhtM. AkbariJ. Enayati-FardR. AziziS. Effect of Malva sylvestris cream on burn injury and wounds in rats.Avicenna J. Phytomed.20155434135426909337
    [Google Scholar]
  125. CecottiR BergomiP CarpanaE Tava A Chemical characterization of the volatiles of leaves and flowers from cultivated Malva sylvestris var. mauritiana and their antimicrobial activity against the aetiological agents of the European and American foulbrood of honeybees (Apis mellifera).Nat. Product Commun.201611101934578X1601101026.
    [Google Scholar]
  126. DellaGrecaM CutilloF AbroscaBD FiorentinoA PacificoS Zarrell A Antioxidant and radical scavenging properties of Malva sylvestris.Nat. Product Commun.2009471934578X090040070210.1177/1934578X0900400702
    [Google Scholar]
  127. WilleyN.J. FawcettK. Inter-taxa differences in root uptake of 103/106Ru by plants.J. Environ. Radioact.200686222724010.1016/j.jenvrad.2005.09.00216256252
    [Google Scholar]
  128. DulgerB. Gonuz, A Antimicrobial activity of certain plants used in Turkish traditional medicine.Asian J. Plant Sci.3110410710.3923/ajps.2004.104.107
    [Google Scholar]
  129. ChengC. WangZ. Bacteriostasic activity of anthocyanin of Malva sylvestris.J. For. Res.2006171838510.1007/s11676‑006‑0020‑6
    [Google Scholar]
  130. MousaviS.M. HashemiS.A. ZareiM. GholamiA. LaiC.W. ChiangW.H. OmidifarN. BahraniS. MazraedoostS. Recent progress in chemical composition, production, and pharmaceutical effects of kombucha beverage: A complementary and alternative medicine.Evid. Based Complement. Alternat. Med.202020201439754310.1155/2020/439754333281911
    [Google Scholar]
  131. GholamiA. HashemiS.A. YousefiK. MousaviS.M. ChiangW.H. RamakrishnaS. MazraedoostS. AlizadehA. OmidifarN. BehbudiG. BabapoorA. 3D nanostructures for tissue engineering, cancer therapy, and gene delivery.J. Nanomater.20202020112410.1155/2020/1852946
    [Google Scholar]
  132. RobyM.H.H. SarhanM.A. SelimK.A.H. KhalelK.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.).Ind. Crops Prod.20134443744510.1016/j.indcrop.2012.10.012
    [Google Scholar]
  133. Agatonovic-KustrinS. Babazadeh OrtakandD. MortonD.W. YusofA.P. Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German chamomile extracts.J. Chromatogr. A2015138510311010.1016/j.chroma.2015.01.06725666499
    [Google Scholar]
  134. IsmailM.C. WaleedS. IbrahimK. FakhriN.U. Synergistic interaction between Chamomile flower (Matricaria chamomilla L.) extracts and tetracycline against wound infection bacteria.Al-Nahrain J. Sci.2013163191195
    [Google Scholar]
  135. MekonnenA. YitayewB. TesemaA. TaddeseS. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis.Int. J. Microbiol.201620161954569326880928
    [Google Scholar]
  136. MekinićIG SkrozaD LjubenkovI KrstulovićL MožinaSS KatalinićV Phenolic acids profile, antioxidant and antibacterial activity of chamomile, common yarrow and immortelle (Asteraceae).Nat. Prod. Commun.20149121934578X140090122225632475
    [Google Scholar]
  137. FormisanoC. DelfineS. OlivieroF. TenoreG.C. RiganoD. SenatoreF. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy).Ind. Crops Prod.20156325626310.1016/j.indcrop.2014.09.042
    [Google Scholar]
  138. PereiraS.V. ReisR.A.S.P. GarbuioD.C. FreitasL.A.P. Dynamic maceration of Matricaria chamomilla inflorescences: Optimal conditions for flavonoids and antioxidant activity.Rev. Bras. Farmacogn.201828111111710.1016/j.bjp.2017.11.00632287507
    [Google Scholar]
  139. GuptaS.K. KuoC.L. ChangH.C. ChanH.S. ChenE.C.F. ChuehF.S. TsayH.S. In vitro propagation and approaches for metabolites production in medicinal plants.Adv. Bot. Res.201262355510.1016/B978‑0‑12‑394591‑4.00002‑7
    [Google Scholar]
  140. NelA. XiaT. MadlerL. LiN. Toxic potential of materials at the nanolevel.Science2006311622627
    [Google Scholar]
  141. Dos SantosC.A. SecklerM.M. IngleA.P. GuptaI. GaldieroS. GaldieroM. GadeA. RaiM. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues.J. Pharm. Sci.201410371931194410.1002/jps.2400124824033
    [Google Scholar]
  142. NasrollahiA. PourshamsianK.H. MansourkiaeeP. Antifungal activity of silver nanoparticles on some of fungi.Int. J. Nanodimens.13233239
    [Google Scholar]
  143. WilsonB.A. SalyersA.A. WhittD.D. Winkler, ME Bacterial pathogenesis: A molecular approach.WashingtonASM Press2011
    [Google Scholar]
  144. TanY.N. LeeK.H. SuX. Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms.Anal. Chem.201183114251425710.1021/ac200525a21524056
    [Google Scholar]
  145. JayaseelanC. RahumanA.A. KirthiA.V. MarimuthuS. SanthoshkumarT. BagavanA. GauravK. KarthikL. RaoK.V.B. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi.Spectrochim. Acta A Mol. Biomol. Spectrosc.201290788410.1016/j.saa.2012.01.00622321514
    [Google Scholar]
  146. SzabóT. NémethJ. DékányI. Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties.Colloids Surf. A Physicochem. Eng. Asp.20032301-3233510.1016/j.colsurfa.2003.09.010
    [Google Scholar]
  147. ShahM. JanH. DrouetS. TungmunnithumD. ShiraziJ.H. HanoC. AbbasiB.H. Chitosan elicitation impacts flavonolignan biosynthesis in Silybum marianum (L.) Gaertn cell suspension and enhances antioxidant and anti-inflammatory activities of cell extracts.Molecules202126479110.3390/molecules2604079133546424
    [Google Scholar]
  148. HuangZ. CuiF. KangH. ChenJ. ZhangX. XiaC. Highly dispersed silica-supported copper nanoparticles prepared by precipitation− gel method: A simple but efficient and stable catalyst for glycerol hydrogenolysis.Chem. Mater.200820155090509910.1021/cm8006233
    [Google Scholar]
  149. RaiM. DeshmukhS.D. IngleA.P. GuptaI.R. GaldieroM. GaldieroS. Metal nanoparticles: The protective nanoshield against virus infection.Crit. Rev. Microbiol.2016421465610.3109/1040841X.2013.87984924754250
    [Google Scholar]
  150. ParkH.J. KimJ.Y. KimJ. LeeJ.H. HahnJ.S. GuM.B. YoonJ. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity.Water Res.20094341027103210.1016/j.watres.2008.12.00219073336
    [Google Scholar]
  151. ChoiO. DengK.K. KimN.J. RossL.Jr SurampalliR.Y. HuZ. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth.Water Res.200842123066307410.1016/j.watres.2008.02.02118359055
    [Google Scholar]
  152. RaffiM. HussainF. BhattiT.M. AkhterJ.I. HameedA. HasanM.M. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224.J. Mater. Sci. Technol.2008242192196
    [Google Scholar]
  153. AdamsL.K. LyonD.Y. AlvarezP.J.J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions.Water Res.200640193527353210.1016/j.watres.2006.08.00417011015
    [Google Scholar]
  154. PalS. TakY.K. SongJ.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.Appl. Environ. Microbiol.20077361712172010.1128/AEM.02218‑0617261510
    [Google Scholar]
  155. MoronesJ.R. ElechiguerraJ.L. CamachoA. HoltK. KouriJ.B. RamírezJ.T. YacamanM.J. The bactericidal effect of silver nanoparticles.Nanotechnology200516102346235310.1088/0957‑4484/16/10/05920818017
    [Google Scholar]
  156. AlMatarM. MakkyE.A. VarI. KoksalF. The role of nanoparticles in the inhibition of multidrug-resistant bacteria and biofilms.Curr. Drug Deliv.201815447048410.2174/156720181566617120716350429219055
    [Google Scholar]
  157. RodriguesE. BarnesJ. Pharmacovigilance of herbal medicines: the potential contributions of ethnobotanical and ethnopharmacological studies.Drug Saf.201336111210.1007/s40264‑012‑0005‑723315291
    [Google Scholar]
  158. BandaranayakeW.M. Quality control, screening, toxicity, and regulation of herbal drugs.Modern Phytomedicine: Turning Medicinal Plants into Drugs.Wiley2006252710.1002/9783527609987.ch2
    [Google Scholar]
  159. SinghK. AgrawalK.K. MishraV. UddinS.M. ShuklaA. A review on: Thevetia peruviana.Int. Res. J. Pharm.2012347477
    [Google Scholar]
  160. NuñezL. D’ AquinoM. Microbicide activity of clove essential oil (Eugenia caryophyllata).Braz. J. Microbiol.20124341255126010.1590/S1517‑8382201200040000324031950
    [Google Scholar]
  161. MeenaA.K. BansalP. KumarS. Plants-herbal wealth as a potential source of ayurvedic drugs.Asian J. Tradit. Med.200944152170
    [Google Scholar]
  162. GeethaA. SakthivelR. MallikaJ. KannusamyR. RajendranR. Green synthesis of antibacterial zinc oxide nanoparticles using biopolymer Azadirachta indica Gum.Orient. J. Chem.201632295596310.13005/ojc/320222
    [Google Scholar]
  163. StreetR.A. SidanaJ. PrinslooG. Cichorium intybus: Traditional uses, phytochemistry, pharmacology, and toxicology.Evid. Based Complement. Alternat. Med.20132013111310.1155/2013/57931924379887
    [Google Scholar]
  164. HarrisJ. S, C.; S, P.; D, L. Antimicrobial properties of Allium sativum (garlic).Appl. Microbiol. Biotechnol.200157328228610.1007/s00253010072211759674
    [Google Scholar]
  165. DaiC. LinJ. LiH. ShenZ. WangY. VelkovT. ShenJ. The natural product curcumin as an antibacterial agent: Current achievements and problems.Antioxidants202211345910.3390/antiox1103045935326110
    [Google Scholar]
  166. VukicM.D. VukovicN.L. DjelicG.T. ObradovicA. KacaniovaM.M. MarkovicS. PopovićS. BaskićD. Phytochemical analysis, antioxidant, antibacterial and cytotoxic activity of different plant organs of Eryngium serbicum L.Ind. Crops Prod.2018115889710.1016/j.indcrop.2018.02.031
    [Google Scholar]
  167. NaderM.I. GhanimaK.K. AliS.A. AzharD.A. Antibacterial activity of ginger extracts and its essential oil on some of pathogenic bacteria.Baghdad Sci. J.2010731159116510.21123/bsj.2010.7.3.1159‑1165
    [Google Scholar]
  168. Bettaieb ép Rebey, I; Bourgou, S.; Marzouk, B.; Fauconnier, M.L; Ksouri, R. Salinity impact on seed yield, polyphenols composition and antioxidant activity of Fennel (Foeniculum vulgarae Mill) extracts.J. New. Sci. Agri. Biotech2017326102619
    [Google Scholar]
  169. ChanY.S. ChengL.N. WuJ.H. ChanE. KwanY.W. LeeS.M.Y. LeungG.P.H. YuP.H.F. ChanS.W. A review of the pharmacological effects of Arctium lappa (burdock).Inflammopharmacology201119524525410.1007/s10787‑010‑0062‑420981575
    [Google Scholar]
  170. LouZ. WangH. LiJ. ChenS. ZhuS. MaC. WangZ. Antioxidant activity and chemical composition of the fractions from burdock leaves.J. Food Sci.2010755C413C41910.1111/j.1750‑3841.2010.01616.x20629861
    [Google Scholar]
  171. MallardI. BourgeoisD. FourmentinS. A friendly environmental approach for the controlled release of Eucalyptus essential oil.Colloids Surf. A Physicochem. Eng. Asp.201854913013710.1016/j.colsurfa.2018.04.010
    [Google Scholar]
  172. LuísÂ. NeivaD.M. PereiraH. GominhoJ. DominguesF. DuarteA.P. Bioassay-guided fractionation, GC–MS identification and in vitro evaluation of antioxidant and antimicrobial activities of bioactive compounds from Eucalyptus globulus stump wood methanolic extract.Ind. Crops Prod.2016919710310.1016/j.indcrop.2016.06.022
    [Google Scholar]
  173. Ghasemi PirbaloutiA. NekoeiM. RahimmalekM. MalekpoorF. Chemical composition and yield of essential oil from lemon balm (Melissa officinalis L.) under foliar applications of jasmonic and salicylic acids.Biocatal. Agric. Biotechnol.20191910114410.1016/j.bcab.2019.101144
    [Google Scholar]
  174. ParimalaS.M. RajaP. SuhasiniS. ValarmathiG. MaheswaranT. Assessment of antibacterial property of Tribulus terrestris (leaves) from Tirunelveli District, India.Uttar Pradesh J. Zool.20214224388395
    [Google Scholar]
  175. SinghR. ShushniM.A.M. BelkheirA. Antibacterial and antioxidant activities of Mentha piperita L.Arab. J. Chem.20158332232810.1016/j.arabjc.2011.01.019
    [Google Scholar]
  176. MunirR. SemmarN. FarmanM. AhmadN.S. An updated review on pharmacological activities and phytochemical constituents of evening primrose (genus Oenothera).Asian Pac. J. Trop. Biomed.20177111046105410.1016/j.apjtb.2017.10.004
    [Google Scholar]
  177. Montserrat-de la PazS. Fernández-ArcheÁ. Ángel-MartínM. García-GiménezM.D. The sterols isolated from Evening Primrose oil modulate the release of proinflammatory mediators.Phytomedicine201219121072107610.1016/j.phymed.2012.06.00822819447
    [Google Scholar]
  178. MirajS. AlesaeidiS. A systematic review study of therapeutic effects of Matricaria recuitta chamomile (chamomile).Electron. Physician2016893024303110.19082/302427790360
    [Google Scholar]
  179. DeshmukhC.D. PramodC.S. Phytochemical and pharmacological profile of Emblica officinalis Linn.J. Med. Pharm. Allied Sci.20211022698270310.22270/jmpas.v10i2.1054
    [Google Scholar]
  180. ChenH. YuW. ChenG. MengS. XiangZ. HeN. Antinociceptive and antibacterial properties of anthocyanins and flavonols from fruits of black and non-black mulberries.Molecules2017231410.3390/molecules2301000429267231
    [Google Scholar]
  181. GuoZ. JiaX. ZhengZ. LuX. ZhengY. ZhengB. XiaoJ. Chemical composition and nutritional function of olive (Olea europaea L.): A review.Phytochem. Rev.20181751091111010.1007/s11101‑017‑9526‑0
    [Google Scholar]
  182. HamidpourM. HamidpourR. HamidpourS. ShahlariM. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer.J. Tradit. Complement. Med.201442828810.4103/2225‑4110.13037324860730
    [Google Scholar]
  183. IraniM. SarmadiM. BernardF. Ebrahimi PourG.H. Shaker BazarnovH. Leaves antimicrobial activity of Glycyrrhiza glabra L.Iran. J. Pharm. Res.20109442542824381608
    [Google Scholar]
  184. SaranrajP. SivasakthiS. Medicinal plants and its antimicrobial properties: A review.Glob. J. Pharmacol.201483316327
    [Google Scholar]
  185. MujeebF. BajpaiP. PathakN. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos.BioMed Res. Int.20142014149760624900969
    [Google Scholar]
  186. UpadhyayP. Phytochemistry and pharmacological activity of Mucuna pruriens: AÂ review.Int. J. Green Pharm.20171102[IJGP]
    [Google Scholar]
  187. LiuH. LuX. HuY. FanX. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy.Pharmacol. Res.202016110526310.1016/j.phrs.2020.10526333127555
    [Google Scholar]
  188. KupnikK. PrimožičM. KnezŽ. LeitgebM. Antimicrobial efficiency of Aloe arborescens and Aloe barbadensis natural and commercial products.Plants20211019210.3390/plants1001009233466284
    [Google Scholar]
  189. PattnaikS. SubramanyamV.R. BapajiM. KoleC.R. Antibacterial and antifungal activity of aromatic constituents of essential oils.Microbios19978935839469218354
    [Google Scholar]
  190. GruenwaldJ. FrederJ. ArmbruesterN. Cinnamon and health.Crit. Rev. Food Sci. Nutr.201050982283410.1080/1040839090277305220924865
    [Google Scholar]
  191. BalachandarS. JagadeeswariM. DhanabalanR. MeenachiM. Antimicrobial activity of Astragalus membranaceus against diarrheal bacterial pathogens.Int. J. Pharm.201222416418
    [Google Scholar]
  192. NawazH. ShadM.A. MuzaffarS. Phytochemical composition and antioxidant potential of Brassica.Brassica Germplasm Charact. Breed. Util.2018172610.5772/intechopen.76120
    [Google Scholar]
  193. ZehraviM. KarthikaC. AzadA.K. AhmadZ. KhanF.S. RahmanM.S. AkterR. RahmanM.H. A background search on the potential role of scutellaria and its essential oils.BioMed Res. Int.202220221726544510.1155/2022/726544535968239
    [Google Scholar]
  194. BatihaG.E.S. ShaheenH.M. ElhawaryE.A. MostafaN.M. EldahshanO.A. SabatierJ.M. Phytochemical constituents, folk medicinal uses, and biological activities of genus angelica: a review.Molecules202228126710.3390/molecules2801026736615460
    [Google Scholar]
  195. RajV.I. KumarA.R. SinghV.A. KumarP.R. KumarV.I. In vitro antimicrobial activity of Kalanchoe pinnata leaf.Int. J. Curr. Pharm. Res.2012235
    [Google Scholar]
  196. KopaeiM.R. TaleiG-R. MohammadiM. BahmaniM. Synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on gram-negative and gram-positive bacteria.Int. J. Pharm. Investig.201772828710.4103/jphi.JPHI_12_1728929050
    [Google Scholar]
  197. IslamM.A. MondalS.K. IslamS. Akther ShornaM.N. BiswasS. UddinM.S. ZamanS. SalehM.A. Antioxidant, cytotoxicity, antimicrobial activity, and in silico analysis of the methanolic leaf and flower extracts of Clitoria ternatea.Biochem. Res. Int.20232023111210.1155/2023/884787637780691
    [Google Scholar]
  198. MandalS. MandalM. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity.Asian Pac. J. Trop. Biomed.20155642142810.1016/j.apjtb.2015.04.001
    [Google Scholar]
  199. NietoG. RosG. CastilloJ. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review.Medicines (Basel)2018539810.3390/medicines503009830181448
    [Google Scholar]
  200. BaptistaA. GonçalvesR.V. BressanJ. PelúzioM.C.G. Antioxidant and antimicrobial activities of crude extracts and fractions of cashew (Anacardium occidentale L.), cajui (Anacardium microcarpum), and pequi (Caryocar brasiliense C.): A systematic review.Oxid. Med. Cell. Longev.201820181375356210.1155/2018/375356229849888
    [Google Scholar]
  201. MahdallyN.H. SalihA.E.M. El-ShiekhR.A. SayedA.M. ElhosseinyN.M. KashefM.T. YaseenM. MackayW. El HalawanyA.M. RatebM.E. AttiaA.S. Exploring the antimicrobial activity of Origanum majorana L. against the highly virulent multidrug-resistant Acinetobacter baumannii AB5075: UPLC-HRMS profiling with in vitro and in silico studies.Future J. Pharm. Sci.20241017110.1186/s43094‑024‑00641‑1
    [Google Scholar]
  202. ZhakipbekovK. TurgumbayevaA. AkhelovaS. BekmuratovaK. BlinovaO. UtegenovaG. ShertaevaK. SadykovN. TastambekK. SaginbazarovaA. UrazgaliyevK. TulegenovaG. ZhalimovaZ. KarasovaZ. Antimicrobial and other pharmacological properties of Ocimum basilicum, Lamiaceae.Molecules202429238810.3390/molecules2902038838257301
    [Google Scholar]
  203. SwethaV. DevareddyS. SumathiK. SenthilkumarN. Phytochemical and antimicrobial evaluations of Dichrostachys cinerea.Int. J. Pharma Sci.201341106110
    [Google Scholar]
  204. MaroyiA. Acacia karroo Hayne: Ethnomedicinal uses, phytochemistry and pharmacology of an important medicinal plant in southern Africa.Asian Pac. J. Trop. Med.201710435136010.1016/j.apjtm.2017.03.02128552105
    [Google Scholar]
  205. UmamK. FengC.S. YangG. TuP.C. LinC.Y. YangM.T. KuoT.F. YangW.C. Tran Nguyen MinhH. Phytochemistry, pharmacology and mode of action of the anti-bacterial artemisia plants.Bioengineering202310663310.3390/bioengineering1006063337370564
    [Google Scholar]
  206. GomesF.S. ProcópioT.F. NapoleãoT.H. CoelhoL.C.B.B. PaivaP.M.G. Antimicrobial lectin from Schinus terebinthifolius leaf.J. Appl. Microbiol.2013114367267910.1111/jam.1208623190078
    [Google Scholar]
  207. KoutsoudakiC. KrsekM. RodgerA. Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. chia.J. Agric. Food Chem.200553207681768510.1021/jf050639s16190616
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266366494250411164750
Loading
/content/journals/ctmc/10.2174/0115680266366494250411164750
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test