Skip to content
2000
Volume 25, Issue 25
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

The natural molecules betulinic acid (BA) and taraxerol (T) have many biological and therapeutic uses, one of which is the relief from asthma symptoms. This study wasThis study aimed to assess BA and T effectiveness in treating bronchial asthma and perform a molecular docking study to find the binding energy of BA and T with β-adrenoceptor.

Methods

Using ethanol as the solvent, the Bacopa monnieri leaves were extracted using a soxhlet equipment. As a reference medicine, budesenoid was utilised. With PyRx 0.8, the molecular docking experiment was conducted using AutoDock vina. The protocol followed by the acute toxicity study was the OECD guideline 425. The effectiveness of the test medication in alleviating asthma was determined using an anaphylactic microshock model in guinea pigs.

Results

Molecular docking analysis showed high binding affinities of BA (-7.95 kcal/mol) and T (-8.23 kcal/mol) to LOX-5, which could suppress the synthesis of leukotriene, one of the central mediators of asthma pathogenesis. study, the BA and T treatment prolonged pre-convulsion time in guinea pigs up to 506.66 seconds as compared with the control (406.6 seconds, p < 0.05). This suggests protection against bronchial hyperresponsiveness. ELISA assays demonstrated that BA and T decreased the levels of TNF-α and increased IL-10, indicating a potential modulation of inflammation (p < 0.05). Markers of oxidative stress were lowered in treated animals, as demonstrated by the lowered MDA and enhanced activities of antioxidant enzymes such as SOD, CAT, and GSH, suggesting a protective effect against oxidative lung damage (p < 0.05). Histological analysis confirmed a decrease in inflammatory cell infiltration and airway remodeling in the treated groups compared to the OVA-induced controls.

Conclusion

The results of the animal studies showed that BA and T reduced anaphylaxis, suggesting that it could be a viable alternative to current asthma treatments in the future. The results of the molecular docking investigation, however, showed that BA and T may indeed bind to the target receptor, opening the door to new treatment possibilities.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266358488250421012523
2025-04-30
2025-12-25
Loading full text...

Full text loading...

References

  1. BezerraJ.J.L. PinheiroA.A.V. BarretoE.O. Medicinal plants used in the treatment of asthma in different regions of Brazil: A comprehensive review of ethnomedicinal evidence, preclinical pharmacology and clinical trials. Phytomed.Plus20222410037610.1016/j.phyplu.2022.100376
    [Google Scholar]
  2. LambrechtB.N. HammadH. FahyJ.V. The cytokines of asthma.Immunity201950497599110.1016/j.immuni.2019.03.018 30995510
    [Google Scholar]
  3. DharmageS.C. PerretJ.L. CustovicA. Epidemiology of asthma in children and adults.Front Pediatr.2019724610.3389/fped.2019.00246 31275909
    [Google Scholar]
  4. The Global Asthma Report.2018Available From: https://globalasthmareport.org/2018/index.html
  5. JindalS.K. AggarwalA.N. GuptaD. AgarwalR. KumarR. KaurT. ChaudhryK. ShahB. Indian study on epidemiology of asthma, respiratory symptoms and chronic bronchitis in adults (INSEARCH).Int. J. Tuberc. Lung Dis.20121691270127710.5588/ijtld.12.0005 22871327
    [Google Scholar]
  6. CompareG.B.D. Viz Hub.2021Available From: https://vizhub.healthdata.org/gbd-compare/Google
  7. QuirceS. Phillips-AnglesE. Domínguez-OrtegaJ. BarrancoP. Biologics in the treatment of severe asthma.Allergol. Immunopathol.201745Suppl. 1454910.1016/j.aller.2017.09.012 29108767
    [Google Scholar]
  8. Amaral-MachadoL. OliveiraW.N. Moreira-OliveiraS.S. PereiraD.T. AlencarÉ.N. TsapisN. EgitoE.S.T. Use of natural products in asthma treatment.Evid. Based Complement. Alternat. Med.202020201102125810.1155/2020/1021258 32104188
    [Google Scholar]
  9. JafariniaM. Sadat HosseiniM. kasiri, N.; Fazel, N.; Fathi, F.; Ganjalikhani Hakemi, M.; Eskandari, N. Quercetin with the potential effect on allergic diseases.Allergy Asthma Clin. Immunol.20201613610.1186/s13223‑020‑00434‑0 32467711
    [Google Scholar]
  10. ZhaoJ. DangZ. MuddassirM. RazaS. ZhongA. WangX. JinJ. A new Cd(II)-based coordination polymer for efficient photocatalytic removal of organic dyes.Molecules20232819684810.3390/molecules28196848 37836691
    [Google Scholar]
  11. RazaS. GhasaliE. RazaM. ChenC. LiB. OroojiY. LinH. KaramanC. Karimi MalehH. ErkN. Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment.Environ. Res.202322011513510.1016/j.envres.2022.115135 36566962
    [Google Scholar]
  12. RazaS. GhasaliE. OroojiY. LinH. KaramanC. DragoiE.N. ErkN. Two dimensional (2D) materials and biomaterials for water desalination; Structure, properties, and recent advances.Environ. Res.202321911499810.1016/j.envres.2022.114998 36481367
    [Google Scholar]
  13. ZhangP. RazaS. ChengY. ClaudineU. HayatA. BashirT. AliT. GhasaliE. OroojiY. Fabrication of maleic anhydride-acrylamide copolymer based sodium alginate hydrogel for elimination of metals ions and dyes contaminants from polluted water.Int. J. Biol. Macromol.2024261Pt 112914610.1016/j.ijbiomac.2023.129146 38176489
    [Google Scholar]
  14. RazaS. GhasaliE. HayatA. ZhangP. OroojiY. LinH. Sodium alginate hydrogel-encapsulated trans-anethole based polymer: Synthesis and applications as an eradicator of metals and dyes from wastewater.Int. J. Biol. Macromol.2024254Pt 212715310.1016/j.ijbiomac.2023.127153 37778574
    [Google Scholar]
  15. Oliveira-CostaJ.F. MeiraC.S. NevesM.V.G. Dos ReisB.P.Z.C. SoaresM.B.P. Anti-inflammatory activities of betulinic acid: A review.Front. Pharmacol.20221388385710.3389/fphar.2022.883857 35677426
    [Google Scholar]
  16. LouH. LiH. ZhangS. LuH. ChenQ. A review on preparation of betulinic acid and its biological activities.Molecules20212618558310.3390/molecules26185583 34577056
    [Google Scholar]
  17. LiebscherG. VanchangiriK. MuellerT. FeigeK. CavalleriJ.M.V. PaschkeR. In vitro anticancer activity of Betulinic acid and derivatives thereof on equine melanoma cell lines from grey horses and invivo safety assessment of the compound NVX-207 in two horses.Chem. Biol. Interact.2016246202910.1016/j.cbi.2016.01.002 26772157
    [Google Scholar]
  18. NarayanS. MandalS. GuptaJ. Protective effect of stigmasterol enriched extract of Bacopa monnieri in ovalbumin (OVA)-induced asthma: An experimental and network pharmacology studies.Nat Resour Hum Heal20244213614110.53365/nrfhh/177625
    [Google Scholar]
  19. PhrompittayaratW. PutalunW. TanakaH. JetiyanonK. Wittaya-AreekulS. IngkaninanK. Comparison of various extraction method of Bacopa monnieri.Naresuan Univ J.2007152934
    [Google Scholar]
  20. RowshanulM. Farjana Nikkon; Matiar Rahman; Haque, M.E.; Karim, M.R. Isolation of stigmasterol and beta-sitosterol from methanolic extract of root bark of Calotropis gigantea (Linn).Pak. J. Biol. Sci.200710224174417610.3923/pjbs.2007.4174.4176 19090304
    [Google Scholar]
  21. ShenG.F. LiuT.T. WangQ. JiangM. ShiJ.H. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA).J. Photochem. Photobiol. B201515338039010.1016/j.jphotobiol.2015.10.023 26555641
    [Google Scholar]
  22. Guidance document on acute oral toxicity testing.2001Available From: https://ntp.niehs.nih.gov/sites/default/files/iccvam/suppdocs/feddocs/oecd/oecd-gd24.pdf
  23. ArmitageP. HerxheimerH. RosaL. The protective action of antihistamines in the anaphylactic microshock of the guinea-pig.Br. J. Pharmacol. Chemother.19527462563610.1111/j.1476‑5381.1952.tb00730.x 13019031
    [Google Scholar]
  24. McGrathJ.C. DrummondG.B. McLachlanE.M. KilkennyC. WainwrightC.L. Guidelines for reporting experiments involving animals: The ARRIVE guidelines.Br. J. Pharmacol.201016071573157610.1111/j.1476‑5381.2010.00873.x 20649560
    [Google Scholar]
  25. LinS. ChenM. LinS. HuangX. ChenW. WuS. Network pharmacology and experimental verification unraveled the mechanism of Bailing Capsule against asthma.Medicine202410344e4039110.1097/MD.0000000000040391 39495985
    [Google Scholar]
  26. WuY. ZhangF. YangK. FangS. BuD. LiH. SunL. HuH. GaoK. WangW. ZhouX. ZhaoY. ChenJ. SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping.Nucleic Acids Res.201947D1D1110D111710.1093/nar/gky1021 30380087
    [Google Scholar]
  27. HowellI. HowellA. PavordI.D. Type 2 inflammation and biological therapies in asthma: Targeted medicine taking flight.J. Exp. Med.20232207e2022121210.1084/jem.20221212 37265457
    [Google Scholar]
  28. MandalA. JhaA.K. HazraB. Plant products as inhibitors of coronavirus 3CL protease.Front. Pharmacol.20211258338710.3389/fphar.2021.583387 33767619
    [Google Scholar]
  29. GadnayakA. DehuryB. NayakA. JenaS. SahooA. PandaP.C. RayA. NayakS. ‘Mechanistic insights into 5-lipoxygenase inhibition by active principles derived from essential oils of Curcuma species: Molecular docking, ADMET analysis and molecular dynamic simulation study.PLoS One2022177e027195610.1371/journal.pone.0271956 35867724
    [Google Scholar]
  30. DingH. WuX. PanJ. HuX. GongD. ZhangG. New insights into the inhibition mechanism of betulinic acid on α-glucosidase.J. Agric. Food Chem.201866277065707510.1021/acs.jafc.8b02992 29902001
    [Google Scholar]
  31. WuY. HeC. GaoY. HeS. LiuY. LaiL. Dynamic modeling of human 5-lipoxygenase-inhibitor interactions helps to discover novel inhibitors.J. Med. Chem.20125562597260510.1021/jm201497k 22380511
    [Google Scholar]
  32. YueQ. DengX. LiY. ZhangY. Effects of betulinic acid derivative on lung inflammation in a mouse model of chronic obstructive pulmonary disease induced by particulate matter 2.5.Med. Sci. Monit.202127e92895410.12659/MSM.928954 33612710
    [Google Scholar]
  33. AntwiA.O. ObiriD.D. OsafoN. Stigmasterol modulates allergic airway inflammation in guinea pig model of ovalbumin-induced asthma.Mediators Inflamm.2017201711110.1155/2017/2953930 28555089
    [Google Scholar]
  34. TarayreJ.P. AliacaM. BarbaraM. TisseyreN. VieuS. Tisne-VersaillesJ. Model of bronchial hyperreactivity after active anaphylactic shock in conscious guinea pigs.J. Pharmacol. Methods1990231131910.1016/0160‑5402(90)90004‑5 2304348
    [Google Scholar]
  35. DaiY. ButP.P.H. ChuL.M. ChanY.P. Inhibitory effects of Selaginella tamariscina on immediate allergic reactions.Am. J. Chin. Med.200533695796610.1142/S0192415X05003442 16355452
    [Google Scholar]
  36. KanekoM. SchimmingA. GleichG.J. KitaH. Ligation of IgE receptors causes an anaphylactic response and neutrophil infiltration but does not induce eosinophilic inflammation in mice.J. Allergy Clin. Immunol.200010561202121010.1067/mai.2000.106731 10856156
    [Google Scholar]
  37. NialsA.T. UddinS. Mouse models of allergic asthma: Acute and chronic allergen challenge.Dis. Model. Mech.200814-521322010.1242/dmm.000323 19093027
    [Google Scholar]
  38. VasconcelosL.H.C. SilvaM.C.C. CostaA.C. OliveiraG.A. SouzaI.L.L. QueirogaF.R. AraujoL.C.C. CardosoG.A. RighettiR.F. SilvaA.S. da SilvaP.M. CarvalhoC.R.O. VieiraG.C. TibérioI.F.L.C. CavalcanteF.A. SilvaB.A. A guinea pig model of airway smooth muscle hyperreactivity induced by chronic allergic lung inflammation: Contribution of epithelium and oxidative stress.Front. Pharmacol.20199154710.3389/fphar.2018.01547 30814952
    [Google Scholar]
  39. KruegerG.R.F. WagnerM. Oldham, SAA Atlas of Anatomic Pathology with Imaging.Atlas of Anatomic Pathology with Imaging.LondonSpringer2013105189
    [Google Scholar]
  40. GurumurthyC.B. LloydK.C.K. Generating mouse models for biomedical research: Technological advances.Dis. Model. Mech.2019121dmm02946210.1242/dmm.029462 30626588
    [Google Scholar]
  41. BeckettE.L. StevensR.L. JarnickiA.G. KimR.Y. HanishI. HansbroN.G. DeaneA. KeelyS. HorvatJ.C. YangM. OliverB.G. van RooijenN. InmanM.D. AdachiR. SobermanR.J. HamadiS. WarkP.A. FosterP.S. HansbroP.M. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis.J. Allergy Clin. Immunol.20131313752762.e710.1016/j.jaci.2012.11.053 23380220
    [Google Scholar]
  42. PoyilM.M. Karrar AlsharifM.H. SeshadriV.D. Anti-asthmatic activity of Saudi herbal composites from plants Bacopa monnieri and Euphorbia hirta on Guinea pigs.Green Processing and Synthesis202211151252510.1515/gps‑2022‑0039
    [Google Scholar]
  43. BezerraF.S. LanzettiM. NesiR.T. NagatoA.C. SilvaC.P. Kennedy-FeitosaE. MeloA.C. Cattani-CavalieriI. PortoL.C. ValencaS.S. Oxidative stress and inflammation in acute and chronic lung injuries.Antioxidants202312354810.3390/antiox12030548 36978796
    [Google Scholar]
  44. ParkC.S. KimT.B. LeeK.Y. MoonK.A. BaeY.J. JangM.K. ChoY.S. MoonH.B. Increased oxidative stress in the airway and development of allergic inflammation in a mouse model of asthma.Ann. Allergy Asthma Immunol.2009103323824710.1016/S1081‑1206(10)60188‑3 19788022
    [Google Scholar]
  45. HuangY. LongR. TangY. LiJ. MengL. YangJ. QiuF. Effects of 4-DAMP on allergic rhinitis in guinea pigs and its potential mechanism.Ann. Transl. Med.2022101477477410.21037/atm‑22‑2998 35965822
    [Google Scholar]
  46. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.201720171841676310.1155/2017/8416763 28819546
    [Google Scholar]
  47. LiuT. ZhangL. JooD. Sun, SC NF-κB signaling in inflammation.Signal Transduct. Target. Ther.201721702310.1038/sigtrans.2017.23 29158945
    [Google Scholar]
  48. GumulecJ. RaudenskaM. HlavnaM. StracinaT. SztalmachovaM. TanhauserovaV. PacalL. Ruttkay-NedeckyB. SochorJ. ZitkaO. BabulaP. AdamV. KizekR. NovakovaM. MasarikM. Determination of oxidative stress and activities of antioxidant enzymes in guinea pigs treated with haloperidol.Exp. Ther. Med.20135247948410.3892/etm.2012.822 23403848
    [Google Scholar]
  49. ChungF. Anti‐inflammatory cytokines in asthma and allergy: Interleukin‐10, interleukin‐12, interferon‐γ.Mediators Inflamm.2001102515910.1080/09629350120054518 11405550
    [Google Scholar]
  50. ChenL. ChuC. LuJ. KongX. HuangT. CaiY.D. Gene ontology and KEGG pathway enrichment analysis of a drug target-based classification system.PLoS One2015105e012649210.1371/journal.pone.0126492 25951454
    [Google Scholar]
  51. ZhangZ. ChengJ. ZhouX. WuH. ZhangB. Integrated network pharmacology and molecular docking to investigate the potential mechanism of Tufuling on Alzheimer’s disease.Heliyon20241016e3647110.1016/j.heliyon.2024.e36471 39253234
    [Google Scholar]
  52. NemetchekM.D. StierleA.A. StierleD.B. LurieD.I. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain.J. Ethnopharmacol.20171979210010.1016/j.jep.2016.07.073 27473605
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266358488250421012523
Loading
/content/journals/ctmc/10.2174/0115680266358488250421012523
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): adrenoceptor; anaphylaxis; Asthma; betulinic acid; budesenoid; docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test