Skip to content
2000
image of Thermally-Induced Self-Agglomeration: Method and First Approaches to the Structural, Mechanical and Biological Characterization of Nanofiber Scaffolds

Abstract

The production of extracellular matrix (ECM) - like scaffolds for bone regeneration has been a topic of interest in the field of bone tissue engineering in recent years. Nanofiber structures stand out in terms of morphological similarity with the ECM structure. However, the nanofibrous membranes produced by electrospinning do not have sufficient thickness for clinical applications such as bone regeneration and cannot support cell growth sufficiently due to their structural properties. To mitigate this issue, three-dimensional (3D) nanofiber-based scaffolds made of short-nanofiber membranes are an emerging research topic in the field of bone tissue engineering, as they can present higher porosity and more appropriate mechanical properties. In this review, the details of the thermally-induced self-agglomeration (TISA) method for 3D nanofiber-based scaffold fabrication are discussed, together with its development for scaffold production, characterization, and biological applications. This review is expected to provide helpful guidance for future studies in designing 3D fiber scaffolds with the TISA method.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266366490250418184026
2025-04-28
2025-09-13
Loading full text...

Full text loading...

References

  1. OgueriK.S. JafariT. Escobar IviricoJ.L. LaurencinC.T. Polymeric biomaterials for scaffold-based bone regenerative engineering.Regen. Eng. Transl. Med.20195212815410.1007/s40883‑018‑0072‑0 31423461
    [Google Scholar]
  2. DoratiR. Polymer scaffolds for bone tissue regeneration.In: Active Implants and Scaffolds for Tissue Regeneration; Springer: Berlin, Heidelberg.,2011825928510.1007/8415_2010_59
    [Google Scholar]
  3. BaiX. GaoM. SyedS. ZhuangJ. XuX. ZhangX.Q. Bioactive hydrogels for bone regeneration.Bioact. Mater.20183440141710.1016/j.bioactmat.2018.05.006 30003179
    [Google Scholar]
  4. ChenG. DongC. YangL. LvY. 3D Scaffolds with Different Stiffness but the Same Microstructure for bone tissue engineering.ACS Appl. Mater. Interfaces2015729157901580210.1021/acsami.5b02662 26151287
    [Google Scholar]
  5. CaranoR.A.D. FilvaroffE.H. Angiogenesis and bone repair.Drug Discov. Today200382198098910.1016/S1359‑6446(03)02866‑6 14643161
    [Google Scholar]
  6. ZhangJ. LiuW. SchnitzlerV. TancretF. BoulerJ.M. Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties.Acta Biomater.20141031035104910.1016/j.actbio.2013.11.001 24231047
    [Google Scholar]
  7. CabrajaM. KroppenstedtS. Bone grafting and substitutes in spine surgery.J. Neurosurg. Sci.20125628795 22617171
    [Google Scholar]
  8. MooreW.R. GravesS.E. BainG.I. Synthetic bone graft substitutes.ANZ J. Surg.200171635436110.1046/j.1440‑1622.2001.02128.x 11409021
    [Google Scholar]
  9. LangerR. VacantiJ.P. Tissue.Eng. Sci.1993260511092092610.1126/science.8493529 8493529
    [Google Scholar]
  10. YangS. LeongK. DuZ. ChuaC. The design of scaffolds for use in tissue engineering. Part I. Traditional factors.Tissue Eng.20017667968910.1089/107632701753337645 11749726
    [Google Scholar]
  11. BassatE. MutlakY.E. GenzelinakhA. ShadrinI.Y. Baruch UmanskyK. YifaO. KainD. RajchmanD. LeachJ. Riabov BassatD. UdiY. SarigR. SagiI. MartinJ.F. BursacN. CohenS. TzahorE. The extracellular matrix protein agrin promotes heart regeneration in mice.Nature2017547766217918410.1038/nature22978 28581497
    [Google Scholar]
  12. FlaumenhaftR. RifkinD.B. Extracellular matrix regulation of growth factor and protease activity.Curr. Opin. Cell Biol.19913581782310.1016/0955‑0674(91)90055‑4 1931082
    [Google Scholar]
  13. WalkerA. TurnbullJ.E. GallagherJ.T. Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor.J. Biol. Chem.1994269293193510.1016/S0021‑9258(17)42201‑0 8288646
    [Google Scholar]
  14. HamaR. ReinhardtJ.W. UlziibayarA. WatanabeT. KellyJ. ShinokaT. Recent tissue engineering approaches to mimicking the extracellular matrix structure for skin regeneration.Biomimetics20238113010.3390/biomimetics8010130 36975360
    [Google Scholar]
  15. GreenJ.J. ElisseeffJ.H. Mimicking biological functionality with polymers for biomedical applications.Nature2016540763338639410.1038/nature21005 27974772
    [Google Scholar]
  16. AazmiA. ZhangD. MazzagliaC. YuM. WangZ. YangH. HuangY.Y.S. MaL. Biofabrication methods for reconstructing extracellular matrix mimetics.Bioact. Mater.20243147549610.1016/j.bioactmat.2023.08.018 37719085
    [Google Scholar]
  17. YangC. ShaoQ. HanY. LiuQ. HeL. SunQ. RuanS. Fibers by electrospinning and their emerging applications in bone tissue engineering.Appl. Sci. (Basel)20211119908210.3390/app11199082
    [Google Scholar]
  18. AboubakrS.N. 3D Bioprinter + Electrospinner for Bone-Ligament Tissue Engineering.Univ. N. M. Orthop. Res. J.20176110116
    [Google Scholar]
  19. XuT. MiszukJ.M. ZhaoY. SunH. FongH. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering.Adv. Healthc. Mater.20154152238224610.1002/adhm.201500345 26332611
    [Google Scholar]
  20. XuT. YaoQ. MiszukJ.M. SanyourH.J. HongZ. SunH. FongH. Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells.Colloids Surf. B Biointerfaces2018171313910.1016/j.colsurfb.2018.07.004 30005288
    [Google Scholar]
  21. BlakeneyB.A. TambralliA. AndersonJ.M. AndukuriA. LimD.J. DeanD.R. JunH.W. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold.Biomaterials20113261583159010.1016/j.biomaterials.2010.10.056 21112625
    [Google Scholar]
  22. JinL. FengZ.Q. WangT. RenZ. MaS. WuJ. SunD. A novel fluffy hydroxylapatite fiber scaffold with deep interconnected pores designed for three-dimensional cell culture.J. Mater. Chem. B Mater. Biol. Med.20142112913610.1039/C3TB21219J 32261306
    [Google Scholar]
  23. JoshiM.K. PantH.R. TiwariA.P. kim, H.J.; Park, C.H.; Kim, C.S. Multi-layered macroporous three-dimensional nanofibrous scaffold via a novel gas foaming technique.Chem. Eng. J.2015275798810.1016/j.cej.2015.03.121
    [Google Scholar]
  24. JoshiM.K. PantH.R. TiwariA.P. MaharjanB. LiaoN. kim, H.J.; Park, C.H.; Kim, C.S. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.Carbohydr. Polym.201613615416210.1016/j.carbpol.2015.09.018 26572341
    [Google Scholar]
  25. LeeS. ChoS. KimM. JinG. JeongU. JangJ.H. Highly moldable electrospun clay-like fluffy nanofibers for three-dimensional scaffolds.ACS Appl. Mater. Interfaces2014621082109110.1021/am404627r 24393142
    [Google Scholar]
  26. MandalB.B. ParkS.H. GilE.S. KaplanD.L. Multilayered silk scaffolds for meniscus tissue engineering.Biomaterials201132263965110.1016/j.biomaterials.2010.08.115 20926132
    [Google Scholar]
  27. SolimanS. SantS. NicholJ.W. KhabiryM. TraversaE. KhademhosseiniA. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density.J. Biomed. Mater. Res. A201196A356657410.1002/jbm.a.33010 21254388
    [Google Scholar]
  28. WuJ. HongY. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration.Bioact. Mater.201611566410.1016/j.bioactmat.2016.07.001 29744395
    [Google Scholar]
  29. ZhongS. ZhangY. LimC.T. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: A review.Tissue Eng. Part B Rev.2012182778710.1089/ten.teb.2011.0390 21902623
    [Google Scholar]
  30. FongH. Electrospun three-dimensional nanofibrous scaffolds with interconnected and hierarchically structured pores.2019
    [Google Scholar]
  31. XuT. LiangZ. DingB. FengQ. FongH. Polymer blend nanofibers containing polycaprolactone as biocompatible and biodegradable binding agent to fabricate electrospun three-dimensional scaffolds/structures.Polymer (Guildf.)201815129930610.1016/j.polymer.2018.07.074
    [Google Scholar]
  32. XuT. WangZ. DingY. XuW. WuW. ZhuZ. FongH. Ultralight electrospun cellulose sponge with super-high capacity on absorption of organic compounds.Carbohydr. Polym.201817916417210.1016/j.carbpol.2017.09.086 29111039
    [Google Scholar]
  33. PereiraA.L. Three-dimensional nanofibrous and porous scaffolds of poly(epsilon-caprolactone)-chitosan blends for musculoskeletal tissue engineering.J. Biomed. Mater. Res. A2022 36519714
    [Google Scholar]
  34. YaoQ. CosmeJ.G.L. XuT. MiszukJ.M. PiccianiP.H.S. FongH. SunH. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.Biomaterials201711511512710.1016/j.biomaterials.2016.11.018 27886552
    [Google Scholar]
  35. MiszukJ. LiangZ. HuJ. SanyourH. HongZ. FongH. SunH. Elastic mineralized 3D electrospun PCL nanofibrous scaffold for drug release and bone tissue engineering.ACS Appl. Bio Mater.2021443639364810.1021/acsabm.1c00134 33969280
    [Google Scholar]
  36. HuS. ChenH. ZhouX. ChenG. HuK. ChengY. WangL. ZhangF. Thermally induced self-agglomeration 3D scaffolds with BMP-2-loaded core–shell fibers for enhanced osteogenic differentiation of rat adipose-derived stem cells.Int. J. Nanomedicine2018134145415510.2147/IJN.S167035 30046239
    [Google Scholar]
  37. BeniashE. HartgerinkJ.D. StorrieH. StendahlJ.C. StuppS.I. Self-assembling peptide amphiphile nanofiber matrices for cell entrapment.Acta Biomater.20051438739710.1016/j.actbio.2005.04.002 16701820
    [Google Scholar]
  38. ChenJ.S. TuS.L. TsayR.Y. A morphological study of porous polylactide scaffolds prepared by thermally induced phase separation.J. Taiwan Inst. Chem. Eng.201041222923810.1016/j.jtice.2009.08.008
    [Google Scholar]
  39. OndarçuhuT. JoachimC. Drawing a single nanofibre over hundreds of microns.Europhys. Lett.199842221522010.1209/epl/i1998‑00233‑9
    [Google Scholar]
  40. SuvannasaraP. PraphairaksitN. MuangsinN. Self-assembly of mucoadhesive nanofibers.RSC Advances20144102586645867310.1039/C4RA09329A
    [Google Scholar]
  41. YangF. MuruganR. WangS. RamakrishnaS. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering.Biomaterials200526152603261010.1016/j.biomaterials.2004.06.051 15585263
    [Google Scholar]
  42. BeachleyV. WenX. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions.Prog. Polym. Sci.201035786889210.1016/j.progpolymsci.2010.03.003 20582161
    [Google Scholar]
  43. AlmetwallyA.E-S. Technology of nano-fibers: Production techniques and properties - Critical review.J. Text. Assoc.2017781514
    [Google Scholar]
  44. MorieA. GargT. GoyalA.K. RathG. Nanofibers as novel drug carrier – An overview.Artif. Cells Nanomed. Biotechnol.201644113514310.3109/21691401.2014.927879 25016918
    [Google Scholar]
  45. XingX. WangY. LiB. Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate).Opt. Express20081614108151082210.1364/OE.16.010815 18607497
    [Google Scholar]
  46. TaoS.L. DesaiT.A. Aligned arrays of biodegradable poly(epsilon-caprolactone) nanowires and nanofibers by template synthesis.Nano Lett.2007761463146810.1021/nl0700346 17488047
    [Google Scholar]
  47. KarkanS.F. DavaranS. RahbarghaziR. SalehiR. AkbarzadehA. Electrospun nanofibers for the fabrication of engineered vascular grafts.J. Biol. Eng.20191318310.1186/s13036‑019‑0199‑7 31737091
    [Google Scholar]
  48. KidoakiS. KwonI.K. MatsudaT. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques.Biomaterials2005261374610.1016/j.biomaterials.2004.01.063 15193879
    [Google Scholar]
  49. ManoukianO.S. MattaR. LetendreJ. CollinsP. MazzoccaA.D. KumbarS.G. Electrospun nanofiber scaffolds and their hydrogel composites for the engineering and regeneration of soft tissues.Methods Mol. Biol.2017157026127810.1007/978‑1‑4939‑6840‑4_18 28238143
    [Google Scholar]
  50. TaylorG. Electrically driven jets.Proc. R. Soc. Lond. A Math. Phys. Sci.1969313151545347510.1098/rspa.1969.0205
    [Google Scholar]
  51. HuangY. BuN. DuanY. PanY. LiuH. YinZ. XiongY. Electrohydrodynamic direct-writing.Nanoscale2013524120071201710.1039/c3nr04329k 24057297
    [Google Scholar]
  52. LiX.C. Electrospinning-based strategies for battery materials.Adv. Energy Mater.20211120008452000845
    [Google Scholar]
  53. SmółkaK. Firych-NowackaA. LefikM. Three-dimensional computer models of electrospinning systems.Open Phys.201715177778910.1515/phys‑2017‑0091
    [Google Scholar]
  54. PereiraA.G.B.F. First report of electrospun cellulose acetate nanofibers mats with chitin and chitosan nanowhiskers: Fabrication, characterization, and antibacterial activity.Carbohydr. Polym.2020250116954
    [Google Scholar]
  55. KeirouzA.Z. High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications.Mater. Sci. Eng.202011211093911093910.1016/j.msec.2020.110939 32409085
    [Google Scholar]
  56. SuH. FujiwaraT. AndersonK.M. KarydisA. GhadriM.N. BumgardnerJ.D. A comparison of two types of electrospun chitosan membranes and a collagen membrane in vivo.Dent. Mater.2021371607010.1016/j.dental.2020.10.011 33208266
    [Google Scholar]
  57. BhardwajN. KunduS.C. Electrospinning: A fascinating fiber fabrication technique.Biotechnol. Adv.201028332534710.1016/j.biotechadv.2010.01.004 20100560
    [Google Scholar]
  58. ZulkifliM.Z.A. NordinD. ShaariN. KamarudinS.K. Overview of electrospinning for tissue engineering applications.Polymers (Basel)20231511241810.3390/polym15112418 37299217
    [Google Scholar]
  59. FukadaE. YasudaI. On the piezoelectric effect of bone.J. Phys. Soc. Jpn.195712101158116210.1143/JPSJ.12.1158
    [Google Scholar]
  60. OhkiT. YamatoM. OtaM. TakagiR. KondoM. KanaiN. OkanoT. YamamotoM. Application of regenerative medical technology using tissue‐engineered cell sheets for endoscopic submucosal dissection of esophageal neoplasms.Dig. Endosc.201527218218810.1111/den.12354 25181559
    [Google Scholar]
  61. NingC. ZhouZ. TanG. ZhuY. MaoC. Electroactive polymers for tissue regeneration: Developments and perspectives.Prog. Polym. Sci.20188114416210.1016/j.progpolymsci.2018.01.001 29983457
    [Google Scholar]
  62. JinZ. WeiS. JinW. LuB. XuY. Preparation and structure–property relationship study of piezoelectric–conductive composite polymer nanofiber materials for bone tissue engineering.Polymers (Basel)20241613195210.3390/polym16131952 39000807
    [Google Scholar]
  63. AlegretN. Dominguez-AlfaroA. MecerreyesD. 3D scaffolds based on conductive polymers for biomedical applications.Biomacromolecules2019201738910.1021/acs.biomac.8b01382 30543402
    [Google Scholar]
  64. ShahiniA. YazdimamaghaniM. WalkerK.J. EastmanM.A. Hatami-MarbiniH. SmithB.J. RicciJ.L. MadihallyS.V. VashaeeD. TayebiL. 3D conductive nanocomposite scaffold for bone tissue engineering.Int. J. Nanomedicine20149167181 24399874
    [Google Scholar]
  65. LiM. GuoY. WeiY. MacDiarmidA. LelkesP. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.Biomaterials200627132705271510.1016/j.biomaterials.2005.11.037 16352335
    [Google Scholar]
  66. KattiD.S. RobinsonK.W. KoF.K. LaurencinC.T. Bioresorbable nanofiber‐based systems for wound healing and drug delivery: Optimization of fabrication parameters.J. Biomed. Mater. Res. B Appl. Biomater.200470B228629610.1002/jbm.b.30041 15264311
    [Google Scholar]
  67. RasouliM. PirsalamiS. ZebarjadS.M. Study on the formation and structural evolution of bead‐on‐string in electrospun polysulfone mats.Polym. Int.202069982283210.1002/pi.6021
    [Google Scholar]
  68. LiuF. GuoR. ShenM. WangS. ShiX. Effect of processing variables on the morphology of electrospun Poly[(lactic acid)‐ co ‐(glycolic acid)] nanofibers.Macromol. Mater. Eng.20092941066667210.1002/mame.200900110
    [Google Scholar]
  69. TianX. BaiH. ZhengY. JiangL. Bio‐inspired heterostructured bead‐on‐string fibers that respond to environmental wetting.Adv. Funct. Mater.20112181398140210.1002/adfm.201002061
    [Google Scholar]
  70. MegelskiS. Micro-and nanostructured surface morphology on electrospun polymer fibers.Macromolecules2022358456846610.1021/ma020444a
    [Google Scholar]
  71. BuN. HuangY.A. DengH. YinZ. Tunable bead-on-string microstructures fabricated by mechano-electrospinning.J. Phys. D Appl. Phys.2012454040530110.1088/0022‑3727/45/40/405301
    [Google Scholar]
  72. LiuY. HeJ-H. YuJ. ZengH. Controlling numbers and sizes of beads in electrospun nanofibers.Polym. Int.200857463263610.1002/pi.2387
    [Google Scholar]
  73. De VriezeS. Van CampT. NelvigA. HagströmB. WestbroekP. De ClerckK. The effect of temperature and humidity on electrospinning.J. Mater. Sci.20094451357136210.1007/s10853‑008‑3010‑6
    [Google Scholar]
  74. HardickO. StevensB. BracewellD.G. Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency.J. Mater. Sci.201146113890389810.1007/s10853‑011‑5310‑5
    [Google Scholar]
  75. ChenS. JohnJ.V. McCarthyA. XieJ. New forms of electrospun nanofiber materials for biomedical applications.J. Mater. Chem. B Mater. Biol. Med.20208173733374610.1039/D0TB00271B 32211735
    [Google Scholar]
  76. ElnabawyE. SunD. ShearerN. ShyhaI. Electro-blown spinning: New insight into the effect of electric field and airflow hybridized forces on the production yield and characteristics of nanofiber membranes.J. Sci. Adv. Mater. Devices20238210055210.1016/j.jsamd.2023.100552
    [Google Scholar]
  77. Mejía SuazaM.L. Hurtado HenaoY. Moncada AcevedoM.E. Wet electrospinning and its applications: A review.TecnoLógicas20222554e222310.22430/22565337.2223
    [Google Scholar]
  78. ZhangK. ZhaoW. LiuQ. YuM. A new magnetic melt spinning device for patterned nanofiber.Sci. Rep.2021111889510.1038/s41598‑021‑88520‑0 33903691
    [Google Scholar]
  79. KimK.C. LinX. LiC. Structural design of the electrospun nanofibrous membrane for membrane distillation application: A review.Environ. Sci. Pollut. Res. Int.20222955826328265910.1007/s11356‑022‑23066‑w 36219296
    [Google Scholar]
  80. KanjanapongkulK. WongsasulakS. YoovidhyaT. Prediction of clogging time during electrospinning of zein solution: Scaling analysis and experimental verification.Chem. Eng. Sci.201065185217522510.1016/j.ces.2010.06.018
    [Google Scholar]
  81. LiY. LimL-T. KakudaY. Electrospun zein fibers as carriers to stabilize (−)-epigallocatechin gallate.J. Food Sci.2009743310.1111/j.1750‑3841.2009.01093.x
    [Google Scholar]
  82. HouT. LiX. LuY. ZhouJ. ZhangX. LiuS. YangB. Fabrication of hierarchical porous ethyl cellulose fibrous membrane by electro-centrifugal spinning for drug delivery systems with excellent integrated properties.Int. J. Biol. Macromol.202324212514110.1016/j.ijbiomac.2023.125141
    [Google Scholar]
  83. EspositoM.C. RivaL. RussoG.L. PuntaC. CorsiI. TostiE. GalloA. Reproductive toxicity assessment of cellulose nanofibers, citric acid, and branched polyethylenimine in sea urchins: Eco-design of nanostructured cellulose sponge framework (Part B).Environ. Pollut.202435012393410.1016/j.envpol.2024.123934 38588971
    [Google Scholar]
  84. ErenciaM. CanoF. TorneroJ.A. FernandesM.M. TzanovT. MacanásJ. CarrilloF. Electrospinning of gelatin fibers using solutions with low acetic acid concentration: Effect of solvent composition on both diameter of electrospun fibers and cytotoxicity. J. Appl. Polym. Sci.,201513225app.4211510.1002/app.42115
  85. MogharbelR.T. AlmahriA. AlaysuyO. AlzahraniS.O. AlorabiA.Q. Al-QahtaniS.D. El-MetwalyN.M. Preparation of photochromic solution blow spun polycarbonate nanofibers from recycled plastic for optical anticounterfeiting.Opt. Mater.202314111393610.1016/j.optmat.2023.113936
    [Google Scholar]
  86. SongJ. KimM. LeeH. Recent advances on nanofiber fabrications: Unconventional state-of-the-art spinning techniques.Polymers (Basel)2020126138610.3390/polym12061386 32575746
    [Google Scholar]
  87. MadunaL. PatnaikA. Challenges associated with the production of nanofibers.Processes (Basel)20241210210010.3390/pr12102100
    [Google Scholar]
  88. JiangJ. LiZ. WangH. WangY. CarlsonM.A. TeusinkM.J. MacEwanM.R. GuL. XieJ. Expanded 3D nanofiber scaffolds: Cell penetration, neovascularization, and host response.Adv. Healthc. Mater.20165232993300310.1002/adhm.201600808 27709840
    [Google Scholar]
  89. FuL. XieJ. CarlsonM.A. ReillyD.A. Three-dimensional nanofiber scaffolds with arrayed holes for engineering skin tissue constructs.MRS Commun.20177336136610.1557/mrc.2017.49
    [Google Scholar]
  90. ZhangK. BaiX. YuanZ. CaoX. JiaoX. LiY. QinY. WenY. ZhangX. Layered nanofiber sponge with an improved capacity for promoting blood coagulation and wound healing.Biomaterials2019204707910.1016/j.biomaterials.2019.03.008 30901728
    [Google Scholar]
  91. ChenS. WangH. McCarthyA. YanZ. KimH.J. CarlsonM.A. XiaY. XieJ. Three-dimensional objects consisting of hierarchically assembled nanofibers with controlled alignments for regenerative medicine.Nano Lett.20191932059206510.1021/acs.nanolett.9b00217 30788971
    [Google Scholar]
  92. JiangJ. ChenS. WangH. CarlsonM.A. GombartA.F. XieJ. CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response.Acta Biomater.20186823724810.1016/j.actbio.2017.12.018 29269334
    [Google Scholar]
  93. Fernández-PérezJ. KadorK.E. LynchA.P. AhearneM. Characterization of extracellular matrix modified poly(ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration.Mater. Sci. Eng. C202010811041510.1016/j.msec.2019.110415 31924032
    [Google Scholar]
  94. KimJ.I. KimJ.Y. ParkC.H. Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method.Sci. Rep.201881342410.1038/s41598‑018‑21618‑0 29467436
    [Google Scholar]
  95. XieJ. MacEwanM.R. LiuW. JesurajN. LiX. HunterD. XiaY. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system.ACS Appl. Mater. Interfaces20146129472948010.1021/am5018557 24806389
    [Google Scholar]
  96. YangX. ShahJ.D. WangH. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation.Tissue Eng. Part A200915494595610.1089/ten.tea.2007.0280 18788981
    [Google Scholar]
  97. YoshikawaC. ZhangK. ZawadzakE. KobayashiH. A novel shortened electrospun nanofiber modified with a ‘concentrated’ polymer brush.Sci. Technol. Adv. Mater.201112101500310.1088/1468‑6996/12/1/015003 27877380
    [Google Scholar]
  98. LuoC.J. StrideE. StoyanovS. PelanE. EdirisingheM. Electrospinning short polymer micro-fibres with average aspect ratios in the range of 10–200.J. Polym. Res.20111862515252210.1007/s10965‑011‑9667‑6
    [Google Scholar]
  99. WangL. QiuY. LvH. SiY. LiuL. ZhangQ. CaoJ. YuJ. LiX. DingB. 3D superelastic scaffolds constructed from flexible inorganic nanofibers with self‐fitting capability and tailorable gradient for bone regeneration.Adv. Funct. Mater.20192931190140710.1002/adfm.201901407
    [Google Scholar]
  100. ChenW. ChenS. MorsiY. El-HamsharyH. El-NewhyM. FanC. MoX. Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering.ACS Appl. Mater. Interfaces2016837244152442510.1021/acsami.6b06825 27559926
    [Google Scholar]
  101. SunH. FengK. HuJ. SokerS. AtalaA. MaP.X. Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds.Biomaterials20103161133113910.1016/j.biomaterials.2009.10.030 19857889
    [Google Scholar]
  102. JohnJ.V. ChoksiM. ChenS. BodaS.K. SuY. McCarthyA. TeusinkM.J. ReinhardtR.A. XieJ. Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response.Nanomedicine20192210208110.1016/j.nano.2019.102081 31400571
    [Google Scholar]
  103. LiuX. JinX. MaP.X. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair.Nat. Mater.201110539840610.1038/nmat2999 21499313
    [Google Scholar]
  104. ConoscentiG. CarrubbaV.L. BrucatoV. A Versatile technique to produce porous polymeric scaffolds: The thermally induced phase separation (TIPS) method. ACR,20171210.21767/2572‑4657.100012
  105. LiuX. MaP.X. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds.Biomaterials200930254094410310.1016/j.biomaterials.2009.04.024 19481080
    [Google Scholar]
  106. JordahlJ.H. SolorioL. SunH. RamcharanS. TeepleC.B. HaleyH.R. LeeK.J. EysterT.W. LukerG.D. KrebsbachP.H. LahannJ. 3D jet writing: Functional microtissues based on tessellated scaffold architectures.Adv. Mater.20183014170719610.1002/adma.201707196 29484715
    [Google Scholar]
  107. HeinrichM.A. LiuW. JimenezA. YangJ. AkpekA. LiuX. PiQ. MuX. HuN. SchiffelersR.M. PrakashJ. XieJ. ZhangY.S. 3D bioprinting: From benches to translational applications.Small20191523180551010.1002/smll.201805510 31033203
    [Google Scholar]
  108. NaghizadehF. SoloukA. KhoulenjaniS.B. Osteochondral scaffolds based on electrospinning method: General review on new and emerging approaches.Int. J. Polym. Mater.2018671591392410.1080/00914037.2017.1393682
    [Google Scholar]
  109. ChenL.F. FengY. LiangH-W. WuZ-Y. YuS-H. Macroscopic‐scale three‐dimensional carbon nanofiber architectures for electrochemical energy storage devices.Adv. Energy Mater.2017723170082610.1002/aenm.201700826
    [Google Scholar]
  110. NardecchiaS. CarriazoD. FerrerM.L. GutiérrezM.C. del MonteF. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications.Chem. Soc. Rev.201342279483010.1039/C2CS35353A 23160635
    [Google Scholar]
  111. LavoineN. BergströmL. Nanocellulose-based foams and aerogels: Processing, properties, and applications.J. Mater. Chem. A Mater. Energy Sustain.2017531161051611710.1039/C7TA02807E
    [Google Scholar]
  112. JiangL. FanZ. Design of advanced porous graphene materials: From graphene nanomesh to 3D architectures.Nanoscale2014641922194510.1039/C3NR04555B 24301688
    [Google Scholar]
  113. LiS. ChengC. ThomasA. Carbon‐based microbial‐fuel‐cell electrodes: From conductive supports to active catalysts.Adv. Mater.2017298160254710.1002/adma.201602547 27991684
    [Google Scholar]
  114. JiangS. AgarwalS. GreinerA. Low‐density open cellular sponges as functional materials.Angew. Chem. Int. Ed.20175649155201553810.1002/anie.201700684 28621026
    [Google Scholar]
  115. SiY. YuJ. TangX. GeJ. DingB. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality.Nat. Commun.201451580210.1038/ncomms6802 25512095
    [Google Scholar]
  116. DuanG. JiangS. JérômeV. WendorffJ.H. FathiA. UhmJ. AltstädtV. HerlingM. BreuJ. FreitagR. AgarwalS. GreinerA. Ultralight, soft polymer sponges by self‐assembly of short electrospun fibers in colloidal dispersions.Adv. Funct. Mater.201525192850285610.1002/adfm.201500001
    [Google Scholar]
  117. MiszukJ.M. XuT. YaoQ. FangF. ChildsJ.D. HongZ. TaoJ. FongH. SunH. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation.Appl. Mater. Today20181019420210.1016/j.apmt.2017.12.004 29577064
    [Google Scholar]
  118. XuT. DingY. LiangZ. SunH. ZhengF. ZhuZ. ZhaoY. FongH. Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: Methods, properties, and applications.Prog. Mater. Sci.202011210065610.1016/j.pmatsci.2020.100656
    [Google Scholar]
  119. TangX. Polymeric Biomaterials in Tissue Engineering and Regenerative Medicine.Natural and Synthetic Biomedical Polymers.Elsevier Science201410.1016/B978‑0‑12‑396983‑5.00022‑3
    [Google Scholar]
  120. PuppiD. ChielliniF. PirasA.M. ChielliniE. Polymeric materials for bone and cartilage repair.Prog. Polym. Sci.201035440344010.1016/j.progpolymsci.2010.01.006
    [Google Scholar]
  121. SabirM.I. XuX. LiL. A review on biodegradable polymeric materials for bone tissue engineering applications.J. Mater. Sci.200944215713572410.1007/s10853‑009‑3770‑7
    [Google Scholar]
  122. MemişM. NikbayE. Polymeric Tissue Scaffolds for Bone Fracture Treatment.2019
    [Google Scholar]
  123. PereiraA.L. Fibrous scaffolds from PCL/Chitosan blends for tissue engineering. In: Materials and Ceramics Engineering Department; Aveiro University,2018
    [Google Scholar]
  124. GaoC. DengY. FengP. MaoZ. LiP. YangB. DengJ. CaoY. ShuaiC. PengS. Current progress in bioactive ceramic scaffolds for bone repair and regeneration.Int. J. Mol. Sci.20141534714473210.3390/ijms15034714 24646912
    [Google Scholar]
  125. HutmacherD.W. Scaffolds in tissue engineering bone and cartilage.Biomaterials200021242529254310.1016/S0142‑9612(00)00121‑6 11071603
    [Google Scholar]
  126. LohQ.L. ChoongC. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size.Tissue Eng. Part B Rev.201319648550210.1089/ten.teb.2012.0437 23672709
    [Google Scholar]
  127. WebberM.J. KhanO.F. SydlikS.A. TangB.C. LangerR. A perspective on the clinical translation of scaffolds for tissue engineering.Ann. Biomed. Eng.201543364165610.1007/s10439‑014‑1104‑7 25201605
    [Google Scholar]
  128. BarrèreF. MahmoodT.A. de GrootK. van BlitterswijkC.A. Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions.Mater. Sci. Eng. Rep.2008591-6387110.1016/j.mser.2007.12.001
    [Google Scholar]
  129. HingK. BestS.M. TannerK.E. BonfieldW. RevellP.A. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes.Wiley Periodicals, Inc.2003187200
    [Google Scholar]
  130. ZhangD. ChangJ. Electrospinning of three-dimensional nanofibrous tubes with controllable architectures.Nano Lett.20088103283328710.1021/nl801667s 18767890
    [Google Scholar]
  131. O’BrienF.J. HarleyB.A. YannasI.V. GibsonL.J. The effect of pore size on cell adhesion in collagen-GAG scaffolds.Biomaterials200526443344110.1016/j.biomaterials.2004.02.052 15275817
    [Google Scholar]
  132. ZeltingerJ. SherwoodJ.K. GrahamD.A. MüellerR. GriffithL.G. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition.Tissue Eng.20017555757210.1089/107632701753213183 11694190
    [Google Scholar]
  133. HulbertS.F. YoungF.A. MathewsR.S. KlawitterJ.J. TalbertC.D. StellingF.H. Potential of ceramic materials as permanently implantable skeletal prostheses.J. Biomed. Mater. Res.19704343345610.1002/jbm.820040309 5469185
    [Google Scholar]
  134. KubokiY. JinQ. TakitaH. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J. Bone Joint Surg. Am.,200183Pt 2(Suppl. 1)S1-, 105-S1-115.10.2106/00004623‑200100002‑0000511314788
  135. TsurugaE. TakitaH. ItohH. WakisakaY. KubokiY. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis.J. Biochem.1997121231732410.1093/oxfordjournals.jbchem.a021589 9089406
    [Google Scholar]
  136. WalthersC.M. NazemiA.K. PatelS.L. WuB.M. DunnJ.C.Y. The effect of scaffold macroporosity on angiogenesis and cell survival in tissue-engineered smooth muscle.Biomaterials201435195129513710.1016/j.biomaterials.2014.03.025 24695092
    [Google Scholar]
  137. HabibovicP. YuanH. van der ValkC.M. MeijerG. van BlitterswijkC.A. de GrootK. 3D microenvironment as essential element for osteoinduction by biomaterials.Biomaterials200526173565357510.1016/j.biomaterials.2004.09.056 15621247
    [Google Scholar]
  138. RosaA.L. BelotiM.M. van NoortR. Osteoblastic differentiation of cultured rat bone marrow cells on hydroxyapatite with different surface topography.Dent. Mater.200319876877210.1016/S0109‑5641(03)00024‑1 14511735
    [Google Scholar]
  139. RouahiM. GalletO. ChampionE. DentzerJ. HardouinP. AnselmeK. Influence of hydroxyapatite microstructure on human bone cell response.J. Biomed. Mater. Res. A200678A222223510.1002/jbm.a.30682 16628709
    [Google Scholar]
  140. WhangK. HealyK.E. ElenzD.R. NamE.K. TsaiD.C. ThomasC.H. NuberG.W. GlorieuxF.H. TraversR. SpragueS.M. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture.Tissue Eng.199951355110.1089/ten.1999.5.35 10207188
    [Google Scholar]
  141. ZhongH. HuangJ. WuJ. DuJ. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications.Nano Res.202215278780410.1007/s12274‑021‑3593‑7
    [Google Scholar]
  142. WalserJ. StokK.S. CaversaccioM.D. FergusonS.J. Direct electrospinning of 3D auricle-shaped scaffolds for tissue engineering applications.Biofabrication20168202500710.1088/1758‑5090/8/2/025007 27171651
    [Google Scholar]
  143. HuangL. HuangJ. ShaoH. HuX. CaoC. FanS. SongL. ZhangY. Silk scaffolds with gradient pore structure and improved cell infiltration performance.Mater. Sci. Eng. C20199417918910.1016/j.msec.2018.09.034 30423700
    [Google Scholar]
  144. EichholzK.F. HoeyD.A. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing.Acta Biomater.20187514015110.1016/j.actbio.2018.05.048 29857129
    [Google Scholar]
  145. HeF.L. LiD.W. HeJ. LiuY.Y. AhmadF. LiuY.L. DengX. YeY.J. YinD.C. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning.Mater. Sci. Eng. C201886182710.1016/j.msec.2017.12.016 29525092
    [Google Scholar]
  146. AghajanpoorM. Hashemi-NajafabadiS. Baghaban- Eslaminejad, M.; Bagheri, F.; Mohammad Mousavi, S.; Azam Sayyahpour, F. The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication.J. Biomed. Mater. Res. A201710571887189910.1002/jbm.a.36052 28256792
    [Google Scholar]
  147. RosetiL. ParisiV. PetrettaM. CavalloC. DesandoG. BartolottiI. GrigoloB. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.Mater. Sci. Eng. C2017781246126210.1016/j.msec.2017.05.017 28575964
    [Google Scholar]
  148. RahamanM.N. DayD.E. Sonny BalB. FuQ. JungS.B. BonewaldL.F. TomsiaA.P. Bioactive glass in tissue engineering.Acta Biomater.2011762355237310.1016/j.actbio.2011.03.016 21421084
    [Google Scholar]
  149. HanS. NieK. LiJ. SunQ. WangX. LiX. LiQ. 3D electrospun nanofiber-based scaffolds: From preparations and properties to tissue regeneration applications.Stem Cells Int.2021202112210.1155/2021/8790143 34221024
    [Google Scholar]
  150. BoseS. RoyM. BandyopadhyayA. Recent advances in bone tissue engineering scaffolds.Trends Biotechnol.2012301054655410.1016/j.tibtech.2012.07.005 22939815
    [Google Scholar]
  151. Polo-CorralesL. Latorre-EstevesM. Ramirez-VickJ.E. Scaffold design for bone regeneration.J. Nanosci. Nanotechnol.2014141155610.1166/jnn.2014.9127 24730250
    [Google Scholar]
  152. HowkD. ChuT.M. Design variables for mechanical properties of bone tissue scaffolds.Biomed. Sci. Instrum.200642278283 16817621
    [Google Scholar]
  153. HutmacherD.W. SchantzJ.T. LamC.X.F. TanK.C. LimT.C. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.J. Tissue Eng. Regen. Med.20071424526010.1002/term.24 18038415
    [Google Scholar]
  154. KokuboT. KimH.M. KawashitaM. Novel bioactive materials with different mechanical properties.Biomaterials200324132161217510.1016/S0142‑9612(03)00044‑9 12699652
    [Google Scholar]
  155. AmaralM. LopesM.A. SilvaR.F. SantosJ.D. Densification route and mechanical properties of Si3N4–bioglass biocomposites.Biomaterials200223385786210.1016/S0142‑9612(01)00194‑6 11771704
    [Google Scholar]
  156. ChenQ. ZhuC. ThouasG.A. Progress and challenges in biomaterials used for bone tissue engineering: Bioactive glasses and elastomeric composites.Prog. Biomater.201211210.1186/2194‑0517‑1‑2 29470743
    [Google Scholar]
  157. MankeA. WangL. RojanasakulY. Mechanisms of nanoparticle-induced oxidative stress and toxicity.BioMed Res. Int.2013201311510.1155/2013/942916 24027766
    [Google Scholar]
  158. MastrogiacomoM. MuragliaA. KomlevV. PeyrinF. RustichelliF. CrovaceA. CanceddaR. Tissue engineering of bone: Search for a better scaffold.Orthod. Craniofac. Res.20058427728410.1111/j.1601‑6343.2005.00350.x 16238608
    [Google Scholar]
  159. Díez-PascualA.M. Díez-VicenteA.L. Poly(propylene fumarate)/polyethylene glycol-modified graphene oxide nanocomposites for tissue engineering.ACS Appl. Mater. Interfaces2016828179021791410.1021/acsami.6b05635 27383639
    [Google Scholar]
  160. ShalumonK.T. AnulekhaK.H. ChennazhiK.P. TamuraH. NairS.V. JayakumarR. Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering.Int. J. Biol. Macromol.201148457157610.1016/j.ijbiomac.2011.01.020 21291908
    [Google Scholar]
  161. VenkatesanJ. KimS.K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering--A review.J. Biomed. Nanotechnol.201410103124314010.1166/jbn.2014.1893 25992432
    [Google Scholar]
  162. WangJ. ChenY. ZhuX. YuanT. TanY. FanY. ZhangX. X. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice. J. Biomed. Mater. Res. A,201410212n/a10.1002/jbm.a.3510224497384
  163. HeX. LiuY. YuanX. LuL. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds.PLoS One201498e10406110.1371/journal.pone.0104061 25084008
    [Google Scholar]
  164. ParkK.W. WakiH. KimW.K. DaviesB.S.J. YoungS.G. ParhamiF. TontonozP. The small molecule phenamil induces osteoblast differentiation and mineralization.Mol. Cell. Biol.200929143905391410.1128/MCB.00002‑09 19433444
    [Google Scholar]
  165. El BialyI. JiskootW. Reza NejadnikM. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration.Pharm. Res.20173461152117010.1007/s11095‑017‑2147‑x 28342056
    [Google Scholar]
  166. MooreN.M. LinN.J. GallantN.D. BeckerM.L. Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients.Acta Biomater.2011752091210010.1016/j.actbio.2011.01.019 21272672
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266366490250418184026
Loading
/content/journals/ctmc/10.2174/0115680266366490250418184026
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test