Skip to content
2000
image of Novel Nanoformulations to Overcome Obstacles in Herbal Drug Delivery for Alzheimer's Disease

Abstract

Introduction

Nanomedicine is a rapidly growing field in pharmaceutical science, driven by the enhanced quality of nano-formulations that improve the treatment of various diseases. Nano-sized novel drug delivery techniques for herbal pharmaceuticals have the potential to enhance activity and address concerns related to medicinal plants in the future. Natural chemicals show promise in various neurodegenerative diseases, but their permeability across the blood-brain barrier prevents them from reaching the nervous system. By improving molecular monitoring, synthesis, and diagnostics, pharmaceutical nanotechnology provides improved controlled drug delivery for the treatment of neurodegeneration.

Method

The evaluated and investigated data from recent studies were gathered using Google Scholar as a search engine. We reviewed and analysed research publications from databases like Bentham Science, Elsevier, PubMed, and ScienceDirect, among others, to summarize the findings.

Results

Curcumin, , thymoquinone, , , quercetin, piperine, and a variety of other herbs and herbal medicines have all been examined for their potential to aid in the treatment of brain disorders like Alzheimer's disease. To enhance drug bioavailability in the brain, nanoformulations, including phytosomes, transferosomes, ethosomes, and niosomes, have been utilized as pharmaceuticals.

Conclusion

Herbs and herbal medicines have been synthesized into nanoparticle form to enhance tissue distribution, achieve sustained delivery, and protect against physicochemical degradation while also increasing the solubility and bioavailability of poorly soluble herbal products. To overcome physiological complications, researchers must develop lab-scale approaches, characterization methodologies, and targeting tactics for nanoformulations with high translational potential early in product development.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266362594250527112018
2025-06-27
2025-12-13
Loading full text...

Full text loading...

References

  1. Cavalu S. Antoniac I.V. Mohan A. Bodog F. Doicin C. Mates I. Ulmeanu M. Murzac R. Semenescu A. Nanoparticles and nanostructured surface fabrication for innovative cranial and maxillofacial surgery. Materials 2020 13 23 5391 10.3390/ma13235391 33260938
    [Google Scholar]
  2. Dwivedi N. Shah J. Mishra V. Tambuwala M. Kesharwani P. Nanoneuromedicine for management of neurodegenerative disorder. J. Drug Deliv. Sci. Technol. 2019 49 477 490 10.1016/j.jddst.2018.12.021
    [Google Scholar]
  3. Xu J. Wold E. Ding Y. Shen Q. Zhou J. Therapeutic potential of oridonin and its analogs: from anticancer and antiinflammation to neuroprotection. Molecules 2018 23 2 474 10.3390/molecules23020474 29470395
    [Google Scholar]
  4. Elsegaie D. Teaima M. Tadrous M.I. Louis D. v, M.A.E-N. Formulation and in-vitro characterization of Self Nano-emulsifying Drug Delivery System (SNEDDS) for enhanced solubility of candesartan cilexetil. Res. J. Pharm. Technol 2019 12 6 2628 2636 10.5958/0974‑360X.2019.00440.2
    [Google Scholar]
  5. Ratheesh G. Tian L. Venugopal J.R. Ezhilarasu H. Sadiq A. Fan T.P. Ramakrishna S. Role of medicinal plants in neurodegenerative diseases. Biomanuf Rev. 2017 2 1 2 10.1007/s40898‑017‑0004‑7
    [Google Scholar]
  6. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  7. Li Y. Meng Q. Yang M. Liu D. Hou X. Tang L. Wang X. Lyu Y. Chen X. Liu K. Yu A.M. Zuo Z. Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B 2019 9 6 1113 1144 10.1016/j.apsb.2019.10.001 31867160
    [Google Scholar]
  8. Malik S. Muhammad K. Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 2023 28 18 6624 10.3390/molecules28186624 37764400
    [Google Scholar]
  9. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  10. Denora N. Laquintana V. Lopalco A. Iacobazzi R.M. Lopedota A. Cutrignelli A. Iacobellis G. Annese C. Cascione M. Leporatti S. Franco M. In vitro targeting and imaging the translocator protein TSPO 18-kDa through G(4)-PAMAM–FITC labeled dendrimer. J. Control. Release 2013 172 3 1111 1125 10.1016/j.jconrel.2013.09.024 24096015
    [Google Scholar]
  11. Laquintana V. Denora N. Lopalco A. Lopedota A. Cutrignelli A. Lasorsa F.M. Agostino G. Franco M. Translocator protein ligand-PLGA conjugated nanoparticles for 5-fluorouracil delivery to glioma cancer cells. Mol. Pharm. 2014 11 3 859 871 10.1021/mp400536z 24410438
    [Google Scholar]
  12. Iacobazzi R.M. Porcelli L. Lopedota A.A. Laquintana V. Lopalco A. Cutrignelli A. Altamura E. Di Fonte R. Azzariti A. Franco M. Denora N. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers. Int. J. Pharm. 2017 528 1-2 485 497 10.1016/j.ijpharm.2017.06.049 28624661
    [Google Scholar]
  13. Sharifi S. Behzadi S. Laurent S. Laird Forrest M. Stroeve P. Mahmoudi M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012 41 6 2323 2343 10.1039/C1CS15188F 22170510
    [Google Scholar]
  14. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  15. Kumar K. Rai A. Miraculous therapeutic effects of herbal drugs using novel drug delivery systems. Int. Res. J. Pharm. 2012 3 2 27 30
    [Google Scholar]
  16. Zhang H. Li Q. Liu R. Zhang X. Li Z. Luan Y. A Versatile prodrug strategy to in situ encapsulate drugs in MOF nanocarriers: A case of cytarabine‐IR820 prodrug encapsulated ZIF‐8 toward chemo‐photothermal therapy. Adv. Funct. Mater. 2018 28 35 1802830 10.1002/adfm.201802830
    [Google Scholar]
  17. Swamy M.K. Sinniah U.R. Patchouli (Pogostemon cablin Benth.): Botany, agrotechnology and biotechnological aspects. Ind. Crops Prod. 2016 87 161 176 10.1016/j.indcrop.2016.04.032
    [Google Scholar]
  18. Sandhiya V. Ubaidulla U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Future J. Pharm. Sci. 2020 6 1 51 10.1186/s43094‑020‑00050‑0
    [Google Scholar]
  19. Setia A. Vallamkonda B. Challa R.R. Mehata A.K. Badgujar P. Muthu M.S. Herbal theranostics: controlled, targeted delivery and imaging of herbal molecules. Nanotheranostics 2024 8 3 344 379 10.7150/ntno.94987 38577318
    [Google Scholar]
  20. Salatin S. Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med. 2017 21 9 1668 1686 10.1111/jcmm.13110 28244656
    [Google Scholar]
  21. Singh S. Sharma B. Kanwar S.S. Kumar A. Lead phytochemicals for anticancer drug development. Front Plant. Sci. 2016 7 1667 10.3389/fpls.2016.01667 27877185
    [Google Scholar]
  22. Singh A.P. Biswas A. Shukla A. Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019 4 1 33 10.1038/s41392‑019‑0068‑3 31637012
    [Google Scholar]
  23. Meng J. Agrahari V. Youm I. Advances in targeted drug delivery approaches for the central nervous system tumors: The inspiration of nanobiotechnology. J. Neuroimmune Pharmacol. 2017 12 1 84 98 10.1007/s11481‑016‑9698‑1 27449494
    [Google Scholar]
  24. Anand R. Gill K.D. Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014 76 Pt A 27 50 10.1016/j.neuropharm.2013.07.004 23891641
    [Google Scholar]
  25. Chouliaras L. O’Brien J.T. The use of neuroimaging techniques in the early and differential diagnosis of dementia. Mol. Psychiatry 2023 28 10 4084 4097 10.1038/s41380‑023‑02215‑8 37608222
    [Google Scholar]
  26. Sanabria-Castro A. Alvarado-Echeverría I. Monge-Bonilla C. Molecular pathogenesis of Alzheimer’s disease: An update. Ann. Neurosci. 2017 24 1 46 54 10.1159/000464422 28588356
    [Google Scholar]
  27. Zhang H. Jiang X. Ma L. Wei W. Li Z. Chang S. Wen J. Sun J. Li H. Role of Aβ in Alzheimer’s-related synaptic dysfunction. Front. Cell Dev. Biol. 2022 10 964075 10.3389/fcell.2022.964075 36092715
    [Google Scholar]
  28. Hampel H. Hardy J. Blennow K. Chen C. Perry G. Kim S.H. Villemagne V.L. Aisen P. Vendruscolo M. Iwatsubo T. Masters C.L. Cho M. Lannfelt L. Cummings J.L. Vergallo A. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  29. Chen G. Xu T. Yan Y. Zhou Y. Jiang Y. Melcher K. Xu H.E. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017 38 9 1205 1235 10.1038/aps.2017.28 28713158
    [Google Scholar]
  30. Wang N. Yang X. Zhao Z. Liu D. Wang X. Tang H. Zhong C. Chen X. Chen W. Meng Q. Cooperation between neurovascular dysfunction and Aβ in Alzheimer’s disease. Front. Mol. Neurosci. 2023 16 1227493 10.3389/fnmol.2023.1227493 37654789
    [Google Scholar]
  31. Giacci M.K. Bartlett C.A. Smith N.M. Iyer K.S. Toomey L.M. Jiang H. Guagliardo P. Kilburn M.R. Fitzgerald M. Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo. J. Neurosci. 2018 38 29 6491 6504 10.1523/JNEUROSCI.1898‑17.2018 29915135
    [Google Scholar]
  32. Gulisano W. Maugeri D. Baltrons M.A. Fà M. Amato A. Palmeri A. D’Adamio L. Grassi C. Devanand D.P. Honig L.S. Puzzo D. Arancio O. Role of amyloid-β and tau proteins in alzheimer’s disease: Confuting the amyloid cascade. J. Alzheimers Dis. 2018 64 s1 S611 S631 10.3233/JAD‑179935 29865055
    [Google Scholar]
  33. Kadry H. Noorani B. Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020 17 1 69 10.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  34. Manu D.R. Slevin M. Barcutean L. Forro T. Boghitoiu T. Balasa R. Astrocyte involvement in blood–brain barrier function: A critical update highlighting novel, complex, neurovascular interactions. Int. J. Mol. Sci. 2023 24 24 17146 10.3390/ijms242417146 38138976
    [Google Scholar]
  35. Villaseñor R. Lampe J. Schwaninger M. Collin L. Intracellular transport and regulation of transcytosis across the blood–brain barrier. Cell. Mol. Life Sci. 2019 76 6 1081 1092 10.1007/s00018‑018‑2982‑x 30523362
    [Google Scholar]
  36. Pawar B. Vasdev N. Gupta T. Mhatre M. More A. Anup N. Tekade R.K. Current update on transcellular brain drug delivery. Pharmaceutics 2022 14 12 2719 10.3390/pharmaceutics14122719 36559214
    [Google Scholar]
  37. Hare J.I. Lammers T. Ashford M.B. Puri S. Storm G. Barry S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev. 2017 108 25 38 10.1016/j.addr.2016.04.025 27137110
    [Google Scholar]
  38. Wilhelm S. Tavares A.J. Dai Q. Ohta S. Audet J. Dvorak H.F. Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016 1 5 16014 10.1038/natrevmats.2016.14
    [Google Scholar]
  39. Silva G.A. Neuroscience nanotechnology: Progress, opportunities and challenges. Nat. Rev. Neurosci. 2006 7 1 65 74 10.1038/nrn1827 16371951
    [Google Scholar]
  40. Niazi S.K. Non-invasive drug delivery across the blood–brain barrier: A prospective analysis. Pharmaceutics 2023 15 11 2599 10.3390/pharmaceutics15112599 38004577
    [Google Scholar]
  41. Iqbal I. Saqib F. Mubarak Z. Latif M.F. Wahid M. Nasir B. Shahzad H. Sharifi-Rad J. Mubarak M.S. Alzheimer’s disease and drug delivery across the blood–brain barrier: Approaches and challenges. Eur. J. Med. Res. 2024 29 1 313 10.1186/s40001‑024‑01915‑3 38849950
    [Google Scholar]
  42. Kaushik A.C. Kumar A. Peng Z. Khan A. Junaid M. Ali A. Bharadwaj S. Wei D-Q. Evaluation and validation of synergistic effects of amyloid-beta inhibitor–gold nanoparticles complex on Alzheimer’s disease using deep neural network approach. J. Mater. Res. 2019 34 11 1845 1853 10.1557/jmr.2018.452
    [Google Scholar]
  43. Kong S.D. Lee J. Ramachandran S. Eliceiri B.P. Shubayev V.I. Lal R. Jin S. Magnetic targeting of nanoparticles across the intact blood–brain barrier. J. Control. Release 2012 164 1 49 57 10.1016/j.jconrel.2012.09.021 23063548
    [Google Scholar]
  44. Vauthier C. Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009 26 5 1025 1058 10.1007/s11095‑008‑9800‑3 19107579
    [Google Scholar]
  45. Hersh A.M. Alomari S. Tyler B.M. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci. 2022 23 8 4153 10.3390/ijms23084153 35456971
    [Google Scholar]
  46. Lopedota A. Denora N. Laquintana V. Cutrignelli A. Lopalco A. Tricarico D. Maqoud F. Curci A. Mastrodonato M. la Forgia F. Fontana S. Franco M. Alginate-based hydrogel containing minoxidil/hydroxypropyl-β-cyclodextrin inclusion complex for topical alopecia treatment. J. Pharm. Sci. 2018 107 4 1046 1054 10.1016/j.xphs.2017.11.016 29183744
    [Google Scholar]
  47. Xie Y. Chen Z. Su R. Li Y. Qi J. Wu W. Lu Y. Preparation and optimization of amorphous ursodeoxycholic acid nano-suspensions by nanoprecipitation based on acid-base neutralization for enhanced dissolution. Curr. Drug Deliv. 2017 14 4 483 491 27593183
    [Google Scholar]
  48. Abbasi R. Shineh G. Mobaraki M. Doughty S. Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J. Nanopart. Res. 2023 25 3 43 10.1007/s11051‑023‑05690‑w 36875184
    [Google Scholar]
  49. Joseph T. Kar Mahapatra D. Esmaeili A. Piszczyk Ł. Hasanin M. Kattali M. Haponiuk J. Thomas S. Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials (Basel) 2023 13 3 574 10.3390/nano13030574 36770535
    [Google Scholar]
  50. Pulingam T. Foroozandeh P. Chuah J.A. Sudesh K. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials 2022 12 3 576 10.3390/nano12030576 35159921
    [Google Scholar]
  51. Gigliobianco M.R. Casadidio C. Censi R. Di Martino P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics 2018 10 3 134 10.3390/pharmaceutics10030134 30134537
    [Google Scholar]
  52. Sarangi M. Padhi S. Novel herbal drug delivery system: An overview. Arch. Med. Health. Sci. 2018 6 1 171 179 10.4103/amhs.amhs_88_17
    [Google Scholar]
  53. Deepak Yadav D.Y. Suruchi Suri S.S. Choudhary A. Mohd Sikender M.S. Hemant H. Beg M. Novel approach: Herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int. J. Pharm. Tech. 2011 3 3
    [Google Scholar]
  54. Jamil M. Aleem M.T. Shaukat A. Khan A. Mohsin M. Rehman T. Abbas R.Z. Saleemi M.K. Khatoon A. Babar W. Yan R. Li K. Medicinal plants as an alternative to control poultry parasitic diseases. Life 2022 12 3 449 10.3390/life12030449 35330200
    [Google Scholar]
  55. Thomford N.E. Senthebane D.A. Rowe A. Munro D. Seele P. Maroyi A. Dzobo K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018 19 6 1578 10.3390/ijms19061578 29799486
    [Google Scholar]
  56. Chaachouay N. Zidane L. Plant-derived natural products: A source for drug discovery and development. Drugs Drug Candidates 2024 3 1 184 207 10.3390/ddc3010011
    [Google Scholar]
  57. Jain N. Valli K.S. Devi V.K. Importance of novel drug delivery systems in herbal medicines. Pharmacogn. Rev. 2010 4 7 27 31 10.4103/0973‑7847.65322 22228938
    [Google Scholar]
  58. Yuan S. Ma T. Zhang Y.N. Wang N. Baloch Z. Ma K. Novel drug delivery strategies for antidepressant active ingredients from natural medicinal plants: The state of the art. J. Nanobiotechnology 2023 21 1 391 10.1186/s12951‑023‑02159‑9 37884969
    [Google Scholar]
  59. Bonifácio B.V. Silva P.B. Ramos M.A. Negri K.M. Bauab T.M. Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine 2014 9 1 15 24363556
    [Google Scholar]
  60. Wilson R.J. Li Y. Yang G. Zhao C.X. Nanoemulsions for drug delivery. Particuology 2022 64 85 97 10.1016/j.partic.2021.05.009
    [Google Scholar]
  61. Wahi A. Bishnoi M. Raina N. Singh M.A. Verma P. Gupta P.K. Kaur G. Tuli H.S. Gupta M. Recent updates on nano-phyto-formulations based therapeutic intervention for cancer treatment. Oncol. Res. 2024 32 1 19 47 10.32604/or.2023.042228 38188681
    [Google Scholar]
  62. Semalty A. Semalty M. Rawat M. The phyto-phospholipid complexes-phytosomes: A potential therapeutic approach for herbal hepatoprotective drug delivery. Pharmacogn. Rev. 2007 1 2
    [Google Scholar]
  63. Barani M. Sangiovanni E. Angarano M. Rajizadeh M.A. Mehrabani M. Piazza S. Gangadharappa H.V. Pardakhty A. Mehrbani M. Dell’Agli M. Nematollahi M.H. phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 6983 7022 10.2147/IJN.S318416 34703224
    [Google Scholar]
  64. Sharma G. Anabousi S. Ehrhardt C. Ravi Kumar M.N.V. Liposomes as targeted drug delivery systems in the treatment of breast cancer. J. Drug Target. 2006 14 5 301 310 10.1080/10611860600809112 16882550
    [Google Scholar]
  65. Mandal S.C. Mandal M. Current status and future prospects of new drug delivery system. Pharm. Times 2010 42 4 13 16
    [Google Scholar]
  66. Nakhaei P. Margiana R. Bokov D.O. Abdelbasset W.K. Jadidi Kouhbanani M.A. Varma R.S. Marofi F. Jarahian M. Beheshtkhoo N. RETRACTED: Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol. 2021 9 705886 10.3389/fbioe.2021.705886 34568298
    [Google Scholar]
  67. Kulkarni P. Yadav J. Vaidya K. Gandhi P. Transferosomes: An emerging tool for transdermal drug delivery. Int. J. Pharm. Sci. Res. 2011 2 4 735
    [Google Scholar]
  68. Opatha S.A.T. Titapiwatanakun V. Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020 12 9 855 10.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  69. Yanyu X. Yunmei S. Zhipeng C. Qineng P. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. Int. J. Pharm. 2006 307 1 77 82 10.1016/j.ijpharm.2005.10.001 16300915
    [Google Scholar]
  70. Verma P. Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res. 2010 1 3 274 282 10.4103/0110‑5558.72415 22247858
    [Google Scholar]
  71. Chauhan N. Vasava P. Khan S.L. Siddiqui F.A. Islam F. Chopra H. Emran; Bin, T. Ethosomes: A novel drug carrier. Ann. Med. Surg. 2022 82 104595 10.1016/j.amsu.2022.104595
    [Google Scholar]
  72. Liga S. Paul C. Moacă E.A. Péter F. Niosomes: Composition, formulation techniques, and recent progress as delivery systems in cancer therapy. Pharmaceutics 2024 16 2 223 10.3390/pharmaceutics16020223 38399277
    [Google Scholar]
  73. Davatgaran Taghipour Y. Hajialyani M. Naseri R. Hesari M. Mohammadi P. Stefanucci A. Mollica A. Farzaei M.H. Abdollahi M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine 2019 14 5303 5321 10.2147/IJN.S213831 31406461
    [Google Scholar]
  74. Bar-Zeev M. Livney Y.D. Assaraf Y.G. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist. Updat. 2017 31 15 30 10.1016/j.drup.2017.05.002 28867241
    [Google Scholar]
  75. Hajialyani M. Tewari D. Sobarzo-Sánchez E. Nabavi S.M. Farzaei M.H. Abdollahi M. Natural product-based nanomedicines for wound healing purposes: Therapeutic targets and drug delivery systems. Int. J. Nanomedicine 2018 13 5023 5043 10.2147/IJN.S174072 30214204
    [Google Scholar]
  76. Bollimpelli V.S. Kumar P. Kumari S. Kondapi A.K. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem. Int. 2016 95 37 45 10.1016/j.neuint.2016.01.006 26826319
    [Google Scholar]
  77. Hoppe J.B. Coradini K. Frozza R.L. Oliveira C.M. Meneghetti A.B. Bernardi A. Pires E.S. Beck R.C.R. Salbego C.G. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol. Learn. Mem. 2013 106 134 144 10.1016/j.nlm.2013.08.001 23954730
    [Google Scholar]
  78. de Gomes M.G. Teixeira F.E.G. de Carvalho F.B. Pacheco C.O. da Silva Neto M.R. Giacomeli R. Ramalho J.B. dos Santos R.B. Domingues W.B. Campos V.F. Haas S.E. Curcumin-loaded lipid-core nanocapsules attenuates the immune challenge LPS-induced in rats: Neuroinflammatory and behavioral response in sickness behavior. J. Neuroimmunol. 2020 345 577270 10.1016/j.jneuroim.2020.577270 32480241
    [Google Scholar]
  79. Kuo Y.C. Chen I.Y. Rajesh R. Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J. Taiwan Inst. Chem. Eng. 2018 87 1 14 10.1016/j.jtice.2018.03.001
    [Google Scholar]
  80. Bridi H. Meirelles G.C. von Poser G.L. Structural diversity and biological activities of phloroglucinol derivatives from Hypericum species. Phytochemistry 2018 155 203 232 10.1016/j.phytochem.2018.08.002 30153613
    [Google Scholar]
  81. Alam S. Mustafa G. Khan Z.I. Islam F. Bhatnagar A. Ahmad F. Kumar, Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: A pharmacoscintigraphic study. Int. J. Nanomedicine 2012 7 5705 5718 10.2147/IJN.S35329 23180965
    [Google Scholar]
  82. Isaev N.K. Genrikhs E.E. Stelmashook E.V. Antioxidant thymoquinone and its potential in the treatment of neurological diseases. Antioxidants 2023 12 2 433 10.3390/antiox12020433
    [Google Scholar]
  83. Ismail N. Ismail M. Azmi N.H. Bakar M.F.A. Yida Z. Abdullah M.A. Basri H. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomed. Pharmacother. 2017 95 780 788 10.1016/j.biopha.2017.08.074 28892789
    [Google Scholar]
  84. Agatonovic-Kustrin S. Kettle C. Morton D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother. 2018 106 553 565 10.1016/j.biopha.2018.06.147 29990843
    [Google Scholar]
  85. Ahuja A. Kim J.H. Kim J.H. Yi Y.S. Cho J.Y. Functional role of ginseng-derived compounds in cancer. J. Ginseng Res. 2018 42 3 248 254 10.1016/j.jgr.2017.04.009 29983605
    [Google Scholar]
  86. Ghaffari F. Hajizadeh Moghaddam A. Zare M. Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of parkinson disease: Biochemical and behavioral evidence. Basic Clin. Neurosci. 2018 9 5 317 324 10.32598/bcn.9.5.317 30719246
    [Google Scholar]
  87. Yang X. Zheng T. Hong H. Cai N. Zhou X. Sun C. Wu L. Liu S. Zhao Y. Zhu L. Fan M. Zhou X. Jin F. Neuroprotective effects of Ginkgo biloba extract and Ginkgolide B against oxygen–glucose deprivation/reoxygenation and glucose injury in a new in vitro multicellular network model. Front. Med. 2018 12 3 307 318 10.1007/s11684‑017‑0547‑2 29058254
    [Google Scholar]
  88. Phachonpai W. Wattanathorn J. Muchimapura S. Tong-Un T. Preechagoon D. Neuroprotective effect of quercetin encapsulated liposomes: A novel therapeutic strategy against alzheimer’s disease. Am. J. Appl. Sci. 2010 7 4 480 485 10.3844/ajassp.2010.480.485
    [Google Scholar]
  89. Moradi S.Z. Momtaz S. Bayrami Z. Farzaei M.H. Abdollahi M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front. Bioeng. Biotechnol. 2020 8 238 10.3389/fbioe.2020.00238 32318551
    [Google Scholar]
  90. Etman S.M. Elnaggar Y.S.R. Abdelmonsif D.A. Abdallah O.Y. Oral brain-targeted microemulsion for enhanced piperine delivery in Alzheimer’s disease therapy: In vitro appraisal, in vivo activity, and nanotoxicity. AAPS PharmSciTech 2018 19 8 3698 3711 10.1208/s12249‑018‑1180‑3 30238305
    [Google Scholar]
  91. Charman W.N. Chan H.K. Finnin B.C. Charman S.A. Drug delivery: A key factor in realising the full therapeutic potential of drugs. Drug Dev. Res. 1999 46 3-4 316 327 10.1002/(SICI)1098‑2299(199903/04)46:3/4<316:AID‑DDR18>3.0.CO;2‑E
    [Google Scholar]
  92. Kim M.J. Hwang E.S. Kim K.J. Maeng S. Heo H.J. Park J.H. Kim D.O. Anti-amnesic effects of epigallocatechin gallate on scopolamine-induced learning and memory dysfunction in sprague-dawley rats. Antioxidants 2021 11 1 1 10.3390/antiox11010001
    [Google Scholar]
  93. Yin T. Yang L. Liu Y. Zhou X. Sun J. Liu J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater. 2015 25 172 183 10.1016/j.actbio.2015.06.035 26143603
    [Google Scholar]
  94. Meng Q. Wang A. Hua H. Jiang Y. Wang Y. Mu H. Wu Z. Sun K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomedicine 2018 13 705 718 10.2147/IJN.S151474 29440896
    [Google Scholar]
  95. Curtis L.M. Grutter A.S. Smit N.J. Davies A.J. Gnathia aureamaculosa, a likely definitive host of Haemogregarina balistapi and potential vector for Haemogregarina bigemina between fishes of the Great Barrier Reef, Australia. Int. J. Parasitol. 2013 43 5 361 370 10.1016/j.ijpara.2012.11.012 23305943
    [Google Scholar]
  96. Jiménez-Jiménez F.J. Alonso-Navarro H. García-Martín E. Agúndez J.A.G. Coenzyme Q10 and dementia: A systematic review. Antioxidants 2023 12 2 533 10.3390/antiox12020533
    [Google Scholar]
  97. kheradmand, E.; Hajizadeh Moghaddam, A.; Zare, M. Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed. Pharmacother. 2018 97 1096 1101 10.1016/j.biopha.2017.11.047 29136946
    [Google Scholar]
  98. Vedagiri A. Thangarajan S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25–35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease. Neuropeptides 2016 58 111 125 10.1016/j.npep.2016.03.002 27021394
    [Google Scholar]
  99. Kooijmans S.A. Vader P. van Dommelen S.M. van Solinge W.W. Schiffelers R.M. Exosome mimetics: A novel class of drug delivery systems. Int. J. Nanomedicine 2012 7 1525 1541 22619510
    [Google Scholar]
  100. Satapathy M.K. Yen T.L. Jan J.S. Tang R.D. Wang J.Y. Taliyan R. Yang C.H. Solid Lipid Nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics 2021 13 8 1183 10.3390/pharmaceutics13081183 34452143
    [Google Scholar]
  101. Decuzzi P. Godin B. Tanaka T. Lee S.Y. Chiappini C. Liu X. Ferrari M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release 2010 141 3 320 327 10.1016/j.jconrel.2009.10.014 19874859
    [Google Scholar]
  102. Bonamy C. Pesnel S. Ben Haddada M. Gorgette O. Schmitt C. Morel A.L. Sauvonnet N. Impact of green gold nanoparticle coating on internalization, trafficking, and efficiency for photothermal therapy of skin cancer. ACS Omega 2023 8 4 4092 4105 10.1021/acsomega.2c07054 36743010
    [Google Scholar]
  103. Champion J.A. Katare Y.K. Mitragotri S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 2007 121 1-2 3 9 10.1016/j.jconrel.2007.03.022 17544538
    [Google Scholar]
  104. Hui Y. Yi X. Wibowo D. Yang G. Middelberg A.P.J. Gao H. Zhao C.X. Nanoparticle elasticity regulates phagocytosis and cancer cell uptake. Sci. Adv. 2020 6 16 eaaz4316 10.1126/sciadv.aaz4316 32426455
    [Google Scholar]
  105. Bezbaruah R. Chavda V.P. Nongrang L. Alom S. Deka K. Kalita T. Ali F. Bhattacharjee B. Vora L. Nanoparticle-based delivery systems for vaccines. Vaccines 2022 10 11 1946 10.3390/vaccines10111946 36423041
    [Google Scholar]
  106. Zhang J. Tang H. Liu Z. Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int. J. Nanomedicine 2017 12 8483 8493 10.2147/IJN.S148359 29238188
    [Google Scholar]
  107. Albanese A. Tang P.S. Chan W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012 14 1 1 16 10.1146/annurev‑bioeng‑071811‑150124 22524388
    [Google Scholar]
  108. Sun H. Jiang C. Wu L. Bai X. Zhai S. Cytotoxicity-related bioeffects induced by nanoparticles: The role of surface chemistry. Front. Bioeng. Biotechnol. 2019 7 414 10.3389/fbioe.2019.00414 31921818
    [Google Scholar]
  109. Lee J.H. Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 2015 125 75 84 10.1016/j.ces.2014.08.046 25684779
    [Google Scholar]
  110. Rizvi S.A.A. Saleh A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018 26 1 64 70 10.1016/j.jsps.2017.10.012 29379334
    [Google Scholar]
  111. Berlau J. Lorenz P. Beck R. Makovitzky J. Schlötzer-Schrehardt U. Thiesen H.J. Guthoff R. Analysis of aqueous humour proteins of eyes with and without pseudoexfoliation syndrome. Graefes Arch. Clin. Exp. Ophthalmol. 2001 239 10 743 746 10.1007/s004170100357 11760034
    [Google Scholar]
  112. Carmichael O.T. Pillai S. Shankapal P. McLellan A. Kay D.G. Gold B.T. Keller J.N. A Combination of essential fatty acids, panax ginseng extract, and green tea catechins modifies brain FMRI signals in healthy older adults. J. Nutr. Health Aging 2018 22 7 837 846 10.1007/s12603‑018‑1028‑2 30080229
    [Google Scholar]
  113. Renaud J. Martinoli M.G. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int. J. Mol. Sci. 2019 20 8 1883 10.3390/ijms20081883 30995776
    [Google Scholar]
  114. Rajabian A. Rameshrad M. Hosseinzadeh H. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: A patent review. Expert Opin. Ther. Pat. 2019 29 1 55 72 10.1080/13543776.2019.1556258 30513224
    [Google Scholar]
  115. Santonocito D. Sarpietro M.G. Carbone C. Panico A. Campisi A. Siciliano E.A. Sposito G. Castelli F. Puglia C. Curcumin containing pegylated solid lipid nanoparticles for systemic administration: A preliminary study. Molecules 2020 25 13 2991 10.3390/molecules25132991 32629951
    [Google Scholar]
  116. Desai K. Curcumin cyclodextrin combination for preventing or treating various diseases. US Patent 20100179103A1 2010
  117. Frautschy S.A. Cole G.M. Bioavailable curcuminoid formulations for treating Alzheimer's disease and other age-related disorders. US Patent 9192644B2 2015
  118. Xu X. Yu J. Tong S. Zhu Y. Cao X. Formulation of silymarin with high efficacy and prolonged action and the preparation method thereof. US Patent 8962017B2 2015
  119. DiMauro T.M. Methylated curcumin-resveratrol hybrid molecules for treating cancer. US Patent 8350093B2 2013
  120. Kurzrock R. Li L. Mehta K. Aggarawal B.B. Liposomal curcumin for treatment of cancer. US Patent 7968115B2 2011
  121. Babaei Sarvinehbaghi M. Azizkhani M. Effect of encapsulated nanoemulsion of onion extract in Alyssum homolocarpum and Lepidium sativum seed gum on beef fillet preservation. J. Food Sci. Technol. 2022 19 127 1 12
    [Google Scholar]
  122. Rostamabadi H. Falsafi S.R. Jafari S.M. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Control. Release 2019 298 38 67 10.1016/j.jconrel.2019.02.005 30738975
    [Google Scholar]
  123. Choudhary S. Kaur I.P. Malik J. Development and validation of a novel, rapid gradient HPLC method for simultaneous estimation of bioactive marker compounds in a mixture of Convolvulus pluricaulis, Withania somnifera and Bacopa monnieri extracts. J. Chromatogr. Sci. 2019 57 10 920 930 10.1093/chromsci/bmz075 31644789
    [Google Scholar]
  124. Jacob C.V. Synergistic composition for enhancing bioavailability of curcumin. US Patent 20120058208A1 2012
  125. Sonu Ambwani S.A. Roopali Tandon R.T. Ambwani T.K. Malik Y.S. Current knowledge on nanodelivery systems and their beneficial applications in enhancing the efficacy of herbal drugs. J. Exp. Biol. Agric. Sci. 2018 6 1 87 107 10.18006/2018.6(1).87.107
    [Google Scholar]
  126. Spengler E. Dahms G. Composition and method employing membrane structured solid nanoparticles for enhanced delivery of oral care actives. US Patent 20060024248A1 2006
  127. Sahoo S. Mohanty C. Novel water soluble curcumin loaded nanoparticulate system for cancer therapy. WO Patent 2011 2011101859 A1
    [Google Scholar]
  128. Chaudhary M. Naithani V. Topical herbal formulation for treatment of acne and skin disorders. US Patent 8268367B2 2012
  129. Shanmugasundaram S. Krupakar P. Shanmugasundaram S. Preparation of oligosaccharide bio nanoparticles from Moringa oleifera lam. IP Patent 375MAS2003A 2007
  130. Mueller N.C. Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008 42 12 4447 4453 10.1021/es7029637 18605569
    [Google Scholar]
  131. Holbein M.E.B. Understanding FDA regulatory requirements for investigational new drug applications for sponsor-investigators. J. Investig. Med. 2009 57 6 688 694 10.2310/JIM.0b013e3181afdb26 19602987
    [Google Scholar]
  132. Chavda V.P. Patel A.B. Mistry K.J. Suthar S.F. Wu Z.X. Chen Z.S. Hou K. Nano-drug delivery systems entrapping natural bioactive compounds for cancer: Recent progress and future challenges. Front. Oncol. 2022 12 867655 10.3389/fonc.2022.867655 35425710
    [Google Scholar]
  133. Alshawwa S.Z. Kassem A.A. Farid R.M. Mostafa S.K. Labib G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022 14 4 883 10.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  134. Liu N. Ruan J. Li H. Fu J. Nanoparticles loaded with natural medicines for the treatment of Alzheimer’s disease. Front. Neurosci. 2023 17 1112435 10.3389/fnins.2023.1112435 37877008
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266362594250527112018
Loading
/content/journals/ctmc/10.2174/0115680266362594250527112018
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test