Skip to content
2000
Volume 25, Issue 28
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Alzheimer’s disease (AD) remains a formidable challenge in modern medicine, with limited therapeutic options available to combat its progressive cognitive decline. Histone acetylation is a key epigenetic mechanism responsible for gene expression, cell growth, and differentiation. HDAC is a group of enzymes that can reverse the acetylation of cells. These enzymes have been evidenced to be involved in the pathophysiology of AD. Hence, inhibition of this enzyme was postulated to exhibit pronounced benefits in AD concerning memory, learning, and cognition. Pan-HDAC inhibitors inhibited multiple HDAC isoforms but were associated with certain side effects. Hence, class-specific and isoform-specific inhibitors were discovered, revealing great potencies and proving efficacious. This review article comprehensively explores the evolving landscape of research avenues targeting HDAC inhibitors against AD. Beginning with the molecular mechanisms underlying AD pathology, we delve into the intricate roles of HDACs in neurodegeneration and synaptic dysfunction. Subsequently, we scrutinize preclinical studies investigating various HDAC inhibitors, elucidating their promising neuroprotective effects, modulation of epigenetic mechanisms, and potential for disease modification. Furthermore, we highlight the translational challenges and therapeutic opportunities in advancing HDAC inhibitors toward clinical applications for AD. By summarizing current research findings, this review aims to provide valuable insights into the burgeoning field of HDAC inhibition as a promising therapeutic strategy for combating AD, paving the way for future research directions and drug development endeavors.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266360664250606110220
2025-06-16
2026-02-01
Loading full text...

Full text loading...

References

  1. LeeJ.M. HammarénH.M. SavitskiM.M. BaekS.H. Control of protein stability by post-translational modifications.Nat. Commun.202314120110.1038/s41467‑023‑35795‑8 36639369
    [Google Scholar]
  2. ShvedunovaM. AkhtarA. Modulation of cellular processes by histone and non-histone protein acetylation.Nat. Rev. Mol. Cell Biol.202223532934910.1038/s41580‑021‑00441‑y 35042977
    [Google Scholar]
  3. KimE. BissonW.H. LöhrC.V. WilliamsD.E. HoE. DashwoodR.H. RajendranP. Histone and non-histone targets of dietary deacetylase inhibitors.Curr. Top. Med. Chem.201616771473110.2174/1568026615666150825125857 26303421
    [Google Scholar]
  4. BitergeB. SchneiderR. Histone variants: Key players of chromatin.Cell Tissue Res.2014356345746610.1007/s00441‑014‑1862‑4 24781148
    [Google Scholar]
  5. XuH. WuM. MaX. HuangW. XuY. Function and mechanism of novel histone posttranslational modifications in health and disease.BioMed Res. Int.202120211663522510.1155/2021/6635225 33763479
    [Google Scholar]
  6. GuoP. ChenW. LiH. LiM. LiL. The histone acetylation modifications of breast cancer and their therapeutic implications.Pathol. Oncol. Res.201824480781310.1007/s12253‑018‑0433‑5 29948617
    [Google Scholar]
  7. VerdoneL. AgricolaE. CasertaM. Di MauroE. Histone acetylation in gene regulation.Brief. Funct. Genomics Proteomics20065320922110.1093/bfgp/ell028 16877467
    [Google Scholar]
  8. PesericoA. SimoneC. Physical and functional HAT/HDAC interplay regulates protein acetylation balance.BioMed Res. Int.20112011137183210.1155/2011/371832 21151613
    [Google Scholar]
  9. Magnaghi-JaulinL. Ait-Si-AliS. Harel-BellanA. Histone acetylation and the control of the cell cycle.Prog. Cell Cycle Res.20004414710.1007/978‑1‑4615‑4253‑7_4 10740813
    [Google Scholar]
  10. GregoryP.D. WagnerK. HörzW. Histone acetylation and chromatin remodeling.Exp. Cell Res.2001265219520210.1006/excr.2001.5187 11302684
    [Google Scholar]
  11. DwarakanathB.S. VermaA. BhattA.N. ParmarV.S. RajH.G. Targeting protein acetylation for improving cancer therapy.Indian J. Med. Res.200812811321 18820353
    [Google Scholar]
  12. DrazicA. MyklebustL.M. ReeR. ArnesenT. The world of protein acetylation.Biochim. Biophys. Acta. Proteins Proteomics20161864101372140110.1016/j.bbapap.2016.06.007 27296530
    [Google Scholar]
  13. SetoE. YoshidaM. Erasers of histone acetylation: The histone deacetylase enzymes.Cold Spring Harb. Perspect. Biol.201464a01871310.1101/cshperspect.a018713 24691964
    [Google Scholar]
  14. SelviB.R. ChatterjeeS. ModakR. EswaramoorthyM. KunduT.K. Histone acetylation as a therapeutic target.Subcell. Biochem.20136156759610.1007/978‑94‑007‑4525‑4_25 23150268
    [Google Scholar]
  15. BonnaudE.M. SuberbielleE. MalnouC.E. Histone acetylation in neuronal (dys)function.Biomol. Concepts20167210311610.1515/bmc‑2016‑0002 27101554
    [Google Scholar]
  16. BarnesP.J. AdcockI.M. ItoK. Histone acetylation and deacetylation: Importance in inflammatory lung diseases.Eur. Respir. J.200525355256310.1183/09031936.05.00117504 15738302
    [Google Scholar]
  17. YoonS. EomG.H. HDAC and HDAC inhibitor: From cancer to cardiovascular diseases.Chonnam Med. J.201652111110.4068/cmj.2016.52.1.1 26865995
    [Google Scholar]
  18. BondarevA.D. AttwoodM.M. JonssonJ. ChubarevV.N. TarasovV.V. SchiöthH.B. Recent developments of HDAC inhibitors: Emerging indications and novel molecules.Br. J. Clin. Pharmacol.202187124577459710.1111/bcp.14889 33971031
    [Google Scholar]
  19. SantanaD.A. SmithM.A.C. ChenE.S. Histone modifications in Alzheimer’s disease.Genes202314234710.3390/genes14020347 36833274
    [Google Scholar]
  20. KabirF. AtkinsonR. CookA.L. PhippsA.J. KingA.E. The role of altered protein acetylation in neurodegenerative disease.Front. Aging Neurosci.202314102547310.3389/fnagi.2022.1025473 36688174
    [Google Scholar]
  21. KonsoulaZ. BarileF.A. Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders.J. Pharmacol. Toxicol. Methods201266321522010.1016/j.vascn.2012.08.001 22902970
    [Google Scholar]
  22. ConeysR. WoodI.C. Alzheimer’s disease: The potential of epigenetic treatments and current clinical candidates.Neurodegener. Dis. Manag.202010354355810.2217/nmt‑2019‑0034 32552286
    [Google Scholar]
  23. SahaR.N. PahanK. HATs and HDACs in neurodegeneration: A tale of disconcerted acetylation homeostasis.Cell Death Differ.200613453955010.1038/sj.cdd.4401769 16167067
    [Google Scholar]
  24. MilanoW. F TecceM. CapassoA. Neuroprotection against neurodegenerative disorders by histone acetyltransferase inhibitors: An overview.Diseases and Disorders20171110.15761/JDD.1000104
    [Google Scholar]
  25. RouauxC. JokicN. MbebiC. BoutillierS. LoefflerJ.P. BoutillierA.L. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration.EMBO J.200322246537654910.1093/emboj/cdg615 14657026
    [Google Scholar]
  26. NealM. RichardsonJ.R. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration.Biochim. Biophys. Acta Mol. Basis Dis.20181864243244310.1016/j.bbadis.2017.11.004 29113750
    [Google Scholar]
  27. MaY. WangW. LiuS. QiaoX. XingY. ZhouQ. ZhangZ. Epigenetic regulation of neuroinflammation in Alzheimer’s disease.Cells20231317910.3390/cells13010079 38201283
    [Google Scholar]
  28. BaiN. LiN. ChengR. GuanY. ZhaoX. SongZ. XuH. YiF. JiangB. LiX. WuX. JiangC. ZhouT. GuoQ. GuoW. FengY. WangZ. MaM. YuY. WangZ. ZhangS. WangC. ZhaoW. LiuS. SongX. LiuH. CaoL. Inhibition of SIRT2 promotes APP acetylation and ameliorates cognitive impairment in APP/PS1 transgenic mice.Cell Rep.202240211106210.1016/j.celrep.2022.111062 35830807
    [Google Scholar]
  29. ZhangM. WangW. YeQ. FuY. LiX. YangK. GaoF. ZhouA. WeiY. TianS. LiS. WeiF. ShiW. LiW.D. Histone deacetylase inhibitors VPA and WT161 ameliorate the pathological features and cognitive impairments of the APP/PS1 Alzheimer’s disease mouse model by regulating the expression of APP secretases.Alzheimers Res. Ther.20241611510.1186/s13195‑024‑01384‑0 38245771
    [Google Scholar]
  30. ZhangH.L. HuS. YangP. LongH.C. MaQ.H. YinD.M. XuG.Y. HDAC9‐mediated calmodulin deacetylation induces memory impairment in Alzheimer’s disease.CNS Neurosci. Ther.2024302e1457310.1111/cns.14573 38421101
    [Google Scholar]
  31. CookC. StankowskiJ.N. CarlomagnoY. StetlerC. PetrucelliL. Acetylation: A new key to unlock tau’s role in neurodegeneration.Alzheimers Res. Ther.2014632910.1186/alzrt259 25031639
    [Google Scholar]
  32. LuX. WangL. YuC. YuD. YuG. Histone acetylation modifiers in the pathogenesis of Alzheimer’s disease.Front. Cell. Neurosci.2015922610.3389/fncel.2015.00226 26136662
    [Google Scholar]
  33. CookC. CarlomagnoY. GendronT.F. DunmoreJ. ScheffelK. StetlerC. DavisM. DicksonD. JarpeM. DeTureM. PetrucelliL. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance.Hum. Mol. Genet.201423110411610.1093/hmg/ddt402 23962722
    [Google Scholar]
  34. SelviB.R. CasselJ.C. KunduT.K. BoutillierA.L. Tuning acetylation levels with HAT activators: Therapeutic strategy in neurodegenerative diseases.Biochim. Biophys. Acta. Gene Regul. Mech.2010179910-1284085310.1016/j.bbagrm.2010.08.012 20833281
    [Google Scholar]
  35. ShuklaS. TekwaniB.L. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation.Front. Pharmacol.20201153710.3389/fphar.2020.00537 32390854
    [Google Scholar]
  36. ChuangD.M. LengY. MarinovaZ. KimH.J. ChiuC.T. Multiple roles of HDAC inhibition in neurodegenerative conditions.Trends Neurosci.2009321159160110.1016/j.tins.2009.06.002 19775759
    [Google Scholar]
  37. PereiraM. CruzM.T. FortunaA. BickerJ. Restoring the epigenome in Alzheimer’s disease: Advancing HDAC inhibitors as therapeutic agents.Drug Discov. Today202429710405210.1016/j.drudis.2024.104052 38830501
    [Google Scholar]
  38. RodriguesD.A. PinheiroP.S.M. SagrilloF.S. BolognesiM.L. FragaC.A.M. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities.Med. Res. Rev.20204062177221110.1002/med.21701 32588916
    [Google Scholar]
  39. AlamS. PiazzesiA. Abd El FatahM. RaucampM. van Echten-DeckertG. Neurodegeneration caused by S1P-Lyase deficiency involves calcium-dependent tau pathology and abnormal histone acetylation.Cells2020910218910.3390/cells9102189 32998447
    [Google Scholar]
  40. YangS. ZhangR. WangG. ZhangY. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer’s disease.Transl. Neurodegener.2017611910.1186/s40035‑017‑0089‑1 28702178
    [Google Scholar]
  41. WittO. DeubzerH.E. MildeT. OehmeI. HDAC family: What are the cancer relevant targets?Cancer Lett.2009277182110.1016/j.canlet.2008.08.016 18824292
    [Google Scholar]
  42. YangX-J. SetoE. HATs and HDACs: From structure, function and regulation to novel strategies for therapy and prevention.Oncogene200726375310531810.1038/sj.onc.1210599 17694074
    [Google Scholar]
  43. MilazzoG. MercatelliD. Di MuzioG. TriboliL. De RosaP. PeriniG. GiorgiF.M. Histone deacetylases (HDACs): Evolution, specificity, role in transcriptional complexes, and pharmacological actionability.Genes202011555610.3390/genes11050556 32429325
    [Google Scholar]
  44. LiG. TianY. ZhuW.G. The roles of histone deacetylases and their inhibitors in cancer therapy.Front. Cell Dev. Biol.2020857694610.3389/fcell.2020.576946 33117804
    [Google Scholar]
  45. XuK. DaiX.L. HuangH.C. JiangZ.F. Targeting HDACs: A promising therapy for Alzheimer’s disease.Oxid. Med. Cell. Longev.201120111510.1155/2011/143269 21941604
    [Google Scholar]
  46. KontaxiC. PiccardoP. GillA.C. Lysine-directed post-translational modifications of Tau protein in Alzheimer’s disease and related tauopathies.Front. Mol. Biosci.201745610.3389/fmolb.2017.00056 28848737
    [Google Scholar]
  47. AdhikariR. YangM. SaikiaN. DuttaC. AlharbiW.F.A. ShanZ. PandeyR. TiwariA. Acetylation of Aβ42 at lysine 16 disrupts amyloid formation.ACS Chem. Neurosci.20201181178119110.1021/acschemneuro.0c00069 32207962
    [Google Scholar]
  48. SchuellerE. PaivaI. BlancF. WangX.L. CasselJ.C. BoutillierA.L. BousigesO. Dysregulation of histone acetylation pathways in hippocampus and frontal cortex of Alzheimer’s disease patients.Eur. Neuropsychopharmacol.20203310111610.1016/j.euroneuro.2020.01.015 32057591
    [Google Scholar]
  49. MahadyL. NadeemM. Malek-AhmadiM. ChenK. PerezS.E. MufsonE.J. Frontal cortex epigenetic dysregulation during the progression of Alzheimer’s disease.J. Alzheimers Dis.201862111513110.3233/JAD‑171032 29439356
    [Google Scholar]
  50. AndersonK.W. ChenJ. WangM. MastN. PikulevaI.A. TurkoI.V. Quantification of histone deacetylase isoforms in human frontal cortex, human retina, and mouse brain.PLoS One2015105e012659210.1371/journal.pone.0126592 25962138
    [Google Scholar]
  51. GengF. ZhaoN. ChenX. LiuX. ZhuM. JiangY. RenQ. Transcriptome analysis identifies the role of Class I histone deacetylase in Alzheimer’s disease.Heliyon202397e1800810.1016/j.heliyon.2023.e18008 37449137
    [Google Scholar]
  52. PukhalskaiaA.E. DyatlovaA.S. LinkovaN.S. KozlovK.L. KvetnaiaT.V. KorolevaM.V. KvetnoyI.M. Sirtuins as possible predictors of aging and Alzheimer’s disease development: Verification in the hippocampus and saliva.Bull. Exp. Biol. Med.2020169682182410.1007/s10517‑020‑04986‑4 33098511
    [Google Scholar]
  53. WangJ. ZhouF. XiongC.E. WangG.P. ChenL.W. ZhangY.T. QiS.G. WangZ.H. MeiC. XuY.J. ZhanJ.B. ChengJ. Serum sirtuin1: A potential blood biomarker for early diagnosis of Alzheimer’s disease.Aging (Albany NY)202315189464947810.18632/aging.205015 37742223
    [Google Scholar]
  54. ZhangM. TangZ. Therapeutic potential of natural molecules against Alzheimer’s disease via SIRT1 modulation.Biomed. Pharmacother.202316111447410.1016/j.biopha.2023.114474 36878051
    [Google Scholar]
  55. LuX. WangL. YuC. YuD. YuG. Histone acetylation modifiers in the pathogenesis of alzheimer’s disease.Front. Cell. Neurosci.2015922610.3389/fncel.2015.00226 26136662
    [Google Scholar]
  56. VolmarC.H. WahlestedtC. Histone deacetylases (HDACs) and brain function.Neuroepigenetics20151202710.1016/j.nepig.2014.10.002
    [Google Scholar]
  57. LiuD. TangH. LiX.Y. DengM.F. WeiN. WangX. ZhouY.F. WangD.Q. FuP. WangJ.Z. HébertS.S. ChenJ.G. LuY. ZhuL.Q. Targeting the HDAC2/HNF-4A/miR-101b/AMPK pathway rescues tauopathy and dendritic abnormalities in Alzheimer’s disease.Mol. Ther.201725375276410.1016/j.ymthe.2017.01.018 28202389
    [Google Scholar]
  58. FrankowskiH. BerryB.J. YeboahF. EvittsK. KinoshitaC. KinoshitaY. MorrisonR.S. YoungJ.E. Modulation of histone deacetylase 2 (HDAC2) drives neuronal gene expression, mitochondrial dynamics and AD pathophysiology in human stem cell derived neurons.Alzheimers Dement.202016S3e03726310.1002/alz.037263
    [Google Scholar]
  59. JanczuraK.J. VolmarC.H. SartorG.C. RaoS.J. RicciardiN.R. LambertG. BrothersS.P. WahlestedtC. RETRACTED: Inhibition of HDAC3 reverses Alzheimer’s disease-related pathologiesin vitro and in the 3xTg-AD mouse model.Proc. Natl. Acad. Sci. USA201811547E11148E1115710.1073/pnas.1805436115 30397132
    [Google Scholar]
  60. DavisN. TaylorB. Abelleira-HervasL. Karimian-MarnaniN. AleksynasR. SyedN. Di GiovanniS. PalmisanoI. SastreM. Histone deacetylase‐3 regulates the expression of the amyloid precursor protein and its inhibition promotes neuroregenerative pathways in Alzheimer’s disease models.FASEB J.20243810e2365910.1096/fj.202301762RR 38733301
    [Google Scholar]
  61. KumarV. KunduS. SinghA. SinghS. Understanding the Role of Histone Deacetylase and their Inhibitors in Neurodegenerative disorders: Current targets and future perspective.Curr. Neuropharmacol.202220115817810.2174/1570159X19666210609160017 34151764
    [Google Scholar]
  62. GuptaR. AmbastaR.K. KumarP. Histone deacetylase in neuropathology.Adv. Clin. Chem.202110415123110.1016/bs.acc.2020.09.004 34462055
    [Google Scholar]
  63. ChenY.A. LuC.H. KeC.C. ChiuS.J. ChangC.W. YangB.H. GelovaniJ.G. LiuR.S. Evaluation of class IIa histone deacetylases expression and in vivo epigenetic imaging in a transgenic mouse model of Alzheimer’s disease.Int. J. Mol. Sci.20212216863310.3390/ijms22168633 34445342
    [Google Scholar]
  64. Agis-BalboaR.C. PavelkaZ. KerimogluC. FischerA. Loss of HDAC5 impairs memory function: Implications for Alzheimer’s disease.J. Alzheimers Dis.2012331354410.3233/JAD‑2012‑121009 22914591
    [Google Scholar]
  65. ZhuY.P. FengY. LiuT. WuY.C. Epigenetic modification and its role in Alzheimer’s disease.Integr. Med. Int.201521-2637210.1159/000437329
    [Google Scholar]
  66. QureshiT. ChinnathambiS. Histone deacetylase-6 modulates Tau function in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Cell Res.20221869811927510.1016/j.bbamcr.2022.119275 35452751
    [Google Scholar]
  67. TrzeciakiewiczH. AjitD. TsengJ.H. ChenY. AjitA. TabassumZ. LobrovichR. PetersonC. RiddickN.V. ItanoM.S. TripathyA. MoyS.S. LeeV.M.Y. TrojanowskiJ.Q. IrwinD.J. CohenT.J. An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline.Nat. Commun.2020111552210.1038/s41467‑020‑19317‑4 33139698
    [Google Scholar]
  68. ChengK.C. HwangY.L. ChiangH.C. The double‐edged sword effect of HDAC6 in Aβ toxicities.FASEB J.2022361e2207210.1096/fj.202101061R 34907598
    [Google Scholar]
  69. ChoiH. KimH.J. KimJ. KimS. YangJ. LeeW. ParkY. HyeonS.J. LeeD.S. RyuH. ChungJ. Mook-JungI. Increased acetylation of Peroxiredoxin1 by HDAC6 inhibition leads to recovery of Aβ-induced impaired axonal transport.Mol. Neurodegener.20171212310.1186/s13024‑017‑0164‑1 28241840
    [Google Scholar]
  70. LiY. SangS. RenW. PeiY. BianY. ChenY. SunH. Inhibition of histone deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer’s disease: A review (2010-2020).Eur. J. Med. Chem.202122611387410.1016/j.ejmech.2021.113874 34619465
    [Google Scholar]
  71. WatrobaM. SzukiewiczD. Sirtuins promote brain homeostasis, preventing Alzheimer’s disease through targeting neuroinflammation.Front. Physiol.20221396276910.3389/fphys.2022.962769 36045741
    [Google Scholar]
  72. Sola-SevillaN. PuertaE. SIRT2 as a potential new therapeutic target for Alzheimer’s disease.Neural Regen. Res.202419112413110.4103/1673‑5374.375315 37488853
    [Google Scholar]
  73. BaekS.Y. LeeJ. KimT. LeeH. ChoiH.S. ParkH. KohM. KimE. JungM.E. IliopoulosD. LeeJ.Y. KimJ. LeeS. Development of a novel histone deacetylase inhibitor unveils the role of HDAC11 in alleviating depression by inhibition of microglial activation.Biomed. Pharmacother.202316611531210.1016/j.biopha.2023.115312 37567072
    [Google Scholar]
  74. BaiP. LiuY. YangL. DingW. MondalP. SangN. LiuG. LuX. HoT.T. ZhouY. WuR. BirarV.C. WilksM.Q. TanziR.E. LinH. ZhangC. LiW. ShenS. WangC. Development and pharmacochemical characterization discover a novel brain-permeable hdac11-selective inhibitor with therapeutic potential by regulating neuroinflammation in mice.J. Med. Chem.20236623160751609010.1021/acs.jmedchem.3c01491 37972387
    [Google Scholar]
  75. WangC. ZhangC. Novel HDAC11 inhibitors for Alzheimer’s disease treatment in preclinical models.Alzheimers Dement.202218e06936610.1002/alz.069366
    [Google Scholar]
  76. HoT.C.S. ChanA.H.Y. GanesanA. Thirty Years of HDAC inhibitors: 2020 insight and hindsight.J. Med. Chem.20206321124601248410.1021/acs.jmedchem.0c00830 32608981
    [Google Scholar]
  77. BeshoreD.C. AdamG.C. BarnardR.J.O. BurleinC. GallicchioS.N. HollowayM.K. KroskyD. LemaireW. MyersR.W. PatelS. PlotkinM.A. PowellD.A. RadaV. CoxC.D. ColemanP.J. KleinD.J. WolkenbergS.E. Redefining the histone deacetylase inhibitor pharmacophore: High potency with no zinc cofactor interaction.ACS Med. Chem. Lett.202112454054710.1021/acsmedchemlett.1c00074 33854701
    [Google Scholar]
  78. YangF. ZhaoN. GeD. ChenY. Next-generation of selective histone deacetylase inhibitors.RSC Advances2019934195711958310.1039/C9RA02985K 35519364
    [Google Scholar]
  79. ParveenR. HariharD. ChatterjiB.P. Recent histone deacetylase inhibitors in cancer therapy.Cancer2023129213372338010.1002/cncr.34974 37560925
    [Google Scholar]
  80. MottamalM. ZhengS. HuangT.L. WangG. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents.Molecules2015203389810.3390/molecules20033898
    [Google Scholar]
  81. Di BelloE. NoceB. FioravantiR. MaiA. Current HDAC inhibitors in clinical trials.Chimia (Aarau)202276544845310.2533/chimia.2022.448 38069716
    [Google Scholar]
  82. LossonH SchnekenburgerM DicatoM DiederichM Natural compound histone deacetylase inhibitors (HDACi): Synergy with inflammatory signaling pathway modulators and clinical applications in cancer>Molecules16082111160810.3390/molecules21111608
    [Google Scholar]
  83. SoflaeiS.S. Momtazi-BorojeniA.A. MajeedM. DerosaG. MaffioliP. SahebkarA. Curcumin: A natural Pan-HDAC inhibitor in cancer.Curr. Pharm. Des.201824212312910.2174/1381612823666171114165051 29141538
    [Google Scholar]
  84. JoS. KimJ.H. LeeJ. ParkY. JangJ. Azumamides A-E: Isolation, synthesis, biological activity, and structure: Activity relationship.Molecules20222723843810.3390/molecules27238438 36500529
    [Google Scholar]
  85. GodoyL.D. LucasJ.E. BenderA.J. RomanickS.S. FergusonB.S. Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity.Mol. Nutr. Food Res.2017614160074410.1002/mnfr.201600744 27981795
    [Google Scholar]
  86. LiT. ZhangC. HassanS. LiuX. SongF. ChenK. ZhangW. YangJ. Histone deacetylase 6 in cancer.J. Hematol. Oncol.201811111110.1186/s13045‑018‑0654‑9 30176876
    [Google Scholar]
  87. MelesinaJ. PraetoriusL. SimobenC.V. RobaaD. SipplW. Design of selective histone deacetylase inhibitors: Rethinking classical pharmacophore.Future Med. Chem.201810131537154010.4155/fmc‑2018‑0125 29966452
    [Google Scholar]
  88. BertosN.R. WangA.H. YangX.J. Class II histone deacetylases: Structure, function, and regulation.Biochem. Cell Biol.200179324325210.1139/o01‑032 11467738
    [Google Scholar]
  89. SonS.I. CaoJ. ZhuC.L. MillerS.P. LinH. Activity-guided design of HDAC11-specific inhibitors.ACS Chem. Biol.20191471393139710.1021/acschembio.9b00292 31264832
    [Google Scholar]
  90. ChenH. XieC. ChenQ. ZhuangS. HDAC11, an emerging therapeutic target for metabolic disorders.Front. Endocrinol. (Lausanne)20221398930510.3389/fendo.2022.989305 36339432
    [Google Scholar]
  91. TsengH.J. LinM.H. ShiaoY.J. YangY.C. ChuJ.C. ChenC.Y. ChenY.Y. LinT.E. SuC.J. PanS.L. ChenL.C. WangC.Y. HsuK.C. HuangW.J. Synthesis and biological evaluation of acridine-based histone deacetylase inhibitors as multitarget agents against Alzheimer’s disease.Eur. J. Med. Chem.202019211219310.1016/j.ejmech.2020.112193 32151835
    [Google Scholar]
  92. KaragiannisT.C. VerverisK. Potential of chromatin modifying compounds for the treatment of Alzheimer’s disease.Pathobiol. Aging Age Relat. Dis.2012211498010.3402/pba.v2i0.14980 22953035
    [Google Scholar]
  93. Soares RomeiroL.A. da Costa NunesJ.L. de Oliveira MirandaC. Simões Heyn Roth CardosoG. de OliveiraA.S. GandiniA. KobrlovaT. SoukupO. RossiM. SengerJ. JungM. GervasoniS. VistoliG. PetrallaS. MassenzioF. MontiB. BolognesiM.L. Novel sustainable-by-design HDAC inhibitors for the treatment of Alzheimer’s disease.ACS Med. Chem. Lett.201910467167610.1021/acsmedchemlett.9b00071 30996816
    [Google Scholar]
  94. De SimoneA. MilelliA. Histone deacetylase inhibitors as multitarget ligands: New players in Alzheimer’s disease drug discovery?ChemMedChem201914111067107310.1002/cmdc.201900174 30958639
    [Google Scholar]
  95. ReddyR.G. SurineniG. BhattacharyaD. MarvadiS.K. SagarA. KalleA.M. KumarA. KantevariS. ChakravartyS. Crafting carbazole-based Vorinostat and Tubastatin-A-like Histone Deacetylase (HDAC) inhibitors with potentin vitro and in vivo neuroactive functions.ACS Omega2019417172791729410.1021/acsomega.9b01950 31656902
    [Google Scholar]
  96. GuptaR. AmbastaR.K. KumarP. Identification of novel class I and class IIb histone deacetylase inhibitor for Alzheimer’s disease therapeutics.Life Sci.202025611791210.1016/j.lfs.2020.117912 32504755
    [Google Scholar]
  97. HsuK.C. ChuJ.C. TsengH.J. LiuC.I. WangH.C. LinT.E. LeeH.S. HsinL.W. WangA.H.J. LinC.H. HuangW.J. Synthesis and biological evaluation of phenothiazine derivative-containing hydroxamic acids as potent class II histone deacetylase inhibitors.Eur. J. Med. Chem.202121911341910.1016/j.ejmech.2021.113419 33845233
    [Google Scholar]
  98. HeF. ChouC.J. ScheinerM. PoetaE. Yuan ChenN. GuneschS. HoffmannM. SotrifferC. MontiB. MauriceT. DeckerM. Melatonin- and Ferulic Acid-Based HDAC6 selective inhibitors exhibit pronounced immunomodulatory effects in vitro and neuroprotective effects in a pharmacological alzheimer’s disease mouse model.J. Med. Chem.20216473794381210.1021/acs.jmedchem.0c01940 33769811
    [Google Scholar]
  99. GhoshB. ZhaoW.N. ReisS.A. PatnaikD. FassD.M. TsaiL.H. MazitschekR. HaggartyS.J. Dissecting structure-activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation.Bioorg. Med. Chem. Lett.20162641265127110.1016/j.bmcl.2016.01.022 26804233
    [Google Scholar]
  100. TavaresM.T. KozikowskiA.P. ShenS. Mercaptoacetamide: A promising zinc-binding group for the discovery of selective histone deacetylase 6 inhibitors.Eur. J. Med. Chem.202120911288710.1016/j.ejmech.2020.112887 33035922
    [Google Scholar]
  101. HashimotoK. IdeS. ArataM. NakataA. ItoA. ItoT.K. KudoN. LinB. NunomuraK. TsuganezawaK. YoshidaM. NagaokaY. SumiyoshiT. Discovery of Benzylpiperazine derivatives as CNS-penetrant and selective histone deacetylase 6 inhibitors.ACS Med. Chem. Lett.20221371077108210.1021/acsmedchemlett.2c00081 35859864
    [Google Scholar]
  102. JeongH. ShinS. LeeJ.S. LeeS.H. BaikJ.H. LimS. KimY.K. Pan-HDAC inhibitors promote tau aggregation by increasing the level of acetylated Tau.Int. J. Mol. Sci.20192017428310.3390/ijms20174283 31480543
    [Google Scholar]
  103. SubramanianS. BatesS.E. WrightJ.J. Espinoza-DelgadoI. PiekarzR.L. Clinical toxicities of histone deacetylase inhibitors.Pharmaceuticals2010392751276710.3390/ph3092751 27713375
    [Google Scholar]
  104. ChuJ.C. TsengH.J. LeeS.B. HsuK.C. HsinL.W. LiangR.H. LinT.E. GaoN.C. ChenL.C. LuW.H. WangA.H.J. HuangW.J. Synthesis and biological evaluation of C-4 substituted phenoxazine-bearing hydroxamic acids with potent class II histone deacetylase inhibitory activities.J. Enzyme Inhib. Med. Chem.2023381221232610.1080/14756366.2023.2212326 37190931
    [Google Scholar]
  105. ChenL.C. TsengH.J. LiuC.Y. HuangY.Y. YenC.C. WengJ.R. LuY.L. HouW.C. LinT.E. PanI.H. HuangK.K. HuangW.J. HsuK.C. Design of Diarylheptanoid derivatives as dual inhibitors against class IIa histone deacetylase and β-amyloid aggregation.Front. Pharmacol.2018970810.3389/fphar.2018.00708 30018556
    [Google Scholar]
  106. NakatsukaD. IzumiT. TsukamotoT. OyamaM. NishitomiK. DeguchiY. NiidomeK. YamakawaH. ItoH. OgawaK. Histone Deacetylase 2 knockdown ameliorates morphological abnormalities of dendritic branches and spines to improve synaptic plasticity in an APP/PS1 transgenic mouse model.Front. Mol. Neurosci.20211478237510.3389/fnmol.2021.782375 34899185
    [Google Scholar]
  107. WelbergL. HDAC2 mediates cognitive impairment.Nat. Rev. Neurosci.201213422310.1038/nrn3222 22430015
    [Google Scholar]
  108. Simões-PiresC. ZwickV. NurissoA. SchenkerE. CarruptP.A. CuendetM. HDAC6 as a target for neurodegenerative diseases: What makes it different from the other HDACs?Mol. Neurodegener.201381710.1186/1750‑1326‑8‑7 23356410
    [Google Scholar]
  109. ChoudharyG. PrajapatM. KaurG. SinghH. MahendirattaS. PrakashA. MedhiB. Integrated in-silico and in-vitro assessments of HDAC6 inhibitor efficacy in mitigating amyloid beta pathology in Alzheimer’s disease.J. Biomol. Struct. Dyn.202442189720973010.1080/07391102.2023.2274518 37878051
    [Google Scholar]
  110. YuC.W. ChangP.T. HsinL.W. ChernJ.W. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer’s disease.J. Med. Chem.201356176775679110.1021/jm400564j 23905680
    [Google Scholar]
  111. ChoubeyS.K. JeyakanthanJ. Molecular dynamics and quantum chemistry-based approaches to identify isoform selective HDAC2 inhibitor: A novel target to prevent Alzheimer’s disease.J. Recept. Signal Transduct. Res.201838326627810.1080/10799893.2018.1476541 29932788
    [Google Scholar]
  112. LeeH.Y. FanS.J. HuangF.I. ChaoH.Y. HsuK.C. LinT.E. YehT.K. LaiM.J. LiY.H. HuangH.L. YangC.R. LiouJ.P. 5-Aroylindoles act as selective histone deacetylase 6 inhibitors ameliorating alzheimer’s disease phenotypes.J. Med. Chem.201861167087710210.1021/acs.jmedchem.8b00151 30028616
    [Google Scholar]
  113. LiangT. XieZ. DangB. WangJ. ZhangT. LuanX. LuT. CaoC. ChenX. Discovery of indole-piperazine derivatives as selective histone deacetylase 6 inhibitors with neurite outgrowth-promoting activities and neuroprotective activities.Bioorg. Med. Chem. Lett.20238112914810.1016/j.bmcl.2023.129148 36690041
    [Google Scholar]
  114. FanS.J. HuangF.I. LiouJ.P. YangC.R. The novel histone de acetylase 6 inhibitor, MPT0G211, ameliorates tau phosphorylation and cognitive deficits in an Alzheimer’s disease model.Cell Death Dis.20189665510.1038/s41419‑018‑0688‑5 29844403
    [Google Scholar]
  115. LiuG. MondalP. SangN. LiZ. DingW. YangL. LiuY. BirarV.C. GommA. TanziR.E. ZhangC. ShenS. WangC. LuX. BaiP. Design, synthesis, and anti-inflammatory activity characterization of novel brain-permeable HDAC6 inhibitors.Eur. J. Med. Chem.202325411532710.1016/j.ejmech.2023.115327 37098307
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266360664250606110220
Loading
/content/journals/ctmc/10.2174/0115680266360664250606110220
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test