Skip to content
2000
Volume 25, Issue 25
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

is a notorious superbug responsible for causing ‘Gonorrhoea’ in humans. Recently, it has been classified as a high-priority pathogen by the World Health Organization due to its increasing resistance to available antibiotics. A multi-prolonged approach is needed to combat the growing problem of drug resistance caused by . This study evaluates Glutamate Racemase (GR), a moonlight protein of (-GR), as a novel therapeutic target with potential for both inhibitor design and peptide vaccine development. GR plays a crucial role in the peptidoglycan biosynthetic pathway and is highly conserved across bacterial species. Additionally, this protein moonlights to perform a secondary function by binding to DNA gyrase in various organisms.

Methods

Homology modeling, molecular docking, and molecular dynamics simulations were used to design inhibitors targeting the moonlight function of GR. The immunogenicity of this protein was assessed using ABCPred-2.0, BepiPred-2.0, and ProPred softwares.

Results

Bisleucocurine A was found to bind at the ectopic site of -GR, disrupting its crucial moonlight function and interfering its interaction with DNA Gyrase (gyrase). Interestingly, residues important for its moonlight function were also identified as key immunogenic sites using ABCPred-2.0, BepiPred-2.0, and ProPred softwares, enhancing the potential of this protein as a vaccine candidate.

Conclusion

The GR enzyme’s moonlight function is highlighted as a promising novel target for therapeutic intervention and vaccine development in

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266365593250415101135
2025-04-23
2025-12-25
Loading full text...

Full text loading...

References

  1. IgietsemeJ.U. OmosunY. BlackC.M. Bacterial sexually transmitted infections (STIs): A clinical overview.Molecular Medical Microbiology.Academic Press201414031420
    [Google Scholar]
  2. AhmadiA. MousaviA. SalimizandH. HedayatiM.A. RamazanzadehR. FarhadifarF. KhodabandehlooM. RoshaniD. TaherpourA. Prevalence of Neisseria gonorrhoeae in Western Iran.Jpn J. Infect. Dis.2022751JJID.2021.006.10.7883/yoken.JJID.2021.00634053955
    [Google Scholar]
  3. UnemoM. LahraM.M. EscherM. EreminS. ColeM.J. GalarzaP. NdowaF. MartinI. DillonJ.A.R. GalasM. Ramon-PardoP. WeinstockH. WiT. WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017–18: A retrospective observational study.Lancet Microbe2021211e627e63610.1016/S2666‑5247(21)00171‑335544082
    [Google Scholar]
  4. KreiselK.M. WestonE.J. St CyrS.B. SpicknallI.H. Estimates of the prevalence and incidence of chlamydia and gonorrhea among US Men and Women, 2018.Sex. Transm. Dis.202148422223110.1097/OLQ.000000000000138233492094
    [Google Scholar]
  5. UnemoM. ShaferW.M. Antibiotic resistance in Neisseria gonorrhoeae: Origin, evolution, and lessons learned for the future.Ann. N. Y. Acad. Sci.201112301E19E2810.1111/j.1749‑6632.2011.06215.x22239555
    [Google Scholar]
  6. ShaskolskiyB. KandinovI. DementievaE. GryadunovD. Antibiotic resistance in Neisseria gonorrhoeae: Challenges in research and treatment.Microorganisms2022109169910.3390/microorganisms1009169936144300
    [Google Scholar]
  7. KlausnerJ.D. BristowC.C. SogeO.O. ShahkolahiA. WaymerT. BolanR.K. PhilipS.S. AsbelL.E. TaylorS.N. MenaL.A. GoldsteinD.A. PowellJ.A. WierzbickiM.R. MorrisS.R. Resistance-guided treatment of gonorrhea: A prospective clinical study.Clin. Infect. Dis.202173229830310.1093/cid/ciaa59632766725
    [Google Scholar]
  8. BoyajianA.J. MurrayM. TuckerM. NeuN. Identifying variations in adherence to the CDC sexually transmitted disease treatment guidelines of Neisseria gonorrhoeae.Public Health201613616116510.1016/j.puhe.2016.04.00427179879
    [Google Scholar]
  9. RostamianM. Chegene LorestaniR. JafariS. MansouriR. RezaeianS. GhadiriK. AkyaA. A systematic review and meta-analysis on the antibiotic resistance of Neisseria meningitidis in the last 20 years in the world.Indian J. Med. Microbiol.202240332332910.1016/j.ijmmb.2022.05.00535654713
    [Google Scholar]
  10. RubinD.H.F. RossJ.D.C. GradY.H. The frontiers of addressing antibiotic resistance in Neisseria gonorrhoeae.Transl. Res.202022012213710.1016/j.trsl.2020.02.00232119845
    [Google Scholar]
  11. SethiS. GolparianD. BalaM. DorjiD. IbrahimM. JabeenK. UnemoM. Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from India, Pakistan and Bhutan in 2007–2011.BMC Infect. Dis.20131313510.1186/1471‑2334‑13‑3523347339
    [Google Scholar]
  12. JefferyC.J. Why study moonlighting proteins?Front. Genet.2015621110.3389/fgene.2015.0021126150826
    [Google Scholar]
  13. JefferyC.J. Protein moonlighting: What is it, and why is it important?Philos. Trans R Soc. Lond B Biol. Sci.201837317382016052310.1098/rstb.2016.052329203708
    [Google Scholar]
  14. JefferyC.J. An introduction to protein moonlighting.Biochem. Soc. Trans.20144261679168310.1042/BST2014022625399589
    [Google Scholar]
  15. YadavP. SinghR. SurS. BansalS. ChaudhryU. TandonV. Moonlighting proteins: Beacon of hope in era of drug resistance in bacteria.Crit. Rev. Microbiol.2023491578110.1080/1040841X.2022.203669535220864
    [Google Scholar]
  16. HendersonB. MartinA. Bacterial moonlighting proteins and bacterial virulence.Curr. Top. Microbiol. Immunol.201135815521310.1007/82_2011_18822143554
    [Google Scholar]
  17. ManiM. ChenC. AmbleeV. LiuH. MathurT. ZwickeG. ZabadS. PatelB. ThakkarJ. JefferyC.J. MoonProt: A database for proteins that are known to moonlight.Nucleic Acids Res.201543D1D277D28210.1093/nar/gku95425324305
    [Google Scholar]
  18. HernándezS. FerragutG. AmelaI. Perez-PonsJ. PiñolJ. Mozo-VillariasA. CedanoJ. QuerolE. MultitaskProtDB: A database of multitasking proteins.Nucleic Acids Res.201442D1D517D52010.1093/nar/gkt115324253302
    [Google Scholar]
  19. AshiuchiM. KuwanaE. YamamotoT. KomatsuK. SodaK. MisonoH. Glutamate racemase is an endogenous DNA gyrase inhibitor.J. Biol. Chem.200227742390703907310.1074/jbc.C20025320012213801
    [Google Scholar]
  20. FisherS.L. Glutamate racemase as a target for drug discovery.Microb. Biotechnol.20081534536010.1111/j.1751‑7915.2008.00031.x21261855
    [Google Scholar]
  21. SalujaD. PawarA. KonwarC. ChaudhryU. ChopraM. JhaP. Bactericidal activity of esculetin is associated with impaired cell wall synthesis by targeting glutamate racemase of Neisseria gonorrhoeae.Sexually Transmitted Infections202197A108A10910.1136/sextrans‑2021‑sti.284
    [Google Scholar]
  22. GlavasS. TannerM.E. Active site residues of glutamate racemase.Biochemistry200140216199620410.1021/bi002703z11371180
    [Google Scholar]
  23. SenguptaS. ShahM. NagarajaV. Glutamate racemase from Mycobacterium tuberculosis inhibits DNA gyrase by affecting its DNA-binding.Nucleic Acids Res.200634195567557610.1093/nar/gkl70417020913
    [Google Scholar]
  24. MehboobS. GuoL. FuW. MittalA. YauT. TruongK. JohlfsM. LongF. FungL.W.M. JohnsonM.E. Glutamate racemase dimerization inhibits dynamic conformational flexibility and reduces catalytic rates.Biochemistry200948297045705510.1021/bi900507219552402
    [Google Scholar]
  25. RogersH. J. PerkinsH. R. WardJ. B. Microbial Cell. Walls and MembranesSpringer eBooks198010.1007/978‑94‑011‑6014‑8
    [Google Scholar]
  26. SenguptaS. NagarajaV. Inhibition of DNA gyrase activity by Mycobacterium smegmatis MurI.FEMS Microbiol. Lett.20082791404710.1111/j.1574‑6968.2007.01005.x18177305
    [Google Scholar]
  27. Khisimuzi MdluliK. Zhenkun Ma, Mycobacterium tuberculosis DNA gyrase as a target for drug discovery.Infect. Disord. Drug Targets20077215916810.2174/18715260778100176317970226
    [Google Scholar]
  28. DoubletP. van HeijenoortJ. BohinJ.P. Mengin-LecreulxD. The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity.J. Bacteriol.1993175102970297910.1128/jb.175.10.2970‑2979.19938098327
    [Google Scholar]
  29. ChenM.Y. McNultyA. AveryA. WhileyD. TabriziS.N. HardyD. DasA.F. NenningerA. FairleyC.K. HockingJ.S. BradshawC.S. DonovanB. HowdenB.P. OldachD. Solithromycin versus ceftriaxone plus azithromycin for the treatment of uncomplicated genital gonorrhoea (SOLITAIRE-U): A randomised phase 3 non-inferiority trial.Lancet Infect. Dis.201919883384210.1016/S1473‑3099(19)30116‑131196813
    [Google Scholar]
  30. TaylorS.N. MarrazzoJ. BatteigerB.E. HookE.W. SeñaA.C. LongJ. WierzbickiM.R. KwakH. JohnsonS.M. LawrenceK. MuellerJ. Single-dose zoliflodacin (ETX0914) for treatment of Urogenital Gonorrhea.N. Engl. J. Med.2018379191835184510.1056/NEJMoa170698830403954
    [Google Scholar]
  31. TaylorS.N. MorrisD.H. AveryA.K. WorkowskiK.A. BatteigerB.E. TiffanyC.A. PerryC.R. RaychaudhuriA. Scangarella-OmanN.E. HossainM. DumontE.F. Gepotidacin for the treatment of uncomplicated urogenital gonorrhea: A phase 2, randomized, doseranging, single-oral dose evaluation.Clin. Infect. Dis.201867450451210.1093/cid/ciy14529617982
    [Google Scholar]
  32. WilliamsE. FairleyC.K. WilliamsonD. Novel strategies for prevention and treatment of antimicrobial resistance in sexually-transmitted infections.Curr. Opin. Infect. Dis.202134659159810.1097/QCO.000000000000079334545855
    [Google Scholar]
  33. CabralM.P. GarcíaP. BeceiroA. RumboC. PérezA. MoscosoM. BouG. Design of live attenuated bacterial vaccines based on D-glutamate auxotrophy.Nat. Commun.2017811548010.1038/ncomms1548028548079
    [Google Scholar]
  34. PawarA. JhaP. ChopraM. ChaudhryU. SalujaD. Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids.Sci. Rep.202010194910.1038/s41598‑020‑57658‑831969615
    [Google Scholar]
  35. PawarA. JhaP. KonwarC. ChaudhryU. ChopraM. SalujaD. Ethambutol targets the glutamate racemase of Mycobacterium tuberculosis—an enzyme involved in peptidoglycan biosynthesis.Appl. Microbiol. Biotechnol.2019103284385110.1007/s00253‑018‑9518‑z30456576
    [Google Scholar]
  36. BermanH.M. KleywegtG.J. NakamuraH. MarkleyJ.L. The protein data bank archive as an open data resource.J. Comput. Aided Mol. Des.201428101009101410.1007/s10822‑014‑9770‑y25062767
    [Google Scholar]
  37. ApweilerR. UniProt: The universal protein knowledgebase.Nucleic Acids Res.20043210.1093/nar/gky092
    [Google Scholar]
  38. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. de BeerT.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS-MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky42729788355
    [Google Scholar]
  39. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  40. ColovosC. YeatesT.O. Verification of protein structures: Patterns of nonbonded atomic interactions.Protein Sci.1993291511151910.1002/pro.55600209168401235
    [Google Scholar]
  41. YanY. TaoH. HeJ. HuangS.Y. The HDOCK server for integrated protein–protein docking.Nat. Protoc.20201551829185210.1038/s41596‑020‑0312‑x32269383
    [Google Scholar]
  42. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  43. IrwinJ.J. ShoichetB.K. ZINC--a free database of commercially available compounds for virtual screening.J. Chem. Inf. Model.200545117718210.1021/ci049714+15667143
    [Google Scholar]
  44. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  45. ReleaseS. ResearchD.E.S. Desmond Molecular.Dyn. Syst.2019
    [Google Scholar]
  46. BarhD. MisraA.N. KumarA. AzevedoV. A novel strategy of epitope design in Neisseria gonorrhoeae.Bioinformation201052778210.6026/9732063000507721346868
    [Google Scholar]
  47. BatemanA. UniProt: A worldwide hub of protein knowledge.Nucleic Acids Res.201947D1D506D51510.1093/nar/gky104930395287
    [Google Scholar]
  48. SahaS. RaghavaG.P.S. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network.Proteins2006651404810.1002/prot.2107816894596
    [Google Scholar]
  49. JespersenM.C. PetersB. NielsenM. MarcatiliP. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes.Nucleic Acids Res.201745W1W24W2910.1093/nar/gkx34628472356
    [Google Scholar]
  50. DoytchinovaI.A. FlowerD.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines.BMC Bioinformatics200781410.1186/1471‑2105‑8‑417207271
    [Google Scholar]
  51. SinghH. RaghavaG.P.S. ProPred1: Prediction of promiscuous MHC Class-I binding sites.Bioinformatics20031981009101410.1093/bioinformatics/btg10812761064
    [Google Scholar]
  52. SturnioloT. BonoE. DingJ. RaddrizzaniL. TuereciO. SahinU. BraxenthalerM. GallazziF. ProttiM.P. SinigagliaF. HammerJ. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices.Nat. Biotechnol.199917655556110.1038/985810385319
    [Google Scholar]
  53. SinghH. RaghavaG.P.S. ProPred: Prediction of HLA-DR binding sites.Bioinformatics200117121236123710.1093/bioinformatics/17.12.123611751237
    [Google Scholar]
  54. LuoH. LinY. GaoF. ZhangC.T. ZhangR. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements: Table 1.Nucleic Acids Res.201442D1D574D58010.1093/nar/gkt113124243843
    [Google Scholar]
  55. AltschulS.F. GishW. MillerW. MyersE.W. LipmanD.J. Basic local alignment search tool.J. Mol. Biol.1990215340341010.1016/S0022‑2836(05)80360‑22231712
    [Google Scholar]
  56. CorpetF. Multiple sequence alignment with hierarchical clustering.Nucleic Acids Res.19881622108811089010.1093/nar/16.22.108812849754
    [Google Scholar]
  57. ChoY. HwangK.Y. ChoC-S. KimS.S. SungH-C. YuY.G. Structure and mechanism of glutamate racemase from Aquifex pyrophilus.Nat. Struct. Biol.19996542242610.1038/822310331867
    [Google Scholar]
  58. RuzheinikovS.N. TaalM.A. SedelnikovaS.E. BakerP.J. RiceD.W. Substrate-induced conformational changes in Bacillus subtilis glutamate racemase and their implications for drug discovery.Structure200513111707171310.1016/j.str.2005.07.02416271894
    [Google Scholar]
  59. WiedersteinM. SipplM.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res.200735Web ServerW407W41010.1093/nar/gkm29017517781
    [Google Scholar]
  60. WHO guidelines for the treatment of Neisseria gonorrhoeae.GenevaWorld Health Organization2016
    [Google Scholar]
  61. WorkowskiK.A. BachmannL.H. ChanP.A. JohnstonC.M. MuznyC.A. ParkI. RenoH. ZenilmanJ.M. BolanG.A. Sexually transmitted infections treatment guidelines, 2021.MMWR Recomm. Rep.2021704118710.15585/mmwr.rr7004a134292926
    [Google Scholar]
  62. TrajanoskaK. BhérerC. TaliunD. ZhouS. RichardsJ.B. MooserV. From target discovery to clinical drug development with human genetics.Nature2023620797573774510.1038/s41586‑023‑06388‑837612393
    [Google Scholar]
  63. ZhangY. HuC. Anticancer activity of bisindole alkaloids derived from natural sources and synthetic bisindole hybrids.Arch. Pharm.20203539200009210.1002/ardp.20200009232468606
    [Google Scholar]
  64. KimM.Y. SohnJ.H. AhnJ.S. OhH. Alternaramide, a cyclic depsipeptide from the marine-derived fungus Alternaria sp. SF-5016.J. Nat. Prod.200972112065206810.1021/np900464p19943624
    [Google Scholar]
  65. KoW. SohnJ.H. JangJ.H. AhnJ.S. KangD.G. LeeH.S. KimJ.S. KimY.C. OhH. Inhibitory effects of alternaramide on inflammatory mediator expression through TLR4-MyD88-mediated inhibition of NF-кB and MAPK pathway signaling in lipopolysaccharide-stimulated RAW264.7 and BV2 cells.Chem. Biol. Interact.2016244162610.1016/j.cbi.2015.11.02426620692
    [Google Scholar]
  66. ForgueS.T. PattersonB.E. BeddingA.W. PayneC.D. PhillipsD.L. WrishkoR.E. MitchellM.I. Tadalafil pharmacokinetics in healthy subjects.Br. J. Clin. Pharmacol.200661328028810.1111/j.1365‑2125.2005.02553.x16487221
    [Google Scholar]
  67. CamilleriM. HaleM. MorlionB. TackJ. WebsterL. WildJ. Naldemedine improves patient-reported outcomes of opioid-induced constipation in patients with chronic non-cancer pain in the compose phase 3 studies.J. Pain Res.2021142179218910.2147/JPR.S28273834295186
    [Google Scholar]
  68. WildJ. WebsterL. YamadaT. HaleM. Safety and efficacy of naldemedine for the treatment of opioid-induced constipation in patients with chronic non-cancer pain receiving opioid therapy: A subgroup analysis of patients ≥ 65 years of age.Drugs Aging202037427127910.1007/s40266‑020‑00753‑232086791
    [Google Scholar]
  69. HollingsworthS.A. DrorR.O. Molecular dynamics simulation for all.Neuron20189961129114310.1016/j.neuron.2018.08.01130236283
    [Google Scholar]
  70. RichR.L. MyszkaD.G. Survey of the 1999 surface plasmon resonance biosensor literature.J. Mol. Recognit.200013638840710.1002/1099‑1352(200011/12)13:6<388:AID‑JMR516>3.0.CO;2‑#11114072
    [Google Scholar]
  71. BastosM. Velazquez-CampoyA. Isothermal titration calorimetry (ITC): A standard operating procedure (SOP).Eur. Biophys. J.2021503-436337110.1007/s00249‑021‑01509‑533665758
    [Google Scholar]
  72. FuchsP.C. BarryA.L. BrownS.D. In vitro activities of ertapenem (MK-0826) against clinical bacterial isolates from 11 North American medical centers.Antimicrob. Agents Chemother.20014561915191810.1128/AAC.45.6.1915‑1918.200111353653
    [Google Scholar]
  73. UnemoM. GolparianD. EyreD.W. Antimicrobial resistance in Neisseria gonorrhoeae and treatment of gonorrhea.Methods Mol. Biol.20191997375810.1007/978‑1‑4939‑9496‑0_3
    [Google Scholar]
  74. ComasI. ChakravarttiJ. SmallP.M. GalaganJ. NiemannS. KremerK. ErnstJ.D. GagneuxS. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved.Nat. Genet.201042649850310.1038/ng.59020495566
    [Google Scholar]
  75. Lindestam ArlehamnC.S. PaulS. MeleF. HuangC. GreenbaumJ.A. VitaR. SidneyJ. PetersB. SallustoF. SetteA. Immunological consequences of intragenus conservation of Mycobacterium tuberculosis T-cell epitopes.Proc. Natl. Acad. Sci. USA20151122E147E15510.1073/pnas.141653711225548174
    [Google Scholar]
  76. PizzaM. ScarlatoV. MasignaniV. GiulianiM.M. AricòB. ComanducciM. JenningsG.T. BaldiL. BartoliniE. CapecchiB. GaleottiC.L. LuzziE. ManettiR. MarchettiE. MoraM. NutiS. RattiG. SantiniL. SavinoS. ScarselliM. StorniE. ZuoP. BroekerM. HundtE. KnappB. BlairE. MasonT. TettelinH. HoodD.W. JeffriesA.C. SaundersN.J. GranoffD.M. VenterJ.C. MoxonE.R. GrandiG. RappuoliR. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing.Science200028754591816182010.1126/science.287.5459.181610710308
    [Google Scholar]
  77. SeibK.L. BrunelliB. BrogioniB. PalumboE. BambiniS. MuzziA. DiMarcelloF. MarchiS. van der EndeA. AricóB. SavinoS. ScarselliM. ComanducciM. RappuoliR. GiulianiM.M. PizzaM. Characterization of diverse subvariants of the meningococcal factor H (fH) binding protein for their ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies.Infect. Immun.201179297098110.1128/IAI.00891‑1021149595
    [Google Scholar]
  78. AbaraW.E. BernsteinK.T. LewisF.M.T. SchillingerJ.A. FeemsterK. PathelaP. HaririS. IslamA. EberhartM. ChengI. TernierA. SlutskerJ.S. MbaeyiS. MaderaR. KirkcaldyR.D. Effectiveness of a serogroup B outer membrane vesicle meningococcal vaccine against gonorrhoea: A retrospective observational study.Lancet Infect. Dis.20222271021102910.1016/S1473‑3099(21)00812‑435427490
    [Google Scholar]
  79. BruxvoortK.J. LewnardJ.A. ChenL.H. TsengH.F. ChangJ. VeltmanJ. MarrazzoJ. QianL. Prevention of Neisseria gonorrhoeae with meningococcal B vaccine: A matched cohort study in Southern California.Clin. Infect. Dis.2023763e1341e134910.1093/cid/ciac43635642527
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266365593250415101135
Loading
/content/journals/ctmc/10.2174/0115680266365593250415101135
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test