Skip to content
2000
Volume 25, Issue 20
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

In recent years, an increasing number of studies have shown that increased activation of aspartic endopeptidases (AEPs) is a common symptom in neurodegenerative diseases (NDDs). AEP cleaves amyloid precursor protein (APP), tau (microtubule-associated protein tau), α-synuclein (α-syn), SET (a 39-KDa phosphoprotein widely expressed in various tissues and localizes predominantly in the nucleus), and TAR DNA-binding protein 43 (TDP-43), and promotes their aggregation, contributing to Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) pathogenesis. Abundant evidence supports the notion that CCAAT/enhancer-binding protein β (C/EBPβ)/AEP may play an important role in NDDs. Developing its small molecule inhibitors is a promising treatment of NDDs. However, current research suggests that the pathophysiological mechanism of the C/EBPβ/AEP pathway is very complex in NDDs. This review summarizes the structure of C/EBPβ and AEP, their major physiological functions, potential pathogenesis, their small molecule inhibitors, and how C/EBPβ/AEP offers a novel pathway for the treatment of NDDs.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266357822250119172351
2025-01-27
2025-12-24
Loading full text...

Full text loading...

References

  1. CollingeJ. Mammalian prions and their wider relevance in neurodegenerative diseases.Nature2016539762821722610.1038/nature20415 27830781
    [Google Scholar]
  2. FuH. HardyJ. DuffK.E. Selective vulnerability in neurodegenerative diseases.Nat. Neurosci.201821101350135810.1038/s41593‑018‑0221‑2 30250262
    [Google Scholar]
  3. ChungC.G. LeeH. LeeS.B. Mechanisms of protein toxicity in neurodegenerative diseases.Cell. Mol. Life Sci.201875173159318010.1007/s00018‑018‑2854‑4 29947927
    [Google Scholar]
  4. Guzman-MartinezL. MaccioniR.B. AndradeV. NavarreteL.P. PastorM.G. Ramos-EscobarN. Neuroinflammation as a common feature of neurodegenerative disorders.Front. Pharmacol.201910100810.3389/fphar.2019.01008 31572186
    [Google Scholar]
  5. ChenX.Q. MobleyW.C. Exploring the pathogenesis of Alzheimer disease in basal forebrain cholinergic neurons: Converging insights from alternative hypotheses.Front. Neurosci.20191344610.3389/fnins.2019.00446 31133787
    [Google Scholar]
  6. DuggerB.N. DicksonD.W. Pathology of neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.201797a02803510.1101/cshperspect.a028035 28062563
    [Google Scholar]
  7. GanL. CooksonM.R. PetrucelliL. La SpadaA.R. Converging pathways in neurodegeneration, from genetics to mechanisms.Nat. Neurosci.201821101300130910.1038/s41593‑018‑0237‑7 30258237
    [Google Scholar]
  8. WilsonD.M.III CooksonM.R. Van Den BoschL. ZetterbergH. HoltzmanD.M. DewachterI. Hallmarks of neurodegenerative diseases.Cell2023186469371410.1016/j.cell.2022.12.032 36803602
    [Google Scholar]
  9. ChenJ.M. DandoP.M. RawlingsN.D. BrownM.A. YoungN.E. StevensR.A. HewittE. WattsC. BarrettA.J. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase.J. Biol. Chem.1997272128090809810.1074/jbc.272.12.8090 9065484
    [Google Scholar]
  10. WangZ.H. LiuP. LiuX. YuS.P. WangJ.Z. YeK. Delta-secretase (AEP) mediates tau-splicing imbalance and accelerates cognitive decline in tauopathies.J. Exp. Med.2018215123038305610.1084/jem.20180539 30373880
    [Google Scholar]
  11. ZhangZ. SongM. LiuX. Su KangS. DuongD.M. SeyfriedN.T. CaoX. ChengL. SunY.E. Ping YuS. JiaJ. LeveyA.I. YeK. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease.Nat. Commun.201561876210.1038/ncomms9762 26549211
    [Google Scholar]
  12. KangS.S. AhnE.H. ZhangZ. LiuX. ManfredssonF.P. SandovalI.M. DhakalS. IuvoneP.M. CaoX. YeK. α‐Synuclein stimulation of monoamine oxidase‐B and legumain protease mediates the pathology of Parkinson’s disease.EMBO J.20183712e9887810.15252/embj.201798878 29769405
    [Google Scholar]
  13. HerskowitzJ.H. GozalY.M. DuongD.M. DammerE.B. GearingM. YeK. LahJ.J. PengJ. LeveyA.I. SeyfriedN.T. Asparaginyl endopeptidase cleaves TDP‐43 in brain.Proteomics20121215-162455246310.1002/pmic.201200006 22718532
    [Google Scholar]
  14. Hara-NishimuraI. InoueK. NishimuraM. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms.FEBS Lett.19912941-2899310.1016/0014‑5793(91)81349‑D 1743299
    [Google Scholar]
  15. YamadaK. BasakA.K. Goto-YamadaS. Tarnawska-GlattK. Hara-NishimuraI. Vacuolar processing enzymes in the plant life cycle.New Phytol.20202261213110.1111/nph.16306 31679161
    [Google Scholar]
  16. DallE. BrandstetterH. Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation.Proc. Natl. Acad. Sci. USA201311027109401094510.1073/pnas.1300686110 23776206
    [Google Scholar]
  17. ZhaoL. HuaT. CrowleyC. RuH. NiX. ShawN. JiaoL. DingW. QuL. HungL.W. HuangW. LiuL. YeK. OuyangS. ChengG. LiuZ.J. Structural analysis of asparaginyl endopeptidase reveals the activation mechanism and a reversible intermediate maturation stage.Cell Res.201424334435810.1038/cr.2014.4 24407422
    [Google Scholar]
  18. RawlingsN.D. BarrettA.J. Families of cysteine peptidases.Methods Enzymol.199424446148610.1016/0076‑6879(94)44034‑4 7845226
    [Google Scholar]
  19. DallE. StanojlovicV. DemirF. BrizaP. DahmsS.O. HuesgenP.F. CabreleC. BrandstetterH. The peptide ligase activity of human legumain depends on fold stabilization and balanced substrate affinities.ACS Catal.20211119118851189610.1021/acscatal.1c02057 34621593
    [Google Scholar]
  20. NiJ. AbrahamsonM. ZhangM. FernandezM.A. GrubbA. SuJ. YuG.L. LiY. ParmeleeD. XingL. ColemanT.A. GentzS. ThotakuraR. NguyenN. HesselbergM. GentzR. Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins.J. Biol. Chem.199727216108531085810.1074/jbc.272.16.10853 9099741
    [Google Scholar]
  21. Alvarez-FernandezM. BarrettA.J. GerhartzB. DandoP.M. NiJ. AbrahamsonM. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site.J. Biol. Chem.199927427191951920310.1074/jbc.274.27.19195 10383426
    [Google Scholar]
  22. ChengT. HitomiK. van Vlijmen-WillemsI.M.J.J. de JonghG.J. YamamotoK. NishiK. WattsC. ReinheckelT. SchalkwijkJ. ZeeuwenP.L.J.M. Cystatin M/E is a high affinity inhibitor of cathepsin V and cathepsin L by a reactive site that is distinct from the legumain-binding site. A novel clue for the role of cystatin M/E in epidermal cornification.J. Biol. Chem.200628123158931589910.1074/jbc.M600694200 16565075
    [Google Scholar]
  23. SmithR. JohansenH.T. NilsenH. HaugenM.H. PettersenS.J. MælandsmoG.M. AbrahamsonM. SolbergR. Intra- and extracellular regulation of activity and processing of legumain by cystatin E/M.Biochimie201294122590259910.1016/j.biochi.2012.07.026 22902879
    [Google Scholar]
  24. DallE. FeggJ.C. BrizaP. BrandstetterH. Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain.Angew. Chem. Int. Ed.201554102917292110.1002/anie.201409135 25630877
    [Google Scholar]
  25. MillerG. MatthewsS.P. ReinheckelT. FlemingS. WattsC. Asparagine endopeptidase is required for normal kidney physiology and homeostasis.FASEB J.20112551606161710.1096/fj.10‑172312 21292981
    [Google Scholar]
  26. SepulvedaF.E. MaschalidiS. ColissonR. HeslopL. GhirelliC. SakkaE. Lennon-DuménilA.M. AmigorenaS. CabanieL. ManouryB. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells.Immunity200931573774810.1016/j.immuni.2009.09.013 19879164
    [Google Scholar]
  27. ChanC.B. AbeM. HashimotoN. HaoC. WilliamsI.R. LiuX. NakaoS. YamamotoA. ZhengC. HenterJ.I. MeethsM. NordenskjoldM. LiS.Y. Hara-NishimuraI. AsanoM. YeK. Mice lacking asparaginyl endopeptidase develop disorders resembling hemophagocytic syndrome.Proc. Natl. Acad. Sci. USA2009106246847310.1073/pnas.0809824105 19106291
    [Google Scholar]
  28. ManouryB. MazzeoD. LiD.N. BillsonJ. LoakK. BenarochP. WattsC. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone.Immunity200318448949810.1016/S1074‑7613(03)00085‑2 12705852
    [Google Scholar]
  29. ChenJ.M. FortunatoM. StevensR.A.E. BarrettA.J. Activation of progelatinase A by mammalian legumain, a recently discovered cysteine proteinase.bchm2001382577778410.1515/bchm.2001.382.5.77711517930
    [Google Scholar]
  30. LiuZ. JangS.W. LiuX. ChengD. PengJ. YepesM. LiX. MatthewsS. WattsC. AsanoM. Hara-NishimuraI. LuoH.R. YeK. Neuroprotective actions of PIKE-L by inhibition of SET proteolytic degradation by asparagine endopeptidase.Mol. Cell200829666567810.1016/j.molcel.2008.02.017 18374643
    [Google Scholar]
  31. WangZ.H. GongK. LiuX. ZhangZ. SunX. WeiZ.Z. YuS.P. ManfredssonF.P. SandovalI.M. JohnsonP.F. JiaJ. WangJ.Z. YeK. C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer’s disease.Nat. Commun.201891178410.1038/s41467‑018‑04120‑z 29725016
    [Google Scholar]
  32. RamjiD.P. FokaP. CCAAT/enhancer-binding proteins: Structure, function and regulation.Biochem. J.2002365356157510.1042/bj20020508 12006103
    [Google Scholar]
  33. SuhY.H. KimW.H. MoonC. HongY.H. EunS.Y. LimJ.H. ChoiJ.S. SongJ. JungM.H. Ectopic expression of Neuronatin potentiates adipogenesis through enhanced phosphorylation of cAMP-response element-binding protein in 3T3-L1 cells.Biochem. Biophys. Res. Commun.2005337248148910.1016/j.bbrc.2005.09.078 16223607
    [Google Scholar]
  34. BasuS.K. MalikR. HugginsC.J. LeeS. SebastianT. SakchaisriK. QuiñonesO.A. AlvordW.G. JohnsonP.F. 3′UTR elements inhibit Ras-induced C/EBPβ post-translational activation and senescence in tumour cells.EMBO J.201130183714372810.1038/emboj.2011.250 21804532
    [Google Scholar]
  35. CloutierA. GuindiC. LarivéeP. DuboisC.M. AmraniA. McDonaldP.P. Inflammatory cytokine production by human neutrophils involves C/EBP transcription factors.J. Immunol.2009182156357110.4049/jimmunol.182.1.563 19109189
    [Google Scholar]
  36. StracciaM. Gresa-ArribasN. DentesanoG. Ejarque-OrtizA. TusellJ.M. SerratosaJ. SolàC. SauraJ. Pro-inflammatory gene expression and neurotoxic effects of activated microglia are attenuated by absence of CCAAT/enhancer binding protein β.J. Neuroinflammation20118115610.1186/1742‑2094‑8‑156 22074460
    [Google Scholar]
  37. TrautweinC. CaellesC. van der GeerP. HunterT. KarinM. ChojkierM. Transactivation by NF-IL6/LAP is enhanced by phosphorylation of its activation domain.Nature1993364643754454710.1038/364544a0 8336793
    [Google Scholar]
  38. HungnessE.S. LuoG. PrittsT.A. SunX. RobbB.W. HershkoD. HasselgrenP.O. Transcription factors C/EBP‐β and ‐δ regulate IL‐6 production in IL‐1β‐stimulated human enterocytes.J. Cell. Physiol.20021921647010.1002/jcp.10116 12115737
    [Google Scholar]
  39. van der KriekenS.E. PopeijusH.E. MensinkR.P. PlatJ. CCAAT/enhancer binding protein β in relation to ER stress, inflammation, and metabolic disturbances.BioMed Res. Int.2015201511310.1155/2015/324815 25699273
    [Google Scholar]
  40. SeufertJ. WeirG.C. HabenerJ.F. Differential expression of the insulin gene transcriptional repressor CCAAT/enhancer-binding protein beta and transactivator islet duodenum homeobox-1 in rat pancreatic beta cells during the development of diabetes mellitus.J. Clin. Invest.1998101112528253910.1172/JCI2401 9616224
    [Google Scholar]
  41. LuM. SeufertJ. HabenerJ.F. Pancreatic beta-cell-specific repression of insulin gene transcription by CCAAT/enhancer-binding protein beta. Inhibitory interactions with basic helix-loop-helix transcription factor E47.J. Biol. Chem.199727245283492835910.1074/jbc.272.45.28349 9353292
    [Google Scholar]
  42. ChenB. WangM. HuangR. LiaoK. WangT. YangR. ZhangW. ShiZ. RenL. LvQ. MaC. LinY. QiuY. Circular RNA circLGMN facilitates glioblastoma progression by targeting miR-127-3p/LGMN axis.Cancer Lett.202152222523710.1016/j.canlet.2021.09.030 34582975
    [Google Scholar]
  43. IqbalS. MalikM.Z. PalD. Network-based identification of miRNAs and transcription factors and in silico drug screening targeting δ-secretase involved in Alzheimer’s disease.Heliyon2021712e0850210.1016/j.heliyon.2021.e08502 34917801
    [Google Scholar]
  44. LiuY. WangY. ShenX. ChenC. NiH. ShengN. HuaM. WuY. Down-regulation of lncRNA PCGEM1 inhibits cervical carcinoma by modulating the miR-642a-5p/LGMN axis.Exp. Mol. Pathol.202011710456110.1016/j.yexmp.2020.104561 33121976
    [Google Scholar]
  45. ZhangY. WuY. JiangJ. LiuX. JiF. FangX. MiRNA-3978 regulates peritoneal gastric cancer metastasis by targeting legumain.Oncotarget2016750832238323010.18632/oncotarget.12917 27793040
    [Google Scholar]
  46. HerrupK. Reimagining Alzheimer’s disease--an age-based hypothesis.J. Neurosci.20103050167551676210.1523/JNEUROSCI.4521‑10.2010 21159946
    [Google Scholar]
  47. MüllerU.C. DellerT. KorteM. Not just amyloid: Physiological functions of the amyloid precursor protein family.Nat. Rev. Neurosci.201718528129810.1038/nrn.2017.29 28360418
    [Google Scholar]
  48. ZhangZ. ObianyoO. DallE. DuY. FuH. LiuX. KangS.S. SongM. YuS.P. CabreleC. SchubertM. LiX. WangJ.Z. BrandstetterH. YeK. Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer’s disease.Nat. Commun.2017811474010.1038/ncomms14740 28345579
    [Google Scholar]
  49. WangS.S. LiuZ.K. LiuJ.J. ChengQ. WangY.X. LiuY. NiW.W. ChenH.Z. SongM. Imaging asparaginyl endopeptidase (AEP) in the live brain as a biomarker for Alzheimer’s disease.J. Nanobiotechnology202119124910.1186/s12951‑021‑00988‑0 34412639
    [Google Scholar]
  50. SelkoeD.J. The molecular pathology of Alzheimer’s disease.Neuron19916448749810.1016/0896‑6273(91)90052‑2 1673054
    [Google Scholar]
  51. BaumannK. MandelkowE.M. BiernatJ. Piwnica-WormsH. MandelkowE. Abnormal Alzheimer‐like phosphorylation of tau‐protein by cyclin‐dependent kinases cdk2 and cdk5.FEBS Lett.1993336341742410.1016/0014‑5793(93)80849‑P 8282104
    [Google Scholar]
  52. KosikK.S. JoachimC.L. SelkoeD.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease.Proc. Natl. Acad. Sci. USA198683114044404810.1073/pnas.83.11.4044 2424016
    [Google Scholar]
  53. HuangF. WangM. LiuR. WangJ.Z. SchadtE. HaroutunianV. KatselP. ZhangB. WangX. CDT2‐controlled cell cycle reentry regulates the pathogenesis of Alzheimer’s disease.Alzheimers Dement.201915221723110.1016/j.jalz.2018.08.013 30321504
    [Google Scholar]
  54. LiM. MakkinjeA. DamuniZ. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A.J. Biol. Chem.199627119110591106210.1074/jbc.271.19.11059 8626647
    [Google Scholar]
  55. SeoS. McNamaraP. HeoS. TurnerA. LaneW.S. ChakravartiD. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein.Cell2001104111913010.1016/S0092‑8674(01)00196‑9 11163245
    [Google Scholar]
  56. ZhangZ. SongM. LiuX. KangS.S. KwonI.S. DuongD.M. SeyfriedN.T. HuW.T. LiuZ. WangJ.Z. ChengL. SunY.E. YuS.P. LeveyA.I. YeK. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease.Nat. Med.201420111254126210.1038/nm.3700 25326800
    [Google Scholar]
  57. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics.Science2002297558035335610.1126/science.1072994 12130773
    [Google Scholar]
  58. SelkoeD.J. Amyloid beta-protein and the genetics of Alzheimer’s disease.J. Biol. Chem.199627131182951829810.1074/jbc.271.31.18295 8756120
    [Google Scholar]
  59. KhanS. BarveK.H. KumarM.S. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease.Curr. Neuropharmacol.202018111106112510.2174/1570159X18666200528142429 32484110
    [Google Scholar]
  60. LendonC.L. AshallF. GoateA.M. Exploring the etiology of Alzheimer disease using molecular genetics.JAMA19972771082583110.1001/jama.1997.03540340059034 9052714
    [Google Scholar]
  61. LiuX. LiuY. LiuJ. ZhangH. ShanC. GuoY. GongX. CuiM. LiX. TangM. Correlation between the gut microbiome and neurodegenerative diseases: A review of metagenomics evidence.Neural Regen. Res.202419483384510.4103/1673‑5374.382223 37843219
    [Google Scholar]
  62. CammannD. LuY. CummingsM.J. ZhangM.L. CueJ.M. DoJ. EbersoleJ. ChenX. OhE.C. CummingsJ.L. ChenJ. Genetic correlations between Alzheimer’s disease and gut microbiome genera.Sci. Rep.2023131525810.1038/s41598‑023‑31730‑5 37002253
    [Google Scholar]
  63. ChenC. AhnE.H. KangS.S. LiuX. AlamA. YeK. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer’s disease mouse model.Sci. Adv.2020631eaba046610.1126/sciadv.aba0466 32832679
    [Google Scholar]
  64. TalbotK. WangH.Y. KaziH. HanL.Y. BakshiK.P. StuckyA. FuinoR.L. KawaguchiK.R. SamoyednyA.J. WilsonR.S. ArvanitakisZ. SchneiderJ.A. WolfB.A. BennettD.A. TrojanowskiJ.Q. ArnoldS.E. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline.J. Clin. Invest.201212241316133810.1172/JCI59903 22476197
    [Google Scholar]
  65. DuanY. ZengL. ZhengC. SongB. LiF. KongX. XuK. Inflammatory links between high fat diets and diseases.Front. Immunol.20189264910.3389/fimmu.2018.02649 30483273
    [Google Scholar]
  66. JansonJ. LaedtkeT. ParisiJ.E. O’BrienP. PetersenR.C. ButlerP.C. Increased risk of type 2 diabetes in Alzheimer disease.Diabetes200453247448110.2337/diabetes.53.2.474 14747300
    [Google Scholar]
  67. YaoQ. LongC. YiP. ZhangG. WanW. RaoX. YingJ. LiangW. HuaF. C/EBPβ: A transcription factor associated with the irreversible progression of Alzheimer’s disease.CNS Neurosci. Ther.2024304e1472110.1111/cns.14721 38644578
    [Google Scholar]
  68. XiaY. QadotaH. WangZ.H. LiuP. LiuX. YeK.X. MathenyC.J. BerglundK. YuS.P. DrakeD. BennettD.A. WangX.C. YanknerB.A. BenianG.M. YeK. Neuronal C/EBPβ/AEP pathway shortens life span via selective GABAnergic neuronal degeneration by FOXO repression.Sci. Adv.2022813eabj865810.1126/sciadv.abj8658 35353567
    [Google Scholar]
  69. LiaoJ. ChenG. LiuX. WeiZ.Z. YuS.P. ChenQ. YeK. C/EBPβ/AEP signaling couples atherosclerosis to the pathogenesis of Alzheimer’s disease.Mol. Psychiatry20222773034304610.1038/s41380‑022‑01556‑0 35422468
    [Google Scholar]
  70. BangJ. SpinaS. MillerB.L. Frontotemporal dementia.Lancet2015386100041672168210.1016/S0140‑6736(15)00461‑4 26595641
    [Google Scholar]
  71. ZhangZ. TianY. YeK. δ-secretase in neurodegenerative diseases: Mechanisms, regulators and therapeutic opportunities.Transl. Neurodegener.202091110.1186/s40035‑019‑0179‑3 31911834
    [Google Scholar]
  72. WangZ.H. XiangJ. LiuX. YuS.P. ManfredssonF.P. SandovalI.M. WuS. WangJ.Z. YeK. Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-Secretase by upregulating C/EBPβ in Alzheimer’s disease.Cell Rep.2019283655669.e510.1016/j.celrep.2019.06.054 31315045
    [Google Scholar]
  73. MackenzieI.R.A. RademakersR. NeumannM. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.Lancet Neurol.2010910995100710.1016/S1474‑4422(10)70195‑2 20864052
    [Google Scholar]
  74. Martinez-MartinP. The importance of non-motor disturbances to quality of life in Parkinson’s disease.J. Neurol. Sci.20113101-2121610.1016/j.jns.2011.05.006 21621226
    [Google Scholar]
  75. BraakH DelTK BratzkeH Hamm-ClementJ Sandmann-KeilD RubU Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages).J Neurol.2002249Suppl 3III/1-510.1007/s00415‑002‑1301‑412528692
    [Google Scholar]
  76. ZhangZ. KangS.S. LiuX. AhnE.H. ZhangZ. HeL. IuvoneP.M. DuongD.M. SeyfriedN.T. BenskeyM.J. ManfredssonF.P. JinL. SunY.E. WangJ.Z. YeK. Asparagine endopeptidase cleaves α-synuclein and mediates pathologic activities in Parkinson’s disease.Nat. Struct. Mol. Biol.201724863264210.1038/nsmb.3433 28671665
    [Google Scholar]
  77. WangH. ChenG. AhnE.H. XiaY. KangS.S. LiuX. LiuC. HanM.H. ChenS. YeK. C/EBPβ/AEP is age-dependently activated in Parkinson’s disease and mediates α-synuclein in the gut and brain.NPJ Parkinsons Dis.202391110.1038/s41531‑022‑00430‑8 36609384
    [Google Scholar]
  78. SidranskyE. NallsM.A. AaslyJ.O. Aharon-PeretzJ. AnnesiG. BarbosaE.R. Bar-ShiraA. BergD. BrasJ. BriceA. ChenC.M. ClarkL.N. CondroyerC. De MarcoE.V. DürrA. EblanM.J. FahnS. FarrerM.J. FungH.C. Gan-OrZ. GasserT. Gershoni-BaruchR. GiladiN. GriffithA. GurevichT. JanuarioC. KroppP. LangA.E. Lee-ChenG.J. LesageS. MarderK. MataI.F. MirelmanA. MitsuiJ. MizutaI. NicolettiG. OliveiraC. OttmanR. Orr-UrtregerA. PereiraL.V. QuattroneA. RogaevaE. RolfsA. RosenbaumH. RozenbergR. SamiiA. SamaddarT. SchulteC. SharmaM. SingletonA. SpitzM. TanE.K. TayebiN. TodaT. TroianoA.R. TsujiS. WittstockM. WolfsbergT.G. WuY.R. ZabetianC.P. ZhaoY. ZieglerS.G. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease.N. Engl. J. Med.2009361171651166110.1056/NEJMoa0901281 19846850
    [Google Scholar]
  79. PolymeropoulosM.H. LavedanC. LeroyE. IdeS.E. DehejiaA. DutraA. PikeB. RootH. RubensteinJ. BoyerR. StenroosE.S. ChandrasekharappaS. AthanassiadouA. PapapetropoulosT. JohnsonW.G. LazzariniA.M. DuvoisinR.C. Di IorioG. GolbeL.I. NussbaumR.L. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease.Science199727653212045204710.1126/science.276.5321.2045 9197268
    [Google Scholar]
  80. LesageS. DrouetV. MajounieE. DeramecourtV. JacoupyM. NicolasA. Cormier-DequaireF. HassounS.M. PujolC. CiuraS. ErpapazoglouZ. UsenkoT. MaurageC.A. SahbatouM. LiebauS. DingJ. BilgicB. EmreM. Erginel-UnaltunaN. GuvenG. TisonF. TranchantC. VidailhetM. CorvolJ.C. KrackP. LeuteneggerA.L. NallsM.A. HernandezD.G. HeutinkP. GibbsJ.R. HardyJ. WoodN.W. GasserT. DurrA. DeleuzeJ.F. TazirM. DestéeA. LohmannE. KabashiE. SingletonA. CortiO. BriceA. LesageS. TisonF. VidailhetM. CorvolJ-C. AgidY. AnheimM. BonnetA-M. BorgM. BroussolleE. DamierP. DestéeA. DürrA. DurifF. KrackP. KlebeS. LohmannE. MartinezM. PollakP. RascolO. TranchantC. VérinM. VialletF. BriceA. LesageS. MajounieE. TisonF. VidailhetM. CorvolJ.C. NallsM.A. HernandezD.G. GibbsJ.R. DürrA. ArepalliS. BarkerR.A. Ben-ShlomoY. BergD. BettellaF. BhatiaK. de BieR.M.A. BiffiA. BloemB.R. BochdanovitsZ. BoninM. LesageS. TisonF. VidailhetM. CorvolJ-C. AgidY. AnheimM. BonnetA-M. BorgM. BroussolleE. DamierP. DestéeA. DürrA. DurifF. KrackP. KlebeS. LohmannE. MartinezM. PollakP. RascolO. TranchantC. VérinM. BrasJ.M. BrockmannK. BrooksJ. BurnD.J. CharlesworthG. ChenH. ChinneryP.F. ChongS. ClarkeC.E. CooksonM.R. CounsellC. DamierP. DartiguesJ-F. DeloukasP. DeuschlG. DexterD.T. van DijkK.D. DillmanA. DongJ. DurifF. EdkinsS. Escott-PriceV. EvansJ.R. FoltynieT. GaoJ. GardnerM. GoateA. GrayE. GuerreiroR. HarrisC. van HiltenJ.J. HofmanA. HollenbeckA. HolmansP. HoltonJ. HuM. HuangX. HuberH. HudsonG. HuntS.E. HuttenlocherJ. IlligT. JónssonP.V. KilarskiL.L. JansenI.E. LambertJ-C. LangfordC. LeesA. LichtnerP. LimousinP. LopezG. LorenzD. LubbeS. LunguC. MartinezM. MätzlerW. McNeillA. MoorbyC. MooreM. MorrisonK.E. MudanohwoE. O’SullivanS.S. OwenM.J. PearsonJ. PerlmutterJ.S. PéturssonH. PlagnolV. PollakP. PostB. PotterS. RavinaB. ReveszT. RiessO. RivadeneiraF. RizzuP. RytenM. SaadM. Simón-SánchezJ. SawcerS. SchapiraA. SchefferH. SchulteC. SharmaM. ShawK. SheerinU-M. ShoulsonI. ShulmanJ. SidranskyE. SpencerC.C.A. StefánssonH. StefánssonK. StocktonJ.D. StrangeA. TalbotK. TannerC.M. Tashakkori-GhanbariaA. TrabzuniD. TraynorB.J. UitterlindenA.G. VelseboerD. WalkerR. van de WarrenburgB. WickremaratchiM. Williams-GrayC.H. Winder-RhodesS. WursterI. WilliamsN. MorrisH.R. HeutinkP. HardyJ. WoodN.W. GasserT. SingletonA.B. BriceA. Loss of VPS13C function in autosomal-recessive parkinsonism causes mitochondrial dysfunction and increases PINK1/parkin-dependent mitophagy.Am. J. Hum. Genet.201698350051310.1016/j.ajhg.2016.01.014 26942284
    [Google Scholar]
  81. ZouL. ZhangX. XiongM. MengL. TianY. PanL. YuanX. ChenG. WangZ. BuL. YaoZ. ZhangZ. YeK. ZhangZ. Asparagine endopeptidase cleaves synaptojanin 1 and triggers synaptic dysfunction in Parkinson’s disease.Neurobiol. Dis.202115410532610.1016/j.nbd.2021.105326 33677035
    [Google Scholar]
  82. FangX. LiuS. MuhammadB. ZhengM. GeX. XuY. KanS. ZhangY. YuY. ZhengK. GengD. LiuC.F. Gut microbiota dysbiosis contributes to α-synuclein-related pathology associated with C/EBPβ/AEP signaling activation in a mouse model of Parkinson’s disease.Neural Regen. Res.20241992081208810.4103/1673‑5374.391191 38227539
    [Google Scholar]
  83. AhnE.H. LeiK. KangS.S. WangZ.H. LiuX. HongW. WangY.T. Edgington-MitchellL.E. JinL. YeK. Mitochondrial dysfunction triggers the pathogenesis of Parkinson’s disease in neuronal C/EBPβ transgenic mice.Mol. Psychiatry202126127838785010.1038/s41380‑021‑01284‑x 34489530
    [Google Scholar]
  84. LeiK. ShenY. HeY. ZhangL. ZhangJ. TongW. XuY. JinL. Baicalin represses C/EBP βvia its antioxidative effect in Parkinson’s disease.Oxid. Med. Cell. Longev.2020202011410.1155/2020/8951907 32566108
    [Google Scholar]
  85. WuZ. XiaY. WangZ. Su KangS. LeiK. LiuX. JinL. WangX. ChengL. YeK. C/EBPβ/δ-secretase signaling mediates Parkinson’s disease pathogenesis via regulating transcription and proteolytic cleavage of α-synuclein and MAOB.Mol. Psychiatry202126256858510.1038/s41380‑020‑0687‑7 32086435
    [Google Scholar]
  86. Morales-GarciaJ.A. GineE. Hernandez-EncinasE. Aguilar-MoranteD. Sierra-MagroA. Sanz-SanCristobalM. Alonso-GilS. Sanchez-LanzasR. CastañoJ.G. SantosA. Perez-CastilloA. CCAAT/Enhancer binding protein β silencing mitigates glial activation and neurodegeneration in a rat model of Parkinson’s disease.Sci. Rep.2017711352610.1038/s41598‑017‑13269‑4 29051532
    [Google Scholar]
  87. GaoJ. ZhangW. ChaiX. TanX. YangZ. Asparagine endopeptidase deletion ameliorates cognitive impairments by inhibiting proinflammatory microglial activation in MPTP mouse model of Parkinson disease.Brain Res. Bull.202217812013010.1016/j.brainresbull.2021.11.011 34838642
    [Google Scholar]
  88. ValenteT. ManceraP. TusellJ.M. SerratosaJ. SauraJ. C/EBPβ expression in activated microglia in amyotrophic lateral sclerosis.Neurobiol. Aging20123392186219910.1016/j.neurobiolaging.2011.09.019 22015310
    [Google Scholar]
  89. AghanooriM.R. AgarwalP. GauvinE. NagalingamR.S. BonomoR. YathindranathV. SmithD.R. HaiY. LeeS. JolivaltC.G. CalcuttN.A. JonesM.J. CzubrytM.P. MillerD.W. DolinskyV.W. Mansuy-AubertV. FernyhoughP. CEBPβ regulation of endogenous IGF-1 in adult sensory neurons can be mobilized to overcome diabetes-induced deficits in bioenergetics and axonal outgrowth.Cell. Mol. Life Sci.202279419310.1007/s00018‑022‑04201‑9 35298717
    [Google Scholar]
  90. ParkS.E. ParkC.Y. SweeneyG. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future.Crit. Rev. Clin. Lab. Sci.201552418019010.3109/10408363.2015.1023429 26042993
    [Google Scholar]
  91. RauskolbS. DombertB. SendtnerM. Insulin-like growth factor 1 in diabetic neuropathy and amyotrophic lateral sclerosis.Neurobiol. Dis.201797Pt B10311310.1016/j.nbd.2016.04.00727142684
    [Google Scholar]
  92. LewisM.E. NeffN.T. ContrerasP.C. StongD.B. OppenheimR.W. GrebowP.E. VaughtJ.L. Insulin-like growth factor-I: potential for treatment of motor neuronal disorders.Exp. Neurol.19931241738810.1006/exnr.1993.1177 8282084
    [Google Scholar]
  93. Torres-AlemanI. BarriosV. BercianoJ. The peripheral insulin-like growth factor system in amyotrophic lateral sclerosis and in multiple sclerosis.Neurology199850377277610.1212/WNL.50.3.772 9521273
    [Google Scholar]
  94. BirsaN. BenthamM.P. FrattaP. Cytoplasmic functions of TDP-43 and FUS and their role in ALS.Semin. Cell Dev. Biol.20209919320110.1016/j.semcdb.2019.05.023 31132467
    [Google Scholar]
  95. ZhangN. GuD. MengM. GordonM.L. TDP-43 is elevated in plasma neuronal-derived exosomes of patients with Alzheimer’s disease.Front. Aging Neurosci.20201216610.3389/fnagi.2020.00166 32581773
    [Google Scholar]
  96. SleighJ.N. TosoliniA.P. GordonD. DevoyA. FrattaP. FisherE.M.C. TalbotK. SchiavoG. Mice carrying ALS mutant TDP-43, but not mutant FUS, display in vivo defects in axonal transport of signaling endosomes.Cell Rep.2020301136553662.e210.1016/j.celrep.2020.02.078 32187538
    [Google Scholar]
  97. KimT. SongB. LeeI.S. Drosophila glia: Models for human neurodevelopmental and neurodegenerative disorders.Int. J. Mol. Sci.20202114485910.3390/ijms21144859 32660023
    [Google Scholar]
  98. ClarkJ.A. YeamanE.J. BlizzardC.A. ChuckowreeJ.A. DicksonT.C. A case for microtubule vulnerability in amyotrophic lateral sclerosis: Altered dynamics during disease.Front. Cell. Neurosci.20161020410.3389/fncel.2016.00204 27679561
    [Google Scholar]
  99. TerryD.M. DevineS.E. Aberrantly high levels of somatic LINE-1 expression and retrotransposition in human neurological disorders.Front. Genet.202010124410.3389/fgene.2019.01244 31969897
    [Google Scholar]
  100. AyalaY.M. ZagoP. D’AmbrogioA. XuY.F. PetrucelliL. BurattiE. BaralleF.E. Structural determinants of the cellular localization and shuttling of TDP-43.J. Cell Sci.2008121223778378510.1242/jcs.038950 18957508
    [Google Scholar]
  101. KapeliK. MartinezF.J. YeoG.W. Genetic mutations in RNA-binding proteins and their roles in ALS.Hum. Genet.201713691193121410.1007/s00439‑017‑1830‑7 28762175
    [Google Scholar]
  102. LiaoY.Z. MaJ. DouJ.Z. The role of TDP-43 in neurodegenerative disease.Mol. Neurobiol.20225974223424110.1007/s12035‑022‑02847‑x 35499795
    [Google Scholar]
  103. PolymenidouM. ClevelandD.W. The seeds of neurodegeneration: Prion-like spreading in ALS.Cell2011147349850810.1016/j.cell.2011.10.011 22036560
    [Google Scholar]
  104. StürnerK.H. BorgmeyerU. SchulzeC. PlessO. MartinR. A multiple sclerosis-associated variant of CBLB links genetic risk with type I IFN function.J. Immunol.201419394439444710.4049/jimmunol.1303077 25261476
    [Google Scholar]
  105. Pulido-SalgadoM. Vidal-TaboadaJ.M. Garcia Diaz-BarrigaG. SerratosaJ. ValenteT. CastilloP. MatalongaJ. StracciaM. CanalsJ.M. ValledorA. SolàC. SauraJ. Myeloid C/EBPβ deficiency reshapes microglial gene expression and is protective in experimental autoimmune encephalomyelitis.J. Neuroinflammation20171415410.1186/s12974‑017‑0834‑5 28302135
    [Google Scholar]
  106. ChoiE.Y. LimJ-H. NeuwirthA. EconomopoulouM. ChatzigeorgiouA. ChungK-J. BittnerS. LeeS-H. LangerH. SamusM. KimH. ChoG-S. ZiemssenT. BdeirK. ChavakisE. KohJ-Y. BoonL. HosurK. BornsteinS.R. MeuthS.G. HajishengallisG. ChavakisT. Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination.Mol. Psychiatry201520788088810.1038/mp.2014.146 25385367
    [Google Scholar]
  107. MaekawaT. HosurK. AbeT. KantarciA. ZiogasA. WangB. Van DykeT.E. ChavakisT. HajishengallisG. Antagonistic effects of IL-17 and D-resolvins on endothelial Del-1 expression through a GSK-3β-C/EBPβ pathway.Nat. Commun.201561827210.1038/ncomms9272 26374165
    [Google Scholar]
  108. GorisA. SawcerS. VandenbroeckK. CartonH. BilliauA. SetakisE. CompstonA. DuboisB. New candidate loci for multiple sclerosis susceptibility revealed by a whole genome association screen in a Belgian population.J. Neuroimmunol.20031431-2656910.1016/j.jneuroim.2003.08.013 14575916
    [Google Scholar]
  109. DasguptaS. JanaM. LiuX. PahanK. Role of very-late antigen-4 (VLA-4) in myelin basic protein-primed T cell contact-induced expression of proinflammatory cytokines in microglial cells.J. Biol. Chem.200327825224242243110.1074/jbc.M301789200 12690109
    [Google Scholar]
  110. JanaM. DasguptaS. SahaR.N. LiuX. PahanK. Induction of tumor necrosis factor‐α (TNF‐α) by interleukin‐12 p40 monomer and homodimer in microglia and macrophages.J. Neurochem.200386251952810.1046/j.1471‑4159.2003.01864.x 12871593
    [Google Scholar]
  111. DasguptaS. JanaM. LiuX. PahanK. Myelin basic protein-primed T cells of female but not male mice induce nitric-oxide synthase and proinflammatory cytokines in microglia: Implications for gender bias in multiple sclerosis.J. Biol. Chem.200528038326093261710.1074/jbc.M500299200 16046404
    [Google Scholar]
  112. BeckH. SchwarzG. SchröterC.J. DeegM. BaierD. StevanovicS. WeberE. DriessenC. KalbacherH. Cathepsin S and an asparagine-specific endoprotease dominate the proteolytic processing of human myelin basic proteinin vitro.Eur. J. Immunol.200131123726373610.1002/1521‑4141(200112)31:12<3726::AID‑IMMU3726>3.0.CO;2‑O 11745393
    [Google Scholar]
  113. BursterT. BeckA. TolosaE. Marin-EstebanV. RötzschkeO. FalkK. LautweinA. ReichM. BrandenburgJ. SchwarzG. WiendlH. MelmsA. LehmannR. StevanovicS. KalbacherH. DriessenC. Cathepsin G, and not the asparagine-specific endoprotease, controls the processing of myelin basic protein in lysosomes from human B lymphocytes.J. Immunol.200417295495550310.4049/jimmunol.172.9.5495 15100291
    [Google Scholar]
  114. SchwarzG. BrandenburgJ. ReichM. BursterT. DriessenC. KalbacherH. Characterization of Legumain.Biol. Chem.2002383111813181610.1515/BC.2002.203 12530547
    [Google Scholar]
  115. FernandesH.B. RaymondL.A. NMDA receptors and Huntington's disease.Biology of the NMDA Receptor20091740
    [Google Scholar]
  116. ObrietanK. HoytK.R. CRE-mediated transcription is increased in Huntington’s disease transgenic mice.J. Neurosci.200424479179610.1523/JNEUROSCI.3493‑03.2004 14749423
    [Google Scholar]
  117. LonzeB.E. GintyD.D. Function and regulation of CREB family transcription factors in the nervous system.Neuron200235460562310.1016/S0896‑6273(02)00828‑0 12194863
    [Google Scholar]
  118. ManouryB. HewittE.W. MorriceN. DandoP.M. BarrettA.J. WattsC. An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation.Nature1998396671269569910.1038/25379 9872320
    [Google Scholar]
  119. NiestrojA.J. FeußnerK. HeiserU. DandoP.M. BarrettA. GerhartzB. DemuthH.U. Inhibition of mammalian legumain by Michael acceptors and AzaAsn-halomethylketones.Biol. Chem.20023837-81205121410.1515/BC.2002.133 12437107
    [Google Scholar]
  120. XuQ.Q. SuZ.R. YangW. ZhongM. XianY.F. LinZ.X. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer’s disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway.J. Neuroinflammation20232011910.1186/s12974‑023‑02704‑1 36717922
    [Google Scholar]
  121. ZhouY. SunY.-T. GuoH. LiangY.-Z. ZhuS-.Y. ShaY. Combination of p-Coumaric acid and lactoferrin ameliorates cognitive deficits through suppressing C/EBPβ/AEP pathway and modulating intestinal flora in APP/PS1 mice.Food Science and Human Wellness120
    [Google Scholar]
  122. CalugiL. LenciE. BianchiniF. ContiniA. TrabocchiA. Modular synthesis of 2,4-diaminoanilines as CNS drug-like non-covalent inhibitors of asparagine endopeptidase.Bioorg. Med. Chem.20226311674610.1016/j.bmc.2022.116746 35430537
    [Google Scholar]
  123. QianZ. LiB. MengX. LiaoJ. WangG. LiY. LuoQ. YeK. Inhibition of asparagine endopeptidase (AEP) effectively treats sporadic Alzheimer’s disease in mice.Neuropsychopharmacology202449362063010.1038/s41386‑023‑01774‑2 38030711
    [Google Scholar]
  124. KrummenacherD. HeW. KuhnB. SchniderC. BeurierA. BromV. SivasothyT. MartyC. TosstorffA. HewingsD.S. MeschS. PinardE. BrändlinM. HochstrasserR. WestwoodP. RotheJ. KronenbergerA. MorandiF. GutbierS. SchulerA. HeerD. GloriaL.E. JoedickeL. RudolphM.G. MüllerL. GrüningerF. BaumannK. KaniyappanS. ManevskiN. BartelsB. Discovery of orally available and brain penetrant AEP inhibitors.J. Med. Chem.20236624170261704310.1021/acs.jmedchem.3c01804 38090813
    [Google Scholar]
  125. WangJ. HuH.J. LiuZ.K. LiuJ.J. WangS.S. ChengQ. ChenH.Z. SongM. Pharmacological inhibition of asparaginyl endopeptidase by δ-secretase inhibitor 11 mitigates Alzheimer’s disease-related pathologies in a senescence-accelerated mouse model.Transl. Neurodegener.20211011210.1186/s40035‑021‑00235‑4 33789744
    [Google Scholar]
  126. LiuC. LiuZ. FangY. DuZ. YanZ. YuanX. DaiL. YuT. XiongM. TianY. LiH. LiF. ZhangJ. MengL. WangZ. JiangH. ZhangZ. Exposure to the environmentally toxic pesticide maneb induces Parkinson’s disease-like neurotoxicity in mice: A combined proteomic and metabolomic analysis.Chemosphere2022308Pt 213634410.1016/j.chemosphere.2022.136344 36087732
    [Google Scholar]
  127. MiX. DuH. GuoX. WuY. ShenL. LuoY. WangD. SuQ. XiangR. YueS. WuS. GongJ. YangZ. ZhangY. TanX. Asparagine endopeptidase-targeted ultrasound-responsive nanobubbles alleviate Tau cleavage and Amyloid-β deposition in an Alzheimer’s disease model.Acta Biomater.202214138839710.1016/j.actbio.2022.01.023 35045359
    [Google Scholar]
  128. QiQ. ObianyoO. DuY. FuH. LiS. YeK. Blockade of asparagine endopeptidase inhibits cancer metastasis.J. Med. Chem.201760177244725510.1021/acs.jmedchem.7b00228 28820254
    [Google Scholar]
  129. Edgington-MitchellL.E. WartmannT. FlemingA.K. GochevaV. van der LindenW.A. WithanaN.P. VerdoesM. AurelioL. Edgington-MitchellD. LieuT. ParkerB.S. GrahamB. ReinheckelT. FurnessJ.B. JoyceJ.A. StorzP. HalangkW. BogyoM. BunnettN.W. Legumain is activated in macrophages during pancreatitis.Am. J. Physiol. Gastrointest. Liver Physiol.20163113G548G56010.1152/ajpgi.00047.2016 27514475
    [Google Scholar]
  130. ChenJ. XuW. SongK. DaL.T. ZhangX. LinM. HongX. ZhangS. GuoF. Legumain inhibitor prevents breast cancer bone metastasis by attenuating osteoclast differentiation and function.Bone202316911668010.1016/j.bone.2023.116680 36702335
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266357822250119172351
Loading
/content/journals/ctmc/10.2174/0115680266357822250119172351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test