Skip to content
2000
Volume 25, Issue 20
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cancer epidemiological studies highlight the critical need for identifying better treatment options against cancer. Plants have been widely studied to obtain their efficacy as potent therapeutic agents to treat several diseases, including cancer. Interestingly, some phytocompounds, such as flavonoids, terpenoids, alkaloids, phenolics, and organosulphur compounds [OSCs], have been demonstrating their potential role in combating several pathologies, including the second most devasting disease, cancer, which contributes a significant portion of annual mortality cases. Several , , and investigations have recently established remarkable properties of phytocompounds such as antioxidant effects, induction of apoptosis, inhibition of metastasis, autophagy modulation, cell cycle regulation, and chemosensitization that lead to cancer suppression. This underscores the great potential of phytocompounds to contribute as an effective anticancerous drug for the prevention of cancer cases and advancement in cancer research. Therefore, comprehending the complicated mechanism involved in the anticancerous effects of phytocompounds against several carcinomas is crucial to establishing novel therapeutic strategies. Thus, this review tends to summarize the involvement of the most promising classes of phytompounds in cancer management and highlights several clinical trial data that demonstrate significant results in managing diverse carcinomas.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266354680250121154720
2025-02-07
2025-12-24
Loading full text...

Full text loading...

References

  1. SchwartzS.M. Epidemiology of cancer.Clin. Chem.202470114014910.1093/clinchem/hvad202 38175589
    [Google Scholar]
  2. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  3. CaoW. QinK. LiF. ChenW. Socioeconomic inequalities in cancer incidence and mortality: An analysis of GLOBOCAN 2022.Chin. Med. J. (Engl.)2024137121407141310.1097/CM9.0000000000003140 38616547
    [Google Scholar]
  4. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  5. KhanA. KhanA. KhanM.A. MalikZ. MasseyS. ParveenR. MustafaS. ShamsiA. HusainS.A. Phytocompounds targeting epigenetic modulations: An assessment in cancer.Front. Pharmacol.202414127399310.3389/fphar.2023.1273993 38596245
    [Google Scholar]
  6. SimsekM. WhitneyK. Examination of primary and secondary metabolites associated with a plant-based diet and their impact on human health.Foods20241371020102010.3390/foods13071020 38611326
    [Google Scholar]
  7. RussoG.L. SpagnuoloC. RussoM. Reassessing the role of phytochemicals in cancer chemoprevention.Biochem. Pharmacol.202422811616511616510.1016/j.bcp.2024.116165 38527559
    [Google Scholar]
  8. ChoudharyN. BawariS. BurcherJ.T. SinhaD. TewariD. BishayeeA. Targeting cell signaling pathways in lung cancer by bioactive phytocompounds.Cancers (Basel)202315153980398010.3390/cancers15153980 37568796
    [Google Scholar]
  9. IssingerO.G. GuerraB. Phytochemicals in cancer and their effect on the PI3K/AKT-mediated cellular signalling.Biomed. Pharmacother.202113911165010.1016/j.biopha.2021.111650 33945911
    [Google Scholar]
  10. AkhtarM.F. SaleemA. RasulA. Faran Ashraf BaigM.M. Bin-JumahM. Abdel DaimM.M. Anticancer natural medicines: An overview of cell signaling and other targets of anticancer phytochemicals.Eur. J. Pharmacol.202088817348810.1016/j.ejphar.2020.173488 32805253
    [Google Scholar]
  11. GahtoriR. TripathiA.H. KumariA. NegiN. PaliwalA. TripathiP. JoshiP. RaiR.C. UpadhyayS.K. Anticancer plant-derivatives: Deciphering their oncopreventive and therapeutic potential in molecular terms.Future Journal of Pharmaceutical Sciences2023911410.1186/s43094‑023‑00465‑5
    [Google Scholar]
  12. MajoloF. de Oliveira Becker DelwingL.K. MarmittD.J. Bustamante-FilhoI.C. GoettertM.I. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery.Phytochem. Lett.20193119620710.1016/j.phytol.2019.04.003
    [Google Scholar]
  13. WahiA. BishnoiM. RainaN. SinghM.A. VermaP. GuptaP.K. KaurG. TuliH.S. GuptaM. Recent updates on nano-phyto-formulations based therapeutic intervention for cancer treatment.Oncol. Res.2024321194710.32604/or.2023.042228 38188681
    [Google Scholar]
  14. GullettN.P. Ruhul AminA.R.M. BayraktarS. PezzutoJ.M. ShinD.M. KhuriF.R. AggarwalB.B. SurhY.J. KucukO. Cancer prevention with natural compounds.Semin. Oncol.201037325828110.1053/j.seminoncol.2010.06.014 20709209
    [Google Scholar]
  15. Alzate-YepesT. Pérez-PalacioL. MartínezE. OsorioM. Mechanisms of action of fruit and vegetable phytochemicals in colorectal cancer prevention.Molecules202328114322432210.3390/molecules28114322 37298797
    [Google Scholar]
  16. JangJ.H. LeeT.J. Mechanisms of phytochemicals in anti-inflammatory and anti-cancer.Int. J. Mol. Sci.20232497863786310.3390/ijms24097863 37175569
    [Google Scholar]
  17. SumairaS. VijayarathnaS. HemagirriM. AdnanM. HassanM.I. PatelM. GuptaR. Shanmugapriya ChenY. GopinathS.C.B. KanwarJ.R. SasidharanS. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics.Noncoding RNA Res.2024941140115810.1016/j.ncrna.2024.06.003 39022680
    [Google Scholar]
  18. HonK.W. NaiduR. Synergistic mechanisms of selected polyphenols in overcoming chemoresistance and enhancing chemosensitivity in colorectal cancer.Antioxidants202413781581510.3390/antiox13070815 39061884
    [Google Scholar]
  19. FarhanM. RizviA. AatifM. AhmadA. Current understanding of flavonoids in cancer therapy and prevention.Metabolites202313448148110.3390/metabo13040481 37110140
    [Google Scholar]
  20. GhareghomiS. AtabakiV. AbdollahzadehN. AhmadianS. Hafez GhoranS. Bioactive PI3-kinase/Akt/mTOR inhibitors in targeted lung cancer therapy.Adv. Pharm. Bull.202110.34172/apb.2023.003 36721812
    [Google Scholar]
  21. WeiQ. ZhangY. Flavonoids with anti-angiogenesis function in cancer.Molecules2024297157010.3390/molecules29071570 38611849
    [Google Scholar]
  22. HassanpourS.H. DoroudiA. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants.Avicenna J. Phytomed.202313435437610.22038/ajp.2023.21774 37663389
    [Google Scholar]
  23. WangY. HuangM. ZhouX. LiH. MaX. SunC. Potential of natural flavonoids to target breast cancer angiogenesis (review).Br. J. Pharmacol.2024bph.1627510.1111/bph.1627537940117
    [Google Scholar]
  24. PandeyP. KhanF. UpadhyayT.K. Deciphering the modulatory role of apigenin targeting oncogenic pathways in human cancers.Chem. Biol. Drug Des.202310161446145810.1111/cbdd.14206 36746671
    [Google Scholar]
  25. GuptaS. AfaqF. MukhtarH. Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells.Oncogene200221233727373810.1038/sj.onc.1205474 12032841
    [Google Scholar]
  26. ShuklaS. GuptaS. Molecular mechanisms for apigenin‐induced cell‐cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells.Mol. Carcinog.200439211412610.1002/mc.10168 14750216
    [Google Scholar]
  27. NaH.K. KimE.H. JungJ.H. LeeH.H. HyunJ.W. SurhY.J. (−)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells.Arch. Biochem. Biophys.2008476217117710.1016/j.abb.2008.04.003 18424257
    [Google Scholar]
  28. WeiY. ChenP. LingT. WangY. DongR. ZhangC. ZhangL. HanM. WangD. WanX. ZhangJ. Certain (−)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG.Food Chem.201620421822610.1016/j.foodchem.2016.02.134 26988496
    [Google Scholar]
  29. YangW.H. FongY.C. LeeC.Y. JinT.R. TzenJ.T.C. LiT.M. TangC.H. Epigallocatechin-3-gallate induces cell apoptosis of human chondrosarcoma cells through apoptosis signal-regulating kinase 1 pathway.J. Cell. Biochem.201111261601161110.1002/jcb.23072 21328612
    [Google Scholar]
  30. SinghR. AgarwalR. Natural flavonoids targeting deregulated cell cycle progression in cancer cells.Curr. Drug Targets20067334535410.2174/138945006776055004 16515531
    [Google Scholar]
  31. SinghB.N. ShankarS. SrivastavaR.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications.Biochem. Pharmacol.201182121807182110.1016/j.bcp.2011.07.093 21827739
    [Google Scholar]
  32. ClereN. FaureS. Carmen MartinezM. AndriantsitohainaR. Anticancer properties of flavonoids: Roles in various stages of carcinogenesis.Cardiovasc. Hematol. Agents Med. Chem.201192627710.2174/187152511796196498 21644918
    [Google Scholar]
  33. YunJ.M. AfaqF. KhanN. MukhtarH. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells.Mol. Carcinog.200948326027010.1002/mc.20477 18729103
    [Google Scholar]
  34. PejčićT. ZekovićM. BumbaširevićU. KalabaM. VovkI. BensaM. PopovićL. TešićŽ. The role of isoflavones in the prevention of breast cancer and prostate cancer.Antioxidants202312236810.3390/antiox12020368 36829927
    [Google Scholar]
  35. ParkC. ChaH.J. LeeH. Hwang-BoH. JiS.Y. KimM.Y. HongS.H. JeongJ.W. HanM.H. ChoiS.H. JinC.Y. KimG.Y. ChoiY.H. Induction of G2/M cell cycle arrest and apoptosis by genistein in human bladder cancer T24 cells through inhibition of the ROS-dependent PI3k/Akt signal transduction pathway.Antioxidants20198932710.3390/antiox8090327 31438633
    [Google Scholar]
  36. KhanF. NiazK. MaqboolF. Ismail HassanF. AbdollahiM. Nagulapalli VenkataK. NabaviS. BishayeeA. Molecular targets underlying the anticancer effects of quercetin: An update.Nutrients20168952910.3390/nu8090529 27589790
    [Google Scholar]
  37. BlasinaM.F. VaamondeL. MorquioA. EcheverryC. ArredondoF. DajasF. Differentiation induced by Achyrocline satureioides (Lam) infusion in PC12 cells.Phytother. Res.20092391263126910.1002/ptr.2607 19370542
    [Google Scholar]
  38. NewtonH.B. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis.Expert Rev. Anticancer Ther.20044110512810.1586/14737140.4.1.105 14748662
    [Google Scholar]
  39. BraganholE. ZaminL.L. Delgado CanedoA. HornF. TamajusukuA.S.K. WinkM.R. SalbegoC. BattastiniA.M.O. Antiproliferative effect of quercetin in the human U138MG glioma cell line.Anticancer Drugs200617666367110.1097/01.cad.0000215063.23932.02 16917212
    [Google Scholar]
  40. ZavaD.T. DuweG. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro.Nutr. Cancer1997271314010.1080/01635589709514498 8970179
    [Google Scholar]
  41. SaewanN. KoysomboonS. ChantraprommaK. Anti-tyrosinase and anti-cancer activities of flavonoids from Blumea balsamifera DC.J. Med. Plants Res.2011561018102510.5897/JMPR.9000112
    [Google Scholar]
  42. ElhadyS.S. EltamanyE.E. ShaabanA.E. BagalagelA.A. MuhammadY.A. El-SayedN.M. AyyadS.N. Jaceidin flavonoid isolated from chiliadenus montanus attenuates tumor progression in mice via VEGF inhibition: In vivo and in silico studies.Plants (Basel)202098103110.3390/plants9081031 32823927
    [Google Scholar]
  43. GaccheR.N. ShegokarH.D. GondD.S. YangZ. JadhavA.D. Evaluation of selected flavonoids as antiangiogenic, anticancer, and radical scavenging agents: An experimental and in silico analysis.Cell Biochem. Biophys.201161365166310.1007/s12013‑011‑9251‑z 21830125
    [Google Scholar]
  44. IheagwamF.N. OgunlanaO.O. OgunlanaO.E. IsewonI. OyeladeJ. Potential anti-cancer flavonoids isolated from Caesalpinia bonduc young twigs and leaves: Molecular docking and in silico studies.Bioinform. Biol. Insights201913117793221882137110.1177/1177932218821371 30670919
    [Google Scholar]
  45. GovindarasuM. GaneshanS. AnsariM.A. AlomaryM.N. AlYahyaS. AlghamdiS. AlmehmadiM. RajakumarG. ThiruvengadamM. VaiyapuriM. In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets.J. Saudi Chem. Soc.202125910131910.1016/j.jscs.2021.101319
    [Google Scholar]
  46. TaherR.F. Al-KarmalawyA.A. Abd El MaksoudA.I. KhalilH. HassanA. El-KhrisyE.D.A. El-KashakW. Two new flavonoids and anticancer activity of Hymenosporum flavum: In vitro and molecular docking studies.Journal of Herbmed Pharmacology202110444345810.34172/jhp.2021.52
    [Google Scholar]
  47. Ortiz-AndradeR. Araujo-LeónJ.A. Sánchez-RecillasA. Navarrete-VazquezG. González-SánchezA.A. Hidalgo-FigueroaS. Alonso-CastroÁ.J. Aranda-GonzálezI. Hernández-NúñezE. Coral-MartínezT.I. Sánchez-SalgadoJ.C. Yáñez-PérezV. Lucio-GarciaM.A. Toxicological screening of four bioactive citroflavonoids: In vitro, in vivo, and in silico approaches.Molecules20202524595910.3390/molecules25245959 33339310
    [Google Scholar]
  48. MumtazM.Z. KausarF. HassanM. JavaidS. MalikA. Anticancer activities of phenolic compounds from Moringa oleifera leaves: In vitro and in silico mechanistic study.Beni. Suef Univ. J. Basic Appl. Sci.20211011210.1186/s43088‑021‑00101‑2
    [Google Scholar]
  49. AnwerS.T. MobashirM. FantoukhO.I. KhanB. ImtiyazK. NaqviI.H. RizviM.M.A. Synthesis of silver nano particles using myricetin and the in vitro assessment of anti-colorectal cancer activity: In silico integration.Int. J. Mol. Sci.202223191102410.3390/ijms231911024 36232319
    [Google Scholar]
  50. GodaM.S. NafieM.S. AwadB.M. Abdel-KaderM.S. IbrahimA.K. BadrJ.M. EltamanyE.E. In vitro and in vivo studies of anti-lung cancer activity of Artemesia judaica L. crude extract combined with LC-MS/MS metabolic profiling, docking simulation and HPLC-DAD quantification.Antioxidants2021111171710.3390/antiox11010017 35052522
    [Google Scholar]
  51. RajendranP. MaheshwariU. MuthukrishnanA. MuthuswamyR. AnandK. RavindranB. DhanarajP. BalamuralikrishnanB. ChangS.W. ChungW.J. Myricetin: Versatile plant based flavonoid for cancer treatment by inducing cell cycle arrest and ROS–reliant mitochondria-facilitated apoptosis in A549 lung cancer cells and in silico prediction.Mol. Cell. Biochem.20214761576810.1007/s11010‑020‑03885‑6 32851589
    [Google Scholar]
  52. SahuR. KarR.K. SunitaP. BoseP. KumariP. BhartiS. SrivastavaS. PattanayakS.P. LC-MS characterized methanolic extract of zanthoxylum armatum possess anti-breast cancer activity through Nrf2-Keap1 pathway: An in silico, in vitro and in vivo evaluation.J. Ethnopharmacol.202126911375810.1016/j.jep.2020.113758 33359860
    [Google Scholar]
  53. Pratibha Pandey, Fahad Khan, Prashant Chauhan, Fevzi Bardakci, Nujud Almuzaini, Mohd Saeed, AlmuzainiN. AbdallaR.A.H. SinghS.K. SaeedM. Elucidation of the inhibitory potential of flavonoids against PKP1 protein in non-small cell lung cancer.Cell. Mol. Biol.20226811909610.14715/cmb/2022.68.11.15 37114302
    [Google Scholar]
  54. NairB. AntoR.J. MS. NathL.R. Kaempferol-mediated sensitization enhances chemotherapeutic efficacy of sorafenib against hepatocellular carcinoma: An in silico and in vitro approach.Adv. Pharm. Bull.202010347247610.34172/apb.2020.058 32665908
    [Google Scholar]
  55. BelaibaM. AldulaijanS. MessaoudiS. AbedrabbaM. DhouibA. BouajilaJ. Evaluation of biological activities of twenty flavones and in silico docking study.Molecules2023286241910.3390/molecules28062419 36985391
    [Google Scholar]
  56. ImanuddinA.N.J. WianiI. HardiantoA. HerlinaT. Flavonoids from extract butanol of twigs erythrina crista-galli against the breast cancer cell line within in silico method.Trends in Sciences20232075350535010.48048/tis.2023.5350
    [Google Scholar]
  57. RaufA. RashidU. AkramZ. GhafoorM. MuhammadN. Al MasoudN. AlomarT.S. NazS. IritiM. In vitro and in silico antiproliferative potential of isolated flavonoids constitutes from Pistacia integerrima.Z. Naturforsch. C J. Biosci.2024797-818719310.1515/znc‑2023‑0153 38549290
    [Google Scholar]
  58. InalaM.S.R. PamidimukkalaK. In vitro combination effects of plant-derived quercetin with synthetic bicalutamide on prostate cancer and normal cell lines: In silico comparison.In silico Pharmacol.20241212210.1007/s40203‑024‑00192‑6 38559707
    [Google Scholar]
  59. PravinB. NanawareV. AshwiniB. WondmieG.F. JardanY.A.B. BourhiaM. Assessing the antioxidant properties of Naringin and Rutin and investigating their oxidative DNA damage effects in breast cancer.Sci. Rep.20241411531410.1038/s41598‑024‑63498‑7 38961104
    [Google Scholar]
  60. PandeyP. SayyedU. TiwariR.K. SiddiquiM.H. PathakN. BajpaiP. Hesperidin induces ROS-mediated apoptosis along with cell cycle arrest at G2/M phase in human gall bladder carcinoma.Nutr. Cancer201971467668710.1080/01635581.2018.1508732 30265812
    [Google Scholar]
  61. KhanF. PandeyP. UpadhyayT.K. JafriA. JhaN.K. MishraR. SinghV. Anti-cancerous effect of rutin against HPV-C33A cervical cancer cells via G0/G1 cell cycle arrest and apoptotic induction.Endocr. Metab. Immune Disord. Drug Targets202020340941810.2174/1871530319666190806122257 31385777
    [Google Scholar]
  62. PandeyP. KhanF. ChandP. MaqsoodR. Elucidation of the anticancer potential of selected citrus flavonoids against NEDD4-1 in breast cancer.Rev. Bras. Farmacogn.202232579680410.1007/s43450‑022‑00310‑5
    [Google Scholar]
  63. KamranS. SinniahA. AbdulghaniM.A.M. AlshawshM.A. Therapeutic potential of certain terpenoids as anticancer agents: A scoping review.Cancers (Basel)2022145110010.3390/cancers14051100 35267408
    [Google Scholar]
  64. Herrera-BravoJ. BelénL.H. ReyesM.E. SilvaV. FuentealbaS. PazC. LorenP. SalazarL.A. Sharifi-RadJ. CalinaD. Thymol as adjuvant in oncology: Molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management.Naunyn Schmiedebergs Arch. Pharmacol.2024397118259828410.1007/s00210‑024‑03196‑3 38847831
    [Google Scholar]
  65. Llana-Ruiz-CabelloM. Gutiérrez-PraenaD. PichardoS. MorenoF.J. BermúdezJ.M. AucejoS. CameánA.M. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2.Food Chem. Toxicol.20146428129010.1016/j.fct.2013.12.005 24326232
    [Google Scholar]
  66. KangS.H. KimY.S. KimE.K. HwangJ.W. JeongJ.H. DongX. LeeJ.W. MoonS.H. JeonB.T. ParkP.J. Anticancer effect of thymol on AGS human gastric carcinoma cells.J. Microbiol. Biotechnol.2016261283710.4014/jmb.1506.06073 26437948
    [Google Scholar]
  67. LiY. WenJ. DuC. HuS. ChenJ. ZhangS. ZhangN. GaoF. LiS. MaoX. MiyamotoH. DingK. Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis.Biochem. Biophys. Res. Commun.2017491253053610.1016/j.bbrc.2017.04.009 28389245
    [Google Scholar]
  68. Nagoor MeeranM.F. JagadeeshG.S. SelvarajP. Thymol attenuates altered lipid metabolism in β-adrenergic agonist induced myocardial infarcted rats by inhibiting tachycardia, altered electrocardiogram, apoptosis and cardiac hypertrophy.J. Funct. Foods201514516210.1016/j.jff.2015.01.013
    [Google Scholar]
  69. De La ChapaJ.J. SinghaP.K. LeeD.R. GonzalesC.B. Thymol inhibits oral squamous cell carcinoma growth via mitochondria‐mediated apoptosis.J. Oral Pathol. Med.201847767468210.1111/jop.12735 29777637
    [Google Scholar]
  70. GholijaniN. GharagozlooM. KalantarF. RamezaniA. AmirghofranZ. Modulation of cytokine production and transcription factors activities in human jurkat T cells by thymol and carvacrol.Adv. Pharm. Bull.20155Suppl. 165366010.15171/apb.2015.089 26793612
    [Google Scholar]
  71. LinJ.-P. LuH.-F. LeeJ.-H. LinJ.-G. HsiaT.-C. WuL.-T. ChungJ.-G. (-)-menthol inhibits DNA topoisomerases I, II α and β and promotes NF-Î B expression in human gastric cancer SNU-5 cells.Anticancer Res.2005253B20692074 16158947
    [Google Scholar]
  72. ParkE.J. KimS.H. KimB.J. KimS.Y. SoI. JeonJ.H. Menthol enhances an antiproliferative activity of 1α,25-dihydroxyvitamin D3 in LNCaP cells.J. Clin. Biochem. Nutr.200944212513010.3164/jcbn.08‑201 19308266
    [Google Scholar]
  73. FatimaK. MasoodN. Ahmad WaniZ. MeenaA. LuqmanS. Neomenthol prevents the proliferation of skin cancer cells by restraining tubulin polymerization and hyaluronidase activity.J. Adv. Res.2021349310710.1016/j.jare.2021.06.003 35024183
    [Google Scholar]
  74. FaridiU. DhawanS.S. PalS. GuptaS. ShuklaA.K. DarokarM.P. SharmaA. ShasanyA.K. Repurposing L-menthol for systems medicine and cancer therapeutics? L-menthol induces apoptosis through caspase 10 and by suppressing HSP90.OMICS2016201536410.1089/omi.2015.0118 26760959
    [Google Scholar]
  75. ZhaJ. HaradaH. YangE. JockelJ. KorsmeyerS.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L).Cell199687461962810.1016/S0092‑8674(00)81382‑3 8929531
    [Google Scholar]
  76. NazıroğluM. BlumW. JósvayK. ÇiğB. HenziT. OláhZ. VizlerC. SchwallerB. PeczeL. Menthol evokes Ca2+ signals and induces oxidative stress independently of the presence of TRPM8 (menthol) receptor in cancer cells.Redox Biol.20181443944910.1016/j.redox.2017.10.009 29078169
    [Google Scholar]
  77. LuH.F. LiuJ.Y. HsuehS.C. YangY.Y. YangJ.S. TanT.W. KokL.F. LuC.C. LanS.H. WuS.Y. LiaoS.S. IpS.W. ChungJ.G. (-)-Menthol inhibits WEHI-3 leukemia cells in vitro and in vivo.In vivo2007212285289 17436578
    [Google Scholar]
  78. KamatouG.P.P. VermaakI. ViljoenA.M. LawrenceB.M. Menthol: A simple monoterpene with remarkable biological properties.Phytochemistry201396152510.1016/j.phytochem.2013.08.005 24054028
    [Google Scholar]
  79. KimS.H. LeeS. PiccoloS.R. Allen-BradyK. ParkE.J. ChunJ.N. KimT.W. ChoN.H. KimI.G. SoI. JeonJ.H. Menthol induces cell-cycle arrest in PC-3 cells by down-regulating G2/M genes, including polo-like kinase 1.Biochem. Biophys. Res. Commun.2012422343644110.1016/j.bbrc.2012.05.010 22580005
    [Google Scholar]
  80. ZhaoY. PanH. LiuW. LiuE. PangY. GaoH. HeQ. LiaoW. YaoY. ZengJ. GuoJ. Menthol: An underestimated anticancer agent.Front. Pharmacol.202314114879010.3389/fphar.2023.1148790 37007039
    [Google Scholar]
  81. SatiP. SharmaE. DhyaniP. AttriD.C. RanaR. KiyekbayevaL. BüsselbergD. SamuelS.M. Sharifi-RadJ. Paclitaxel and its semi-synthetic derivatives: Comprehensive insights into chemical structure, mechanisms of action, and anticancer properties.Eur. J. Med. Res.20242919010.1186/s40001‑024‑01657‑2 38291541
    [Google Scholar]
  82. KaurR. BhardwajA. GuptaS. Cancer treatment therapies: Traditional to modern approaches to combat cancers.Mol. Biol. Rep.202350119663967610.1007/s11033‑023‑08809‑3 37828275
    [Google Scholar]
  83. GuptaR. KadhimM.M. Turki JalilA. Qasim AlasheqiM. AlsaikhanF. Khalimovna MukhamedovaN. Alexis Ramírez-CoronelA. Hassan JawharZ. RamaiahP. NajafiM. The interactions of docetaxel with tumor microenvironment.Int. Immunopharmacol.202311911021410.1016/j.intimp.2023.110214 37126985
    [Google Scholar]
  84. OnagaR. EnokidaT. ItoK. UedaY. OkanoS. FujisawaT. WadaA. SatoM. TanakaH. TakeshitaN. TanakaN. HoshiY. TaharaM. Combination chemotherapy with taxane and platinum in patients with salivary gland carcinoma: A retrospective study of docetaxel plus cisplatin and paclitaxel plus carboplatin.Front. Oncol.202313118519810.3389/fonc.2023.1185198 37397398
    [Google Scholar]
  85. YoonY.E. JungY.J. LeeS.J. The anticancer activities of natural terpenoids that inhibit both melanoma and non-melanoma skin cancers.Int. J. Mol. Sci.20242584423442310.3390/ijms25084423 38674007
    [Google Scholar]
  86. PandeyP. KhanF. YadavK. SinghK. RehmanA. MazumderA. KhanM.A. Screen natural terpenoids to identify potential Jab1 inhibitors for treating breast cancer.Trends in Immunotherapy2023712055205510.24294/ti.v7.i1.2055
    [Google Scholar]
  87. Ramírez-SantosJ. CalzadaF. 202210.3390/molecules27207123
  88. GanaieA.A. SiddiqueH.R. SheikhI.A. ParrayA. WangL. PanyamJ. VillaltaP.W. DengY. KonetyB.R. SaleemM. A novel terpenoid class for prevention and treatment of KRAS ‐driven cancers: Comprehensive analysis using in situ, in vitro, and in vivo model systems.Mol. Carcinog.202059888689610.1002/mc.23200 32291806
    [Google Scholar]
  89. Ramírez-SantosJ. CalzadaF. In vivo, in vitro and in silico anticancer activity of ilama leaves: An edible and medicinal plant in Mexico.Molecules2024299195610.3390/molecules29091956 38731446
    [Google Scholar]
  90. NayilaI. SharifS. LodhiM.S. RehmanM.F.U. AmanF. Synthesis, characterization and anti-breast cancer potential of an incensole acetate nanoemulsion from Catharanthus roseus essential oil; in silico, in vitro, and in vivo study.RSC Advances20231346323353236210.1039/D3RA06335F 37928847
    [Google Scholar]
  91. NazirS. Abdel-GhaniN. AtiaM.A.M. El-SherifA.A. Exploring the effectiveness of lepidium sativum for inhibiting human hepatocellular carcinoma cell lines: In vitro analysis, molecular docking, and pathway enrichment analysis.Egypt. J. Bot.202200010.21608/ejbo.2022.118677.1891
    [Google Scholar]
  92. JiaS.S. XiG.P. ZhangM. ChenY.B. LeiB. DongX.S. YangY.M. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells.Oncol. Rep.201329134935410.3892/or.2012.2093 23117412
    [Google Scholar]
  93. HagoS. LuT. AlzainA.A. AbdelgadirA.A. YassinS. AhmedE.M. XuH. Phytochemical constituents, in vitro anticancer activity and computational studies of Cymbopogon schoenanthus.Nat. Prod. Res.20243861073107910.1080/14786419.2023.2208360 37144384
    [Google Scholar]
  94. HuangP.R. YehY.M. WangT.C.V. Potent inhibition of human telomerase by helenalin.Cancer Lett.2005227216917410.1016/j.canlet.2004.11.045 16112419
    [Google Scholar]
  95. RizzoL.Y. LongatoG.B. RuizA.L.G. TintiS.V. PossentiA. Vendramini-CostaD.B. SartorattoA. FigueiraG.M. SilvaF.L.N. EberlinM.N. SouzaT.A.C.B. MurakamiM.T. RizzoE. FoglioM.A. KiesslingF. LammersT. CarvalhoJ.E. In vitro, in vivo and in silico analysis of the anticancer and estrogen-like activity of guava leaf extracts.Curr. Med. Chem.201421202322233010.2174/0929867321666140120120031 24438525
    [Google Scholar]
  96. SinghalB. PandeyP. KhanF. Kumar SinghS. In vitro elucidation of antiproliferative and apoptotic effects of thymol against prostate cancer LNCaP cells.Biointerface Res. Appl. Chem.20211211279128910.33263/BRIAC121.12791289
    [Google Scholar]
  97. FarooquiA. KhanF. KhanI. AnsariI.A. Glycyrrhizin induces reactive oxygen species-dependent apoptosis and cell cycle arrest at G0/G1 in HPV18+ human cervical cancer HeLa cell line.Biomed. Pharmacother.20189775276410.1016/j.biopha.2017.10.147 29107932
    [Google Scholar]
  98. KhanF. KhanI. FarooquiA. AnsariI.A. Carvacrol induces Reactive Oxygen Species (ROS)-mediated apoptosis along with cell cycle arrest at G 0/G 1 in human prostate cancer cells.Nutr. Cancer20176971075108710.1080/01635581.2017.1359321 28872904
    [Google Scholar]
  99. TalibW.H. AtawnehS. ShakhatrehA.N. ShakhatrehG.N. Rasheed aljarrahI.S. HamedR.A. BanyyounesD.A. Al-YasariI.H. Anticancer potential of garlic bioactive constituents: Allicin, Z-ajoene, and organosulfur compounds.Pharmacia 71202412310.3897/pharmacia.71.e114556
    [Google Scholar]
  100. OtooR.A. AllenA.R. Sulforaphane’s multifaceted potential: From neuroprotection to anticancer action.Molecules20232819690210.3390/molecules28196902 37836745
    [Google Scholar]
  101. UpadhyayR.K. Garlic induced apoptosis, cell cycle check points and inhibition of cancer cell proliferation.J. Cancer Res.201752355410.12691/jcrt‑5‑2‑2
    [Google Scholar]
  102. Iahtisham-Ul-Haq KhanS. AwanK.A. IqbalM.J. Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review.J. Food Biochem.202246310.1111/jfbc.13886
    [Google Scholar]
  103. RuheeR.T. RobertsL.A. MaS. SuzukiK. Organosulfur compounds: A review of their anti-inflammatory effects in human health.Front. Nutr.202076410.3389/fnut.2020.00064 32582751
    [Google Scholar]
  104. Lubecka-PietruszewskaK. Kaufman-SzymczykA. StefanskaB. Cebula-ObrzutB. SmolewskiP. Fabianowska-MajewskaK. Sulforaphane alone and in combination with clofarabine epigenetically regulates the expression of DNA methylation-silenced tumour suppressor genes in human breast cancer cells.Lifestyle Genomics2015829110110.1159/000439111 26372775
    [Google Scholar]
  105. Kaufman-SzymczykA. MajewskiG. Lubecka-PietruszewskaK. Fabianowska-MajewskaK. The role of sulforaphane in epigenetic mechanisms, including interdependence between histone modification and DNA methylation.Int. J. Mol. Sci.20151612297322974310.3390/ijms161226195 26703571
    [Google Scholar]
  106. ChenL. ChanL.S. LungH.L. YipT.T.C. NganR.K.C. WongJ.W.C. LoK.W. NgW.T. LeeA.W.M. TsaoG.S.W. LungM.L. MakN.K. Crucifera sulforaphane (SFN) inhibits the growth of nasopharyngeal carcinoma through DNA methyltransferase 1 (DNMT1)/Wnt inhibitory factor 1 (WIF1) axis.Phytomedicine20196315305810.1016/j.phymed.2019.153058 31394414
    [Google Scholar]
  107. ShoaibS. AnsariM.A. GhazwaniM. HaniU. JamousY.F. AlaliZ. WahabS. AhmadW. WeirS.A. AlomaryM.N. YusufN. IslamN. Prospective epigenetic actions of organo-sulfur compounds against cancer: Perspectives and molecular mechanisms.Cancers (Basel)202315369710.3390/cancers15030697 36765652
    [Google Scholar]
  108. LiX. ZhaoZ. LiM. LiuM. BahenaA. ZhangY. ZhangY. NambiarC. LiuG. Sulforaphane promotes apoptosis, and inhibits proliferation and self-renewal of nasopharyngeal cancer cells by targeting STAT signal through miRNA-124-3p.Biomed. Pharmacother.201810347348110.1016/j.biopha.2018.03.121 29677532
    [Google Scholar]
  109. WangL.G. LiuX.M. FangY. DaiW. ChiaoF.B. PuccioG.M. FengJ. LiuD. ChiaoJ.W. De-repression of the p21 promoter in prostate cancer cells by an isothiocyanate via inhibition of HDACs and c-Myc.Int. J. Oncol.199233237538010.3892/ijo_00000018 18636159
    [Google Scholar]
  110. ZhangT. ShaoY. ChuT-Y. HuangH-S. LiouY-L. LiQ. ZhouH. MiR-135a and MRP1 play pivotal roles in the selective lethality of phenethyl isothiocyanate to malignant glioma cells.Am. J. Cancer Res.201665957972 27293991
    [Google Scholar]
  111. SuB. Diallyl disulfide increases histone acetylation and P21WAF1 expression in human gastric cancer cells in vivo and in vitro.Biochem. Pharmacol. (Los Angel.)20121710.4172/2167‑0501.1000106
    [Google Scholar]
  112. Nkrumah-ElieY.M. ReubenJ.S. HudsonA.M. TakaE. BadisaR. ArdleyT. IsraelB. Sadrud-DinS.Y. OriakuE.T. Darling-ReedS.F. The attenuation of early benzo(a)pyrene-induced carcinogenic insults by diallyl disulfide (DADS) in MCF-10A cells.Nutr. Cancer20126471112112110.1080/01635581.2012.712738 23006051
    [Google Scholar]
  113. RoystonK. UdayakumarN. LewisK. TollefsbolT. A novel combination of withaferin A and sulforaphane inhibits epigenetic machinery, cellular viability and induces apoptosis of breast cancer cells.Int. J. Mol. Sci.2017185109210.3390/ijms18051092 28534825
    [Google Scholar]
  114. KimD.H. KangD.Y. SpN. JoE.S. RugambaA. JangK.J. YangY.M. Methylsulfonylmethane induces cell cycle arrest and apoptosis, and suppresses the stemness potential of HT-29 cells.Anticancer Res.20204095191520010.21873/anticanres.14522 32878807
    [Google Scholar]
  115. FergusonD.T. TakaE. TilghmanS.L. WombleT. RedmondB.V. GedeonS. Flores-RozasH. ReedS.L. SolimanK.F.A. KangaK.J.W. Darling-ReedS.F. The anticancer effects of the garlic organosulfide diallyl trisulfide through the attenuation of B[a]P-induced oxidative stress, AhR expression, and DNA damage in human premalignant breast epithelial (MCF-10AT1) cells.Int. J. Mol. Sci.202425292392310.3390/ijms25020923 38255999
    [Google Scholar]
  116. ReddyB.S. RaoC.V. RivensonA. KelloffG. Chemoprevention of colon carcinogenesis by organosulfur compounds.Cancer Res.1993531534933498 8339252
    [Google Scholar]
  117. MoriH. TanakaT. SugieS. YoshimiN. KawamoriT. HiroseY. OhnishiM. Chemoprevention by naturally occurring and synthetic agents in oral, liver, and large bowel carcinogenesis.J. Cell. Biochem.199767S27354110.1002/(SICI)1097‑4644(1997)27+<35::AID‑JCB8>3.0.CO;2‑2 9591191
    [Google Scholar]
  118. AnsariI.A. AhmadA. ImranM.A. SaeedM. AhmadI. Organosulphur compounds induce apoptosis and cell cycle arrest in cervical cancer cells via downregulation of HPV E6 and E7 oncogenes.Anticancer. Agents Med. Chem.202121339340510.2174/18715206MTA5fMjMgw 32819236
    [Google Scholar]
  119. ChungJ-G. ChungH.W. LiuK.C. WuR.S. YangJ.S. TangN.Y. LoC. HsiaT.C. YuC.C. ChuehF.S. LinS.S. ChungJ.G. Diallyl sulfide induces cell cycle arrest and apoptosis in HeLa human cervical cancer cells through the p53, caspase- and mitochondria-dependent pathways.Int. J. Oncol.20113861605161310.3892/ijo.2011.973 21424116
    [Google Scholar]
  120. NguefackA. The effect of the organosulfur garlic compound bisPMB for HPV16 and HPV18 pseudovirus infection in vitro.In: Thesis (MSc (Biomedical Technology))--Cape Peninsula University of Technology, 2020; Cape Peninsula University of Technology2020Available from: http://etd.cput.ac.za/handle/20.500.11838/3206
    [Google Scholar]
  121. KimH.H. MinG. Inhibitory effects of S-allylcysteine on cell proliferation of human cervical cancer cell line, hela.J. Life Sci.201525439740510.5352/JLS.2015.25.4.397
    [Google Scholar]
  122. RajaK. VigneshA. LavanyaP. RaviM. SelvakumarS. VasanthK. Organosulfur compound identified from striga angustifolia (D. Don) C.J. saldanha inhibits lung cancer growth and induces apoptosis via p53/mTOR signaling pathway.Appl. Biochem. Biotechnol.2023195127277729710.1007/s12010‑023‑04467‑0 36995657
    [Google Scholar]
  123. IbrahimM. AdegboyegaA. AdegboroR. IlomuanyaM. AbdulkareemF. Flavonoid and organosulphur phytoconstituents from allium sativum inhibits antiapoptotic protein Bcl-2: A computational molecular modeling study.JCO Glob. Oncol.20228Suppl. 1252510.1200/GO.22.31000
    [Google Scholar]
  124. SarkarD. Kumar MaitiA. Virtual screening and molecular docking studies with organosulfur and flavonoid compounds of garlic targeting the estrogen receptor protein for the therapy of breast cancer.Biointerface Res. Appl. Chem.20221314910.33263/BRIAC131.049
    [Google Scholar]
  125. MandićB. SimićK. TrifunovićS. VujisićL. NovakovićM. TeševićV. MiljanićO.Š. Inhibition potency of disulphides and trisulphides on various tumor cell lines growth.Dig. J. Nanomater. Biostruct.202116258559210.15251/DJNB.2021.162.585
    [Google Scholar]
  126. GuillamónE. In vitro antitumor and anti-inflammatory activities of allium-derived compounds propyl propane thiosulfonate (PTSO) and propyl propane thiosulfinate (PTS).Nutrients2023156136310.3390/nu15061363 36986093
    [Google Scholar]
  127. SarkarD. GangulyA. Molecular docking studies with garlic phytochemical constituents to inhibit the human EGFR protein for lung cancer therapy.Int. J. Pharma Bio Sci.202213210.22376/Ijpbs.2022.13.2.b1‑14
    [Google Scholar]
  128. LuJ.J. BaoJ.L. ChenX.P. HuangM. WangY.T. Alkaloids isolated from natural herbs as the anticancer agents.Evid. Based Complement. Alternat. Med.2012201211210.1155/2012/485042 22988474
    [Google Scholar]
  129. BatesD. EastmanA. Microtubule destabilising agents: Far more than just antimitotic anticancer drugs.Br. J. Clin. Pharmacol.201783225526810.1111/bcp.13126 27620987
    [Google Scholar]
  130. GeziciS. ŞekeroğluN. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents.Anticancer. Agents Med. Chem.201919110111110.2174/1871520619666181224121004 30582485
    [Google Scholar]
  131. LouC. YokoyamaS. SaikiI. HayakawaY. Selective anticancer activity of hirsutine against HER2-positive breast cancer cells by inducing DNA damage.Oncol. Rep.20153342072207610.3892/or.2015.3796 25672479
    [Google Scholar]
  132. HabliZ. ToumiehG. FatfatM. RahalO. Gali-MuhtasibH. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms.Molecules201722225010.3390/molecules22020250 28208712
    [Google Scholar]
  133. BhateliaK. SinghA. TomarD. SinghK. SripadaL. ChagtooM. PrajapatiP. SinghR. GodboleM.M. SinghR. Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death.Biochim. Biophys. Acta Mol. Basis Dis.20141842214415310.1016/j.bbadis.2013.11.006 24239807
    [Google Scholar]
  134. ShihY.W. ShiehJ.M. WuP.F. LeeY.C. ChenY.Z. ChiangT.A. α-Tomatine inactivates PI3K/Akt and ERK signaling pathways in human lung adenocarcinoma A549 cells: Effect on metastasis.Food Chem. Toxicol.20094781985199510.1016/j.fct.2009.05.011 19457446
    [Google Scholar]
  135. RudnerJ. ElsaesserS.J. MüllerA.C. BelkaC. JendrossekV. Differential effects of anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2, and Bcl-xL on Celecoxib-induced apoptosis.Biochem. Pharmacol.2010791102010.1016/j.bcp.2009.07.021 19665451
    [Google Scholar]
  136. GiacintiC. GiordanoA. RB and cell cycle progression.Oncogene200625385220522710.1038/sj.onc.1209615 16936740
    [Google Scholar]
  137. SajadianS. VatankhahM. MajdzadehM. KouhsariS.M. GhahremaniM.H. OstadS.N. Cell cycle arrest and apoptogenic properties of opium alkaloids noscapine and papaverine on breast cancer stem cells.Toxicol. Mech. Methods201525538839510.3109/15376516.2015.1045656 25980655
    [Google Scholar]
  138. WaziriP.M. AbdullahR. YeapS.K. OmarA.R. KassimN.K. MalamiI. HowC.W. EttiI.C. AbuM.L. Clausenidin induces caspase-dependent apoptosis in colon cancer.BMC Complement. Altern. Med.201616125610.1186/s12906‑016‑1247‑1 27473055
    [Google Scholar]
  139. UcheF.I. DrijfhoutF.P. McCullaghJ. RichardsonA. LiW.W. Cytotoxicity effects and apoptosis induction by bisbenzylisoquinoline alkaloids from Triclisia subcordata.Phytother. Res.20163091533153910.1002/ptr.5660 27270992
    [Google Scholar]
  140. ZhuH. GooderhamN.J. Mechanisms of induction of cell cycle arrest and cell death by cryptolepine in human lung adenocarcinoma a549 cells.Toxicol. Sci.200691113213910.1093/toxsci/kfj146 16510557
    [Google Scholar]
  141. MatsuiT. SowaY. MurataH. TakagiK. NakanishiR. AokiS. YoshikawaM. KobayashiM. SakabeT. KuboT. SakaiT. The plant alkaloid cryptolepine induces p21WAF1/CIP1 and cell cycle arrest in a human osteosarcoma cell line.Int. J. Oncol.200731491592210.3892/ijo.31.4.915 17786325
    [Google Scholar]
  142. XuG.B. HeG. BaiH.H. YangT. ZhangG.L. WuL.W. LiG.Y. Indole alkaloids from Chaetomium globosum.J. Nat. Prod.20157871479148510.1021/np5007235 26125976
    [Google Scholar]
  143. SiP. ChenH. LiuJ. ZhangE. LiC. GuJ. WangR. LiW. Identification of (S)-10-Hydroxycamptothecin as a potent BRD4 inhibitor for treating triple-negative breast cancer.J. Mol. Struct.2022126513336613336610.1016/j.molstruc.2022.133366
    [Google Scholar]
  144. ItoC. ItoigawaM. SatoA. HasanC.M. RashidM.A. TokudaH. MukainakaT. NishinoH. FurukawaH. Chemical constituents of Glycosmis arborea: Three new carbazole alkaloids and their biological activity.J. Nat. Prod.20046791488149110.1021/np0400611 15387647
    [Google Scholar]
  145. OjimaI. LichtenthalB. LeeS. WangC. WangX. Taxane anticancer agents: A patent perspective.Expert Opin. Ther. Pat.201626112010.1517/13543776.2016.1111872 26651178
    [Google Scholar]
  146. GerullisH. EckeT. EimerC. WishahiM. OttoT. Vinflunine as second-line treatment in platin-resistant metastatic urothelial carcinoma.Anticancer Drugs201122191710.1097/CAD.0b013e3283404db0 20948429
    [Google Scholar]
  147. TalliniL.R. Machado das NevesG. VendruscoloM.H. Rezende-TeixeiraP. BorgesW. BastidaJ. Costa-LotufoL.V. Eifler-LimaV.L. ZuanazziJ.A.S. Antitumoral activity of different Amaryllidaceae alkaloids: In vitro and in silico assays.J. Ethnopharmacol.202432911815411815410.1016/j.jep.2024.118154 38614259
    [Google Scholar]
  148. de PaivaP.P. NunesJ.H.B. NonatoF.R. RuizA.L.T.G. ZafredR.R.T. SousaI.M.O. OkuboM.Y. KawanoD.F. MonteiroP.A. FoglioM.A. CarvalhoJ.E. In silico, in vitro, and in vivo antitumor and anti-inflammatory evaluation of a standardized alkaloid-enriched fraction obtained from Boehmeria caudata Sw. aerial parts.Molecules20202517401810.3390/molecules25174018 32899132
    [Google Scholar]
  149. PengR. XuM. XieB. MinQ. HuiS. DuZ. LiuY. YuW. WangS. ChenX. YangG. BaiZ. XiaoX. QinS. Insights on antitumor activity and mechanism of natural benzophenanthridine alkaloids.Molecules20232818658810.3390/molecules28186588 37764364
    [Google Scholar]
  150. TungB.T. SonN.N. KimN.B. KhanhD.T.H. MinhP.H. In silico screening of alkaloids as potential inhibitors of HER2 protein for breast cancer treatment.Vietnam J. Chem.202361330831710.1002/vjch.202200135
    [Google Scholar]
  151. AgarwalT. Priya ManivannanH. Selective plant alkaloids as potential inhibitors of PARP in pancreatic cancer- An in silico study.Indian J. Biochem. Biophys.202310.56042/ijbb.v60i7.90
    [Google Scholar]
  152. TrujilloL. BedoyaJ. CortésN. OsorioE.H. GallegoJ.C. LeivaH. CastroD. OsorioE. Cytotoxic activity of amaryllidaceae plants against cancer cells: Biotechnological, in vitro, and in silico approaches.Molecules2023286260110.3390/molecules28062601 36985571
    [Google Scholar]
  153. TuzimskiT. PetruczynikA. KaprońB. PlechT. Makuch-KockaA. JaniszewskaD. SugajskiM. BuszewskiB. Szultka-MłyńskaM. In vitro and in silico of cholinesterases inhibition and in vitro and in vivo anti-melanoma activity investigations of extracts obtained from selected berberis species.Molecules2024295104810.3390/molecules29051048 38474561
    [Google Scholar]
  154. NazeamJ.A. BoshraS.A. MohammedE.Z. El GizawyH.A. Bio-guided assay of Ephedra foeminea forssk extracts and anticancer activities: In vivo, in vitro, and in silico evaluations.Molecules202329119919910.3390/molecules29010199 38202783
    [Google Scholar]
  155. Al-ZahraniM.H. AlghamdiR.A. In silico molecular docking analysis of the potential role of reticuline and coclaurine as anti-colorectal cancer alkaloids.J. Pharm. Res. Int.2022341A334210.9734/jpri/2022/v34i1A35344
    [Google Scholar]
  156. Carmo BastosM.L. Silva-SilvaJ.V. Neves CruzJ. Palheta da SilvaA.R. Bentaberry-RosaA.A. da Costa RamosG. de Sousa SiqueiraJ.E. Coelho-FerreiraM.R. PercárioS. Santana Barbosa MarinhoP. MarinhoA.M.R. de Oliveira BahiaM. DolabelaM.F. Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) induce apoptosis by caspase pathway in human gastric cancer cells.Pharmaceuticals (Basel)202316576510.3390/ph16050765 37242548
    [Google Scholar]
  157. SainiN. GrewalA.S. LatherV. GahlawatS.K. Natural alkaloids targeting EGFR in non-small cell lung cancer: Molecular docking and ADMET predictions.Chem. Biol. Interact.202235810990110.1016/j.cbi.2022.109901 35341731
    [Google Scholar]
  158. PaulA. LimonM.B.H. HossainM.M. RazaM.T. An integrated computational approach to screening of alkaloids inhibitors of TBX3 in breast cancer cell lines.J. Biomol. Struct. Dyn.20234173025304110.1080/07391102.2022.2046166 35253621
    [Google Scholar]
  159. RenadiS. The potency of alkaloid derivates as anti-breast cancer candidates: In silico study.Jurnal Kimia VALENSI2023918910810.15408/jkv.v9i1.31481
    [Google Scholar]
  160. AzonsivoR. AlbuquerqueK.C.O. CastroA.L.G. Correa-BarbosaJ. SouzaH.J.R. Almada-VilhenaA.O. FerreiraG.G. SouzaA.A. MarinhoA.M.R. PercarioS. NagamachiC.Y. PieczarkaJ.C. DolabelaM.F. Cytotoxicity and genotoxicity evaluation of Zanthoxylum rhoifolium Lam and in silico studies of its alkaloids.Molecules202328145336533610.3390/molecules28145336 37513210
    [Google Scholar]
  161. TungB.T. DungP.T.K. SonN.N. KimN.B. HaN.H. TraN.T. In silico screening of alkaloids as potential inhibitors of epidermal growth factor receptor.Ministry of Science and Technology, Vietnam2023653859010.31276/VJSTE.65(3).85‑90
    [Google Scholar]
  162. TungB.T. ThuyN.T. HuongL.T. MaiT.H. HaV.M. KhanhD.T.H. In vitro and in silico cytotoxicity effects of Zanthoxylum simulans Hance. fruit bark extract against gastric cancer cell lines.J. Res. Pharm.202428111012510.29228/jrp.680
    [Google Scholar]
  163. GholamiF. SeyedalipourB. Heidari-KalvaniN. Nabi-AfjadiM. Yaghoubzad-MalekiM. FathiZ. AlipourfardI. BarjestehF. BahreiniE. Catharanthine, an anticancer vinca alkaloid: An in silico and in vitro analysis of the autophagic system as the major mechanism of cell death in liver HepG2 cells.Naunyn Schmiedebergs Arch. Pharmacol.2024397118879889210.1007/s00210‑024‑03191‑8 38856913
    [Google Scholar]
  164. LinZ. HuangC.F. LiuX.S. JiangJ. In vitro anti-tumour activities of quinolizidine alkaloids derived from Sophora flavescens Ait.Basic Clin. Pharmacol. Toxicol.2011108530430910.1111/j.1742‑7843.2010.00653.x 21159130
    [Google Scholar]
  165. PandeyK.B. RizviS.I. Plant polyphenols as dietary antioxidants in human health and disease.Oxid. Med. Cell. Longev.20092527027810.4161/oxim.2.5.9498 20716914
    [Google Scholar]
  166. ShuklaS. GuptaS. Apigenin: A promising molecule for cancer prevention.Pharm. Res.201027696297810.1007/s11095‑010‑0089‑7 20306120
    [Google Scholar]
  167. AsijaR. KumawatR. SharmaD. SagarP. Evaluation of anti -cancer activity of ethanolic extract of spinacia oleracea by high throughput screening.Int. J. Pharm. Sci. Rev. Res.201533222522710.3390/molecules15107313
    [Google Scholar]
  168. McMurroughI. McDowellJ. Chromatographic separation and automated analysis of flavanols.Anal. Biochem.19789119210010.1016/0003‑2697(78)90819‑9 9762087
    [Google Scholar]
  169. SitarekP. SkałaE. TomaM. WielanekM. SzemrajJ. SkorskiT. BiałasA.J. SakowiczT. KowalczykT. RadekM. WysokińskaH. ŚliwińskiT. Transformed root extract of leonurus sibiricus induces apoptosis through intrinsic and extrinsic pathways in various grades of human glioma cells.Pathol. Oncol. Res.201723367968710.1007/s12253‑016‑0170‑6 28032310
    [Google Scholar]
  170. AbotalebM. LiskovaA. KubatkaP. BüsselbergD. Therapeutic potential of plant phenolic acids in the treatment of cancer.Biomolecules202010222110.3390/biom10020221 32028623
    [Google Scholar]
  171. CavalcanteF.M.L. AlmeidaI.V. DüsmanE. MantovaniM.S. VicentiniV.E.P. Cytotoxicity, mutagenicity, and antimutagenicity of the gentisic acid on HTC cells.Drug Chem. Toxicol.201841215516110.1080/01480545.2017.1322606 28511592
    [Google Scholar]
  172. A AltinozM. Elmaciİ. OzpinarA. Gentisic acid, a quinonoid aspirin metabolite in cancer prevention and treatment. New horizons in management of brain tumors and systemic cancers.Journal of Cancer Research and Oncobiology20181210.31021/jcro.20181109
    [Google Scholar]
  173. SezerE.D. OktayL.M. KaradadaşE. MemmedovH. Selvi GunelN. SözmenE. Assessing anticancer potential of blueberry flavonoids, quercetin, kaempferol, and gentisic acid, through oxidative stress and apoptosis parameters on HCT-116 cells.J. Med. Food201922111118112610.1089/jmf.2019.0098 31241392
    [Google Scholar]
  174. XieZ. GuoZ. WangY. LeiJ. YuJ. Protocatechuic acid inhibits the growth of ovarian cancer cells by inducing apoptosis and autophagy.Phytother. Res.201832112256226310.1002/ptr.6163 30047559
    [Google Scholar]
  175. QuinnL. GrayS.G. MeaneyS. FinnS. KennyO. HayesM. Sinapinic and protocatechuic acids found in rapeseed: Isolation, characterisation and potential benefits for human health as functional food ingredients.Ir. J. Agric. Food Res.201756110411910.1515/ijafr‑2017‑0012
    [Google Scholar]
  176. PaoliniA. CurtiV. PasiF. MazziniG. NanoR. CapelliE. Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs.Int. J. Oncol.20154641491149710.3892/ijo.2015.2864 25646699
    [Google Scholar]
  177. HeidarianE. KeloushadiM. Ghatreh-SamaniK. ValipourP. The reduction of IL-6 gene expression, pAKT, pERK1/2, pSTAT3 signaling pathways and invasion activity by gallic acid in prostate cancer PC3 cells.Biomed. Pharmacother.20168426426910.1016/j.biopha.2016.09.046 27665471
    [Google Scholar]
  178. AfrinS. GiampieriF. GasparriniM. Forbes-HernándezT.Y. CianciosiD. Reboredo-RodriguezP. AmiciA. QuilesJ.L. BattinoM. The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 1: The suppression of cell proliferation, promotion of apoptosis and arrest of the cell cycle.Food Funct.2018942145215710.1039/C8FO00164B 29645049
    [Google Scholar]
  179. Rezaei-SereshtH. CheshomiH. FalanjiF. Movahedi-MotlaghF. HashemianM. MireskandariE. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study.Avicenna J. Phytomed.20199657458610.22038/AJP.2019.13475 31763216
    [Google Scholar]
  180. AyoubN.M. SiddiqueA.B. EbrahimH.Y. MohyeldinM.M. El SayedK.A. The olive oil phenolic (-)-oleocanthal modulates estrogen receptor expression in luminal breast cancer in vitro and in vivo and synergizes with tamoxifen treatment.Eur. J. Pharmacol.201781010011110.1016/j.ejphar.2017.06.019 28625568
    [Google Scholar]
  181. JamaliT. KavoosiG. JamaliY. MortezazadehS. ArdestaniS.K. In vitro, in vivo, and in silico assessment of radical scavenging and cytotoxic activities of Oliveria decumbens essential oil and its main components.Sci. Rep.20211111428110.1038/s41598‑021‑93535‑8 34253776
    [Google Scholar]
  182. RosaL. JordãoN. Da Costa Pereira SoaresN. DeMesquitaJ. MonteiroM. TeodoroA. Pharmacokinetic, antiproliferative and apoptotic effects of phenolic acids in human colon adenocarcinoma cells using in vitro and in silico approaches.Molecules20182310256910.3390/molecules23102569 30297681
    [Google Scholar]
  183. MediniF. KsouriR. MsaadaK. LegaultJ. Phenolic compounds from Limonium densiflorum: A multifaceted approach to antioxidant, anti-inflammatory, anticancer, and anti-influenza activities.Int. J. Environ. Health Res.202411110.1080/09603123.2024.2342572 38656221
    [Google Scholar]
  184. AhmedS. RakibA. IslamM.A. KhanamB.H. FaizF.B. PaulA. ChyM.N.U. BhuiyaN.M.M.A. UddinM.M.N. UllahS.M.A. RahmanM.A. EmranT.B. In vivo and in vitro pharmacological activities of Tacca integrifolia rhizome and investigation of possible lead compounds against breast cancer through in silico approaches.Clinical Phytoscience2019513610.1186/s40816‑019‑0127‑x
    [Google Scholar]
  185. SainA. KandasamyT. NaskarD. In silico approach to target PI3K/Akt/mTOR axis by selected Olea europaea phenols in PIK3CA mutant colorectal cancer.J. Biomol. Struct. Dyn.20224021109621097710.1080/07391102.2021.1953603 34296655
    [Google Scholar]
  186. Vélez-VargasL.C. Santa-GonzálezG.A. UribeD. Henao-CastañedaI.C. Pedroza-DíazJ. In vitro and in silico study on the impact of chlorogenic acid in colorectal cancer cells: Proliferation, apoptosis, and interaction with β-catenin and LRP6.Pharmaceuticals (Basel)202316227610.3390/ph16020276 37259421
    [Google Scholar]
  187. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010.J. Nat. Prod.201275331133510.1021/np200906s 22316239
    [Google Scholar]
  188. AqilF. MunagalaR. AgrawalA.K. GuptaR. Chapter 10 - Anticancer phytocompounds: Experimental and clinical updates. Anticancer Phytocompounds - New Look to Phytomedicines.Academic Press201923727210.1016/B978‑0‑12‑814619‑4.00010‑0
    [Google Scholar]
  189. Baena RuizR. Salinas HernándezP. Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence.Maturitas201694131910.1016/j.maturitas.2016.08.004 27823732
    [Google Scholar]
  190. Majchrzak-CelińskaA. Studzińska-SrokaE. New avenues and major achievements in phytocompounds research for glioblastoma therapy.Molecules2024297168210.3390/molecules29071682 38611962
    [Google Scholar]
  191. EnricoC. Nanotechnology-based drug delivery of natural compounds and phytochemicals for the treatment of cancer and other diseases.Studies in Natural Products Chemistry2019629112310.1016/B978‑0‑444‑64185‑4.00003‑4
    [Google Scholar]
  192. SubramanianA.P. JaganathanS.K. ManikandanA. PandiarajK.N. NG. SupriyantoE. Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy.RSC Advances2016654482944831410.1039/C6RA07802H
    [Google Scholar]
  193. PebamM. P SR. GangopadhyayM. ThatikondaS. RenganA.K. Terminalia chebula polyphenol and near-infrared dye-loaded poly(lactic acid) nanoparticles for imaging and photothermal therapy of cancer cells.ACS Appl. Bio Mater.20225115333534610.1021/acsabm.2c00724 36288561
    [Google Scholar]
  194. HanH.S. KooS.Y. ChoiK.Y. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging.Bioact. Mater.20221418220510.1016/j.bioactmat.2021.11.027 35310344
    [Google Scholar]
  195. KaurV. KumarM. KumarA. KaurK. DhillonV.S. KaurS. Pharmacotherapeutic potential of phytochemicals: Implications in cancer chemoprevention and future perspectives.Biomed. Pharmacother.20189756458610.1016/j.biopha.2017.10.124 29101800
    [Google Scholar]
  196. FakhriS. MoradiS.Z. YarmohammadiA. NarimaniF. WallaceC.E. BishayeeA. Modulation of TLR/NF-κB/NLRP signaling by bioactive phytocompounds: A promising strategy to augment cancer chemotherapy and immunotherapy.Front. Oncol.20221283407210.3389/fonc.2022.834072 35299751
    [Google Scholar]
  197. LeeJ. HanY. WangW. JoH. KimH. KimS. YangK.M. KimS.J. DhanasekaranD.N. SongY.S. Phytochemicals in cancer immune checkpoint inhibitor therapy.Biomolecules20211181107710.3390/biom11081107 34439774
    [Google Scholar]
  198. SaifiM. AshrafiK. QamarF. AbdinM.Z. Regulatory trends in engineering bioactive-phytocompounds.Plant Sci.202434611216711216710.1016/j.plantsci.2024.112167 38925476
    [Google Scholar]
  199. HeinrichM.A. BansalR. LammersT. ZhangY.S. Michel SchiffelersR. PrakashJ. 3D‐Bioprinted Mini‐Brain: A glioblastoma model to study cellular interactions and therapeutics.Adv. Mater.20193114180659010.1002/adma.201806590 30702785
    [Google Scholar]
  200. RizeqB. GuptaI. IlesanmiJ. AlSafranM. RahmanM.D.M. OuhtitA. The power of phytochemicals combination in cancer chemoprevention.J. Cancer202011154521453310.7150/jca.34374 32489469
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266354680250121154720
Loading
/content/journals/ctmc/10.2174/0115680266354680250121154720
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; apoptosis; cancer cells; Natural compounds; therapeutic agents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test