Skip to content
2000
Volume 25, Issue 20
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

CCN6/WISP3 is a member of the CCN adipokines family that can exert multiple effects on metabolic pathways. So far, the function of CCN6 in the pathogenesis of NAFLD has not been known well. Hence, we aimed to examine CCN6 serum levels in patients with NAFLD compared to healthy individuals and its association with some risk factors for the first time.

Methods

This case-control study measured serum levels of CCN6, TNF-α, IL-6, adiponectin, and fasting insulin using ELISA kits in 88 NAFLD patients and 88 controls. In addition, other biochemical variables, including AST, ALT, lipid profiles, and FBG, were determined using an Auto analyzer instrument.

Results

A remarkable decrease in CCN6 levels was found in the NAFLD patients (1501.9543 ± 483.414 pg/ml) compared to the healthy group (1899.4856 ± 559.704 pg/ml, < 0.001). In NAFLD patients, a negatively notable correlation was observed between CCN6 and the levels of insulin ( = -0.278, = 0.011), HOMA-IR ( = -0.268, = 0.014), as well as TNF-α ( = -0.343, = 0.001). A remarkable association was found between CCN6 and the risk factor of NAFLD in the adjusted model for gender, age, and BMI with OR = 0.867 (95% CI, [0.806-0.931], < 0.001).

Conclusion

Our findings showed a significant reduction in CCN6 levels in the NAFLD patients compared to the healthy group, as well as the developing risk of NAFLD enhanced with the decrease of CCN6 levels.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266334590241217065614
2025-02-11
2025-12-30
Loading full text...

Full text loading...

References

  1. LuoY. LinH. Inflammation initiates a vicious cycle between obesity and nonalcoholic fatty liver disease.Immun. Inflamm. Dis.202191597310.1002/iid3.391 33332766
    [Google Scholar]
  2. CaturanoA. AciernoC. NevolaR. PafundiP.C. GalieroR. RinaldiL. SalvatoreT. AdinolfiL.E. SassoF.C. Non-alcoholic fatty liver disease: From pathogenesis to clinical impact.Processes (Basel)20219113510.3390/pr9010135
    [Google Scholar]
  3. Vancells LujanP. Viñas EsmelE. Sacanella MeseguerE. Overview of non-alcoholic fatty liver disease (NAFLD) and the role of sugary food consumption and other dietary components in its development.Nutrients2021135144210.3390/nu13051442 33923255
    [Google Scholar]
  4. DivellaR. DanieleA. De LucaR. MazzoccaA. RuggieriE. SavinoE. CasamassimaP. SimoneM. SabbaC. ParadisoA. Synergism of adipocytokine profile and ADIPOQ/TNF-α polymorphisms in NAFLD-associated MetS predict colorectal liver metastases outgrowth.Cancer Genomics Proteomics201916651953010.21873/cgp.20154 31659105
    [Google Scholar]
  5. LiuL. ShiZ. JiX. ZhangW. LuanJ. ZahrT. QiangL. Adipokines, adiposity, and atherosclerosis.Cell. Mol. Life Sci.202279527210.1007/s00018‑022‑04286‑2 35503385
    [Google Scholar]
  6. EscotéX. Gómez-ZoritaS. López-YoldiM. Milton-LaskibarI. Fernández-QuintelaA. MartínezJ. Moreno-AliagaM. PortilloM. Role of omentin, vaspin, cardiotrophin-1, TWEAK and NOV/CCN3 in obesity and diabetes development.Int. J. Mol. Sci.2017188177010.3390/ijms18081770 28809783
    [Google Scholar]
  7. OnyangoA.N. Excessive gluconeogenesis causes the hepatic insulin resistance paradox and its sequelae.Heliyon2022812e1229410.1016/j.heliyon.2022.e12294 36582692
    [Google Scholar]
  8. FernandoD.H. ForbesJ.M. AngusP.W. HerathC.B. Development and progression of non-alcoholic fatty liver disease: The role of advanced glycation end products.Int. J. Mol. Sci.20192020503710.3390/ijms20205037 31614491
    [Google Scholar]
  9. TwiggS.M. Regulation and bioactivity of the CCN family of genes and proteins in obesity and diabetes.J. Cell Commun. Signal.201812135936810.1007/s12079‑018‑0458‑2 29411334
    [Google Scholar]
  10. YegerH. CCN proteins: Opportunities for clinical studies—a personal perspective.J. Cell Commun. Signal.202317233335210.1007/s12079‑023‑00761‑y 37195381
    [Google Scholar]
  11. SongY. LiC. LuoY. GuoJ. KangY. YinF. YeL. SunD. YuJ. ZhangX. CCN6 improves hepatic steatosis, inflammation, and fibrosis in non‐alcoholic steatohepatitis.Liver Int.202343235736910.1111/liv.15430 36156376
    [Google Scholar]
  12. JuL. SunY. XueH. ChenL. GuC. ShaoJ. LuR. LuoX. WeiJ. MaX. BianZ. CCN1 promotes hepatic steatosis and inflammation in non-alcoholic steatohepatitis.Sci. Rep.2020101320110.1038/s41598‑020‑60138‑8 32081971
    [Google Scholar]
  13. Pivovarova-RamichO. LoskeJ. HornemannS. MarkovaM. SeebeckN. RosenthalA. KlauschenF. CastroJ. BuschowR. GruneT. LangeV. RudovichN. OuwensD. Hepatic Wnt1 inducible signaling pathway protein 1 (WISP-1/CCN4) associates with markers of liver fibrosis in severe obesity.Cells2021105104810.3390/cells10051048 33946738
    [Google Scholar]
  14. WuW. HuX. ZhouX. KlenoticP.A. ZhouQ. LinZ. Myeloid deficiency of CCN3 exacerbates liver injury in a mouse model of nonalcoholic fatty liver disease.J. Cell Commun. Signal.201812138939910.1007/s12079‑017‑0432‑4 29214510
    [Google Scholar]
  15. NiY. NiL. ZhugeF. XuL. FuZ. OtaT. Adipose tissue macrophage phenotypes and characteristics: The key to insulin resistance in obesity and metabolic disorders.Obesity202028222523410.1002/oby.22674 31903735
    [Google Scholar]
  16. BlüherM. BashanN. ShaiI. Harman-BoehmI. TarnovsckiT. AvinaochE. StumvollM. DietrichA. KlötingN. RudichA. Activated Ask1-MKK4-p38MAPK/JNK stress signaling pathway in human omental fat tissue may link macrophage infiltration to whole-body insulin sensitivity.J. Clin. Endocrinol. Metab.20099472507251510.1210/jc.2009‑0002 19351724
    [Google Scholar]
  17. KefalaG. TziomalosK. Apoptosis signal-regulating kinase-1 as a therapeutic target in nonalcoholic fatty liver disease.Expert Rev. Gastroenterol. Hepatol.201913318919110.1080/17474124.2019.1570136 30791762
    [Google Scholar]
  18. BianZ. PengY. YouZ. WangQ. MiaoQ. LiuY. HanX. QiuD. LiZ. MaX. CCN1 expression in hepatocytes contributes to macrophage infiltration in nonalcoholic fatty liver disease in mice.J. Lipid Res.2013541445410.1194/jlr.M026013 23071295
    [Google Scholar]
  19. LinY. WangY. LiP. PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases.Front. Endocrinol.202213107491110.3389/fendo.2022.1074911 36589809
    [Google Scholar]
  20. BakerN. SharpeP. CulleyK. OteroM. BevanD. NewhamP. BarkerW. ClementsK.M. LanghamC.J. GoldringM.B. GavrilovićJ. Dual regulation of metalloproteinase expression in chondrocytes by Wnt‐1–inducible signaling pathway protein 3/CCN6.Arthritis Rheum.20126472289229910.1002/art.34411 22294415
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266334590241217065614
Loading
/content/journals/ctmc/10.2174/0115680266334590241217065614
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test