Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Diabetes is a highly common chronic disorder of the endocrine system that affects 529 million people globally. Dysfunction of β-cells, impaired insulin secretion, and hyperactive α-cells are the primary reasons for this disease. Conventional therapy might fail since some drugs require specific conditions to achieve their maximum efficacy. Metallopharmaceutics is defined as the branch of pharmaceutics in which the activity of a compound is enhanced by complexation with a suitable metal. Several macrometals, such as copper, and micrometals, such as selenium, are used in this field and combined with organic ligands. Novel synthesis approaches, such as ultrasonication, have been employed to reduce the reaction time and increase the overall product yield. Even if spectral studies confirm the complexation of metals with chemically synthesized organic ligands, less medical evidence of antidiabetic activity exists. Hence, antidiabetic drugs, such as insulin, dapagliflozin, ., exhibit better pharmacodynamics as metallocomplexes than the drugs themselves and have been chosen pharmacologically to act as ligands. Some metallocomplexes are multidimensional because they are not only antidiabetic but also antineoplastic. Thus, metallopharmaceuticals can lead to significant breakthroughs, not only in the treatment of diabetes but also in the pharmacotherapy of various diseases and disorders.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266356941250329172041
2025-04-16
2025-10-24
Loading full text...

Full text loading...

References

  1. The top 10 causes of death.2020Available from: http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death
    [Google Scholar]
  2. OngK.L. StaffordL.K. McLaughlinS.A. BoykoE.J. VollsetS.E. SmithA.E. DaltonB.E. DupreyJ. CruzJ.A. HaginsH. LindstedtP.A. AaliA. AbateY.H. AbateM.D. AbbasianM. Abbasi-KangevariZ. Abbasi-KangevariM. Abd ElHafeezS. Abd-RabuR. AbdulahD.M. AbdullahA.Y.M. AbediV. AbidiH. AboagyeR.G. AbolhassaniH. Abu-GharbiehE. Abu-ZaidA. AdaneT.D. AdaneD.E. AddoI.Y. AdegboyeO.A. AdekanmbiV. AdepojuA.V. AdnaniQ.E.S. AfolabiR.F. AgarwalG. AghdamZ.B. Agudelo-BoteroM. Aguilera ArriagadaC.E. Agyemang-DuahW. AhinkorahB.O. AhmadD. AhmadR. AhmadS. AhmadA. AhmadiA. AhmadiK. AhmedA. AhmedA. AhmedL.A. AhmedS.A. AjamiM. AkinyemiR.O. Al HamadH. Al HasanS.M. AL-AhdalT.M.A. AlalwanT.A. Al-AlyZ. AlBatainehM.T. Alcalde-RabanalJ.E. AlemiS. AliH. AliniaT. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. Alvis-GuzmanN. AmareF. AmeyawE.K. AmiriS. AmusaG.A. AndreiC.L. AnjanaR.M. AnsarA. AnsariG. Ansari-MoghaddamA. AnyasodorA.E. ArablooJ. AravkinA.Y. AredaD. ArifinH. ArkewM. ArmocidaB. ÄrnlövJ. ArtamonovA.A. ArulappanJ. ArulebaR.T. ArumugamA. AryanZ. AsemuM.T. Asghari-JafarabadiM. AskariE. AsmelashD. Astell-BurtT. AtharM. AthariS.S. AtoutM.M.W. Avila-BurgosL. AwaisuA. AzadnajafabadS. BD.B. BabamohamadiH. BadarM. BadawiA. BadiyeA.D. BaghcheghiN. BagheriN. BagheriehS. BahS. BahadoryS. BaiR. BaigA.A. BaltatuO.C. BaradaranH.R. BarchittaM. BardhanM. BarengoN.C. BärnighausenT.W. BaroneM.T.U. Barone-AdesiF. BarrowA. BashiriH. BasiruA. BasuS. BasuS. BatihaA-M.M. BatraK. BayihM.T. BayileyegnN.S. BehnoushA.H. BekeleA.B. BeleteM.A. BelgaumiU.I. BeloL. BennettD.A. BensenorI.M. BerheK. BerhieA.Y. BhaskarS. BhatA.N. BhattiJ.S. BikbovB. BilalF. BintoroB.S. BitarafS. BitraV.R. Bjegovic-MikanovicV. BodolicaV. BoloorA. BrauerM. Brazo-SayaveraJ. BrennerH. ButtZ.A. CalinaD. CamposL.A. Campos-NonatoI.R. CaoY. CaoC. CarJ. CarvalhoM. Castañeda-OrjuelaC.A. Catalá-LópezF. CerinE. ChadwickJ. ChandrasekarE.K. ChanieG.S. CharanJ. ChattuV.K. ChauhanK. CheemaH.A. Chekol AbebeE. ChenS. CherbuinN. ChichagiF. ChidambaramS.B. ChoW.C.S. ChoudhariS.G. ChowdhuryR. ChowdhuryE.K. ChuD-T. ChukwuI.S. ChungS-C. CoberlyK. ColumbusA. ContrerasD. CousinE. CriquiM.H. Cruz-MartinsN. CuschieriS. DaboB. DadrasO. DaiX. DamascenoA.A.M. DandonaR. DandonaL. DasS. DascaluA.M. DashN.R. DashtiM. Dávila-CervantesC.A. De la Cruz-GóngoraV. DebeleG.R. DelpasandK. DemisseF.W. DemissieG.D. DengX. Denova-GutiérrezE. DeoS.V. DerviševićE. DesaiH.D. DesaleA.T. DessieA.M. DestaF. DewanS.M.R. DeyS. DhamaK. DhimalM. DiaoN. DiazD. DinuM. DiressM. DjalaliniaS. DoanL.P. DongarwarD. dos Santos FigueiredoF.W. DuncanB.B. DuttaS. DziedzicA.M. EdinurH.A. EkholuenetaleM. EkundayoT.C. ElgendyI.Y. ElhadiM. El-HuneidiW. ElmeligyO.A.A. ElmonemM.A. EndeshawD. EsayasH.L. EshetuH.B. EtaeeF. FadhilI. FagbamigbeA.F. FahimA. FalahiS. FarisM.A.I.E.M. FarrokhpourH. FarzadfarF. FatehizadehA. FazliG. FengX. FeredeT.Y. FischerF. FloodD. ForouhariA. ForoumadiR. Foroutan KoudehiM. GaidhaneA.M. GaihreS. GaipovA. GalaliY. GanesanB. Garcia-GordilloM.A. GautamR.K. GebrehiwotM. GebrekidanK.G. GebremeskelT.G. GetacherL. GhadirianF. GhamariS-H. Ghasemi NourM. GhassemiF. GolechhaM. GoleijP. GolinelliD. GopalaniS.V. GuadieH.A. GuanS-Y. GudayuT.W. GuimarãesR.A. GuledR.A. GuptaR. GuptaK. GuptaV.B. GuptaV.K. GyawaliB. HaddadiR. HadiN.R. HaileT.G. HajibeygiR. Haj-MirzaianA. HalwaniR. HamidiS. HankeyG.J. HannanM.A. HaqueS. HarandiH. HarliantoN.I. HasanS.M.M. HasanS.S. HasaniH. HassanipourS. HassenM.B. HauboldJ. HayatK. HeidariG. HeidariM. HessamiK. HiraikeY. HollaR. HossainS. HossainM.S. HosseiniM-S. HosseinzadehM. HosseinzadehH. HuangJ. HudaM.N. HussainS. HuynhH-H. HwangB-F. IbitoyeS.E. IkedaN. IlicI.M. IlicM.D. InbarajL.R. IqbalA. IslamS.M.S. IslamR.M. IsmailN.E. IsoH. IsolaG. ItumallaR. IwagamiM. IwuC.C.D. IyamuI.O. IyasuA.N. JacobL. JafarzadehA. JahramiH. JainR. JajaC. JamalpoorZ. JamshidiE. JanakiramanB. JayannaK. JayapalS.K. JayaramS. JayawardenaR. JebaiR. JeongW. JinY. JokarM. JonasJ.B. JosephN. JosephA. JoshuaC.E. JoukarF. JozwiakJ.J. KaambwaB. KabirA. KabthymerR.H. KadashettiV. KaheF. KalhorR. KandelH. KaranthS.D. KarayeI.M. KarkhahS. KatotoP.D.M.C. KaurN. KazemianS. KebedeS.A. KhaderY.S. KhajuriaH. KhalajiA. KhanM.A.B. KhanM. KhanA. KhanalS. KhatatbehM.M. KhaterA.M. KhateriS. khorashadizadehF. KhubchandaniJ. KibretB.G. KimM.S. KimokotiR.W. KisaA. KivimäkiM. KolahiA-A. KomakiS. KompaniF. KoohestaniH.R. KorzhO. KostevK. KothariN. KoyanagiA. KrishanK. KrishnamoorthyY. Kuate DefoB. KuddusM. KuddusM.A. KumarR. KumarH. KunduS. KurniasariM.D. KuttikkattuA. La VecchiaC. LallukkaT. LarijaniB. LarssonA.O. LatiefK. LawalB.K. LeT.T.T. LeT.T.B. LeeS.W.H. LeeM. LeeW-C. LeeP.H. LeeS. LeeS.W. LegesseS.M. LenziJ. LiY. LiM-C. LimS.S. LimL-L. LiuX. LiuC. LoC-H. LopesG. LorkowskiS. LozanoR. LucchettiG. MaghazachiA.A. MahashaP.W. MahjoubS. MahmoudM.A. MahmoudiR. MahmoudimaneshM. MaiA.T. MajeedA. Majma SanayeP. MakrisK.C. MalhotraK. MalikA.A. MalikI. MallhiT.H. MaltaD.C. MamunA.A. MansouriB. MaratebH.R. MardiP. MartiniS. MartorellM. MarzoR.R. MasoudiR. MasoudiS. MathewsE. MaugeriA. MazzagliaG. MekonnenT. MeshkatM. MestrovicT. Miao JonassonJ. MiazgowskiT. MichalekI.M. MinhL.H.N. MiniG.K. MirandaJ.J. MirfakhraieR. MirrakhimovE.M. Mirza-Aghazadeh-AttariM. MisganawA. MisginaK.H. MishraM. MoazenB. MohamedN.S. MohammadiE. MohammadiM. Mohammadian-HafshejaniA. MohammadshahiM. MohseniA. Mojiri-forushaniH. MokdadA.H. MomtazmaneshS. MonastaL. MoniruzzamanM. MonsU. MontazeriF. Moodi GhalibafA.A. MoradiY. MoradiM. Moradi SarabiM. MorovatdarN. MorrisonS.D. MorzeJ. MossialosE. MostafaviE. MuellerU.O. MulitaF. MulitaA. Murillo-ZamoraE. MusaK.I. MwitaJ.C. NagarajuS.P. NaghaviM. NainuF. NairT.S. NajmuldeenH.H.R. NangiaV. NargusS. NaserA.Y. NassereldineH. NattoZ.S. NaumanJ. NayakB.P. NdejjoR. NegashH. NegoiR.I. NguyenH.T.H. NguyenD.H. NguyenP.T. NguyenV.T. NguyenH.Q. NiaziR.K. NigatuY.T. NingrumD.N.A. NizamM.A. NnyanziL.A. NoreenM. NoubiapJ.J. NzoputamO.J. NzoputamC.I. OanceaB. OdogwuN.M. OdukoyaO.O. OjhaV.A. Okati-AliabadH. OkekunleA.P. OkonjiO.C. OkwuteP.G. OlufadewaI.I. OnwujekweO.E. OrdakM. OrtizA. OsuagwuU.L. OulhajA. OwolabiM.O. Padron-MonederoA. PadubidriJ.R. PalladinoR. PanagiotakosD. Panda-JonasS. PandeyA. PandeyA. Pandi-PerumalS.R. Pantea StoianA.M. PardhanS. ParekhT. ParekhU. PasovicM. PatelJ. PatelJ.R. PaudelU. PepitoV.C.F. PereiraM. PericoN. PernaS. PetcuI-R. Petermann-RochaF.E. PodderV. PostmaM.J. PouraliG. PourtaheriN. PratesE.J.S. QadirM.M.F. QatteaI. RaeeP. RafiqueI. RahimiM. RahimifardM. Rahimi-MovagharV. RahmanM.O. RahmanM.A. RahmanM.H.U. RahmanM. RahmanM.M. RahmaniM. RahmaniS. RahmanianV. RahmawatyS. RahnavardN. RajbhandariB. RamP. RamazanuS. RanaJ. RancicN. RanjhaM.M.A.N. RaoC.R. RapakaD. RasaliD.P. RashediS. RashediV. RashidA.M. RashidiM-M. RatanZ.A. RawafS. RawalL. RedwanE.M.M. RemuzziG. RengasamyK.R.R. RenzahoA.M.N. ReyesL.F. RezaeiN. RezaeiN. RezaeianM. RezazadehH. RiahiS.M. RiasY.A. RiazM. RibeiroD. RodriguesM. RodriguezJ.A.B. RoeverL. RohloffP. RoshandelG. RoustazadehA. RwegereraG.M. SaadA.M.A. Saber-AyadM.M. SabourS. SabzmakanL. SaddikB. SadeghiE. SaeedU. Saeedi MoghaddamS. SafiS. SafiS.Z. SaghazadehA. Saheb Sharif-AskariN. Saheb Sharif-AskariF. SahebkarA. SahooS.S. SahooH. Saif-Ur-RahmanK.M. SajidM.R. SalahiS. SalahiS. SalehM.A. SalehiM.A. SalomonJ.A. SanabriaJ. SanjeevR.K. SanmarchiF. Santric-MilicevicM.M. SarasmitaM.A. SargaziS. SathianB. SathishT. SawhneyM. SchlaichM.P. SchmidtM.I. SchuermansA. SeiduA-A. Senthil KumarN. SepanlouS.G. SethiY. SeylaniA. ShabanyM. ShafaghatT. ShafeghatM. ShafieM. ShahN.S. ShahidS. ShaikhM.A. ShanawazM. ShannawazM. SharfaeiS. ShashamoB.B. ShiriR. ShittuA. ShivakumarK.M. ShivalliS. ShobeiriP. ShokriF. ShuvalK. SibhatM.M. SilvaL.M.L.R. SimpsonC.R. SinghJ.A. SinghP. SinghS. SirajM.S. SkryabinaA.A. SohagA.A.M. SoleimaniH. SolikhahS. Soltani-ZangbarM.S. SomayajiR. SorensenR.J.D. StarodubovaA.V. SujataS. SulemanM. SunJ. SundströmJ. Tabarés-SeisdedosR. TabatabaeiS.M. TabatabaeizadehS-A. TabishM. TaheriM. TaheriE. TakiE. TamuziJ.J.L.L. TanK-K. TatN.Y. TayeB.T. TemesgenW.A. TemsahM-H. TeslerR. ThangarajuP. ThankappanK.R. ThapaR. TharwatS. ThomasN. TicoaluJ.H.V. TiyuriA. TonelliM. Tovani-PaloneM.R. TricoD. TrihandiniI. TripathyJ.P. TromansS.J. TsegayG.M. TualekaA.R. TufaD.G. TyrovolasS. UllahS. UpadhyayE. VahabiS.M. VaithinathanA.G. ValizadehR. van DaalenK.R. VartP. VarthyaS.B. VasankariT.J. VaziriS. VermaM. VerrasG-I. VoD.C. WagayeB. WaheedY. WangZ. WangY. WangC. WangF. WassieG.T. WeiM.Y.W. WeldemariamA.H. WestermanR. WickramasingheN.D. WuY.F. WulandariR.D.W.I. XiaJ. XiaoH. XuS. XuX. YadaD.Y. YangL. YatsuyaH. YesiltepeM. YiS. YohannisH.K. YonemotoN. YouY. ZamanS.B. ZamoraN. ZareI. ZareaK. ZarrintanA. ZastrozhinM.S. ZeruN.G. ZhangZ-J. ZhongC. ZhouJ. ZielińskaM. ZikargY.T. ZodpeyS. ZoladlM. ZouZ. ZumlaA. ZunigaY.M.H. MaglianoD.J. MurrayC.J.L. HayS.I. VosT. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021.Lancet20234021039720323410.1016/S0140‑6736(23)01301‑637356446
    [Google Scholar]
  3. Epidemiology of diabetes mellitus. OrlandoG. PiemontiL. RicordiC. StrattaR.J. GruessnerR.W.G. Eds.;Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas.Cambridge, United States of AmericaAcademic Press2020495810.1016/B978‑0‑12‑814833‑4.00004‑6
    [Google Scholar]
  4. KaramanouM. ProtogerouA. TsoucalasG. AndroutsosG. Poulakou-RebelakouE. Milestones in the history of diabetes mellitus: The main contributors.World J. Diabetes2016711710.4239/wjd.v7.i1.1 26788261
    [Google Scholar]
  5. EkanayakeP. MudaliarS. Changing the diabetes treatment paradigm from glucose control to cardiorenal protection.Indian J. Med. Res.2021154565565710.4103/ijmr.ijmr_3114_21 35532581
    [Google Scholar]
  6. OgrotisI. KoufakisT. KotsaK. Changes in the global epidemiology of type 1 diabetes in an evolving landscape of environmental factors: Causes, challenges, and opportunities.Medicina202359466810.3390/medicina59040668 37109626
    [Google Scholar]
  7. AliJ. HaiderS.M.S. AliS.M. HaiderT. AnwarA. HashmiA.A. Overall clinical features of type 2 diabetes mellitus with respect to gender.Cureus2023153e3577110.7759/cureus.35771 37020489
    [Google Scholar]
  8. KabirE. NoyonM.R.O.K. HossainM.A. Synthesis, biological and medicinal impacts of metallodrugs: A study.Results in Chemistry2023510093510.1016/j.rechem.2023.100935
    [Google Scholar]
  9. WestmanE.C. Type 2 diabetes mellitus: A pathophysiologic perspective.Front. Nutr.2021870737110.3389/fnut.2021.707371 34447776
    [Google Scholar]
  10. BandayM.Z. SameerA.S. NissarS. Pathophysiology of diabetes: An overview.Avicenna J. Med.202010417418810.4103/ajm.ajm_53_20 33437689
    [Google Scholar]
  11. AndělM. NěmcováV. PavlíkováN. UrbanováJ. CechákováM. HavlováA. StrakováR. VečeřováL. MandysV. KovářJ. HenebergP. TrnkaJ. PolákJ. [Factors causing damage and destruction of beta-cells of the islets of Langerhans in the pancreas.Vnitr. Lek.2014609684690 25294754
    [Google Scholar]
  12. NakamuraA. TerauchiY. Impaired insulin secretion and related factors in East Asian individuals.J. Diabetes Investig.202213223323510.1111/jdi.13650 34453417
    [Google Scholar]
  13. Diep NguyenT.M. Adiponectin: Role in physiology and pathophysiology.Int. J. Prev. Med.202011113610.4103/ijpvm.IJPVM_193_20 33088464
    [Google Scholar]
  14. CantleyJ. Ashcroft, F.M. Q&A: insulin secretion and type 2 diabetes: Why do β-cells fail?BMC Biol.20151313310.1186/s12915‑015‑0140‑6 25982967
    [Google Scholar]
  15. Omar-HmeadiM. LundP.E. GandasiN.R. TengholmA. BargS. Paracrine control of α-cell glucagon exocytosis is compromised in human type-2 diabetes.Nat. Commun.2020111189610.1038/s41467‑020‑15717‑8 32312960
    [Google Scholar]
  16. LeeY.H. WangM.Y. YuX.X. UngerR.H. Glucagon is the key factor in the development of diabetes.Diabetologia20165971372137510.1007/s00125‑016‑3965‑9 27115412
    [Google Scholar]
  17. ErenF DemirA ErenG Pramipexole-associated syndrome of inappropriate antidiuretic hormone secretion.Namik Kemal Med J.20208353754010.37696/nkmj.750441
    [Google Scholar]
  18. HædersdalS. LundA. KnopF.K. VilsbøllT. The role of glucagon in the pathophysiology and treatment of type 2 diabetes.Mayo Clin. Proc.201893221723910.1016/j.mayocp.2017.12.003 29307553
    [Google Scholar]
  19. MutterC.M. SmithT. MenzeO. ZakhariaM. NguyenH. Diabetes insipidus: Pathogenesis, diagnosis, and clinical management.Cureus2021132e1352310.7759/cureus.13523 33786230
    [Google Scholar]
  20. SparapaniS. Millet-BoureimaC. OliverJ. MuK. HadaviP. KalostianT. AliN. AvelarC.M. BardiesM. BarrowB. BenediktM. BiancardiG. BindraR. BuiL. ChihabZ. CossittA. CostaJ. DaigneaultT. DaultJ. DavidsonI. DiasJ. DufourE. El-KhouryS. FarhangdoostN. ForgetA. FoxA. GebraelM. GentileM.C. GeraciO. GnanapragasamA. GomahE. HaberE. HamelC. IyankerT. KalantzisC. KamaliS. KassardjianE. KontosH.K. LeT.B.U. LoScerboD. LowY.F. Mac RaeD. MaurerF. MazharS. NguyenA. Nguyen-DuongK. Osborne-LarocheC. ParkH.W. ParolinE. Paul-ColeK. PeerL.S. PhilipponM. PlaisirC.A. Porras MarroquinJ. PrasadS. RamsarunR. RazzaqS. RhaindsS. RobinD. ScartozziR. SinghD. FardS.S. SorokoM. Soroori MotlaghN. SternK. ToroL. ToureM.W. Tran-HuynhS. Trépanier-ChicoineS. WaddinghamC. WeekesA.J. WisniewskiA. GamberiC. The biology of vasopressin.Biomedicines2021918910.3390/biomedicines9010089 33477721
    [Google Scholar]
  21. PriyaG. KalraS. DasguptaA. GrewalE. Diabetes insipidus: A pragmatic approach to management.Cureus2021131e1249810.7759/cureus.12498 33425560
    [Google Scholar]
  22. SandsJ.M. BlountM.A. KleinJ.D. Regulation of renal urea transport by vasopressin.Trans. Am. Clin. Climatol. Assoc.20111228292 21686211
    [Google Scholar]
  23. WaughA. GrantA. , Eds.;Ross and Wilson Anatomy and Physiology Coloouring and Workbook.12th edEdinburgh, United KingdomChurchill Livingstone2014
    [Google Scholar]
  24. PaschouS.A. Papadopoulou-MarketouN. ChrousosG.P. Kanaka-GantenbeinC. On type 1 diabetes mellitus pathogenesis.Endocr. Connect.201871R38R4610.1530/EC‑17‑0347 29191919
    [Google Scholar]
  25. FASTSTATS - Leading causes of death. Centers for disease control and prevention.Available from: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.html
    [Google Scholar]
  26. MoosaviA. Motevalizadeh ArdekaniA. Role of epigenetics in biology and human diseases.Iran. Biomed. J.201620524625810.1007/10.22045/ibj.2016.01 27377127
    [Google Scholar]
  27. JerramS.T. DangM.N. LeslieR.D. The role of epigenetics in type 1 diabetes.Curr. Diab. Rep.201717108910.1007/s11892‑017‑0916‑x 28815391
    [Google Scholar]
  28. BurrackA.L. MartinovT. FifeB.T. T cell-mediated beta cell destruction: Autoimmunity and alloimmunity in the context of type 1 diabetes.Front. Endocrinol.2017834310.3389/fendo.2017.00343 29259578
    [Google Scholar]
  29. ShizuruJ.A. Taylor-EdwardsC. BanksB.A. GregoryA.K. FathmanC.G. Immunotherapy of the nonobese diabetic mouse: Treatment with an antibody to T-helper lymphocytes.Science1988240485265966210.1126/science.2966437 2966437
    [Google Scholar]
  30. RoepB.O. ThomaidouS. van TienhovenR. ZaldumbideA. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?).Nat. Rev. Endocrinol.202117315016110.1038/s41574‑020‑00443‑4 33293704
    [Google Scholar]
  31. BaiJ. LiuF. The CGAS-CGAMP-STING pathway: A molecular link between immunity and metabolism.Diabetes20196861099110810.2337/dbi18‑0052 31109939
    [Google Scholar]
  32. Skopelja-GardnerS. AnJ. ElkonK.B. Role of the cGAS–STING pathway in systemic and organ-specific diseases.Nat. Rev. Nephrol.202218955857210.1038/s41581‑022‑00589‑6 35732833
    [Google Scholar]
  33. HeW. MuX. WuX. LiuY. DengJ. LiuY. HanF. NieX. The cGAS-STING pathway: A therapeutic target in diabetes and its complications.Burns Trauma202412tkad05010.1093/burnst/tkad050 38312740
    [Google Scholar]
  34. GengK. MaX. JiangZ. HuangW. GuJ. WangP. LuoL. XuY. XuY. High glucose-induced STING activation inhibits diabetic wound healing through promoting M1 polarization of macrophages.Cell Death Discov.20239113610.1038/s41420‑023‑01425‑x 37100799
    [Google Scholar]
  35. CaiZ. YangY. ZhongJ. JiY. LiT. LuoJ. HuS. LuoH. WuY. LiuF. ZhangJ. cGAS suppresses β-cell proliferation by a STING-independent but CEBPβ-dependent mechanism.Metabolism202415715593310.1016/j.metabol.2024.155933 38729601
    [Google Scholar]
  36. Galicia-GarcíaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275 32872570
    [Google Scholar]
  37. TeimouriM. HosseiniH.; ArabSadeghabadi, Z.; Babaei-Khorzoughi, R.; Gorgani-Firuzjaee, S.; Meshkani, R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications.J. Physiol. Biochem.202278230732210.1007/s13105‑021‑00860‑7 34988903
    [Google Scholar]
  38. ShanZ. FaW.H. TianC.R. YuanC.S. JieN. Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment.Aging20221462902291910.18632/aging.203969 35332108
    [Google Scholar]
  39. Toll-like receptors in SLE. In: Lahita, R.G.; Tsokos, G.; Buyon, J.P.; Koike, T., Eds.; Systemic Lupus Erythematosus, 5th ed; Academic Press: Cambridge, United States of America, 2011; pp. 291- 306.
  40. ZhouZ. SunB. YuD. ZhuC. Gut microbiota: An important player in type 2 diabetes mellitus.Front. Cell. Infect.20221283448510.3389/fcimb.2022.834485
    [Google Scholar]
  41. IacobucciI. La MannaS. CipolloneI. MonacoV. CanèL. CozzolinoF. From the discovery of targets to delivery systems: How to decipher and improve the metallodrugs’ actions at a molecular level.Pharmaceutics2023157199710.3390/pharmaceutics15071997 37514183
    [Google Scholar]
  42. AzamA. RazaM.A. SumrraS.H. Therapeutic application of zinc and vanadium complexes against diabetes mellitus a coronary disease: A review.Open Chem.20181611153116510.1515/chem‑2018‑0118
    [Google Scholar]
  43. CransD.C. Antidiabetic, chemical, and physical properties of organic vanadates as presumed transition-state inhibitors for phosphatases.J. Org. Chem.20158024118991191510.1021/acs.joc.5b02229 26544762
    [Google Scholar]
  44. SzklarzewiczJ. JurowskaA. HodorowiczM. KazekG. MordylB. MenaszekE. SapaJ. Characterization and antidiabetic activity of salicylhydrazone Schiff base vanadium(IV) and (V) complexes.Trans. Met. Chem.202146320121710.1007/s11243‑020‑00437‑1
    [Google Scholar]
  45. ZhangH. YiY. FengD. WangY. QinS. Hypoglycemic properties of Oxovanadium (IV) coordination compounds with carboxymethyl‐carrageenan and carboxymethyl‐chitosan in alloxan‐induced diabetic mice.Evid. Based Complement. Alternat. Med.20112011169106710.1155/2011/691067 21804857
    [Google Scholar]
  46. VilvanathaprabuA. RavikumarB. PerumalS. Synthesis of vanadium ferrite nanoparticles by microwave assisted technique.J. Phys. Conf. Ser.20201644101203410.1088/1742‑6596/1644/1/012034
    [Google Scholar]
  47. MaanvizhiS. BopannaT. KrishnanC. ArumugamG. Metal complexes in the management of diabetes mellitus: A new therapeutic strategy.Int. J. Pharm. Pharm. Sci.2014674044Available from: https://journals.innovareacademics.in/index.php/ijpps/article/view/1778
    [Google Scholar]
  48. TanakaC. NaitoY. YoshikawaY. YasuiH. Syntheses of Cu(II), Ni(II), and Zn(II) complexes with 2-acetylpyrazine N(4)-phenylthiosemicarbazone and evaluation of their antidiabetic effects.Metallomics Res.202332112
    [Google Scholar]
  49. LakshmiS.S. GeethaK. GayathriM. ShanmugamG. Synthesis, crystal structures, spectroscopic characterization and in vitro antidiabetic studies of new Schiff base Copper(II) complexes.J. Chem. Sci.201612871095110210.1007/s12039‑016‑1099‑8
    [Google Scholar]
  50. Arenaza-CoronaA. Obregón-MendozaM.A. Meza-MoralesW. Ramírez-ApanM.T. Nieto-CamachoA. ToscanoR.A. Pérez-GonzálezL.L. Sánchez-ObregónR. EnríquezR.G. The homoleptic curcumin–copper single crystal (ML2): A long awaited breakthrough in the field of curcumin metal complexes.Molecules20232816603310.3390/molecules28166033 37630284
    [Google Scholar]
  51. OladipoM.A. OjoA.O. IsholaK.T. AdepojuA.J. In vitro evaluation of alpha-glucosidase and alpha-amylase inhibitory activity of Copper (II) complex of king of bitters crude extract.World News Nat. Sci.2023493850
    [Google Scholar]
  52. AlarabiH.I. SuayedW.A. Microwave assisted synthesis, characterization, and antimicrobial studies of transition metal complexes of schiff base ligand derived from isoniazid with 2- hydroxynaphthaldehyde.J. Chem. Pharm. Res.201461595602
    [Google Scholar]
  53. MousaviS.A. MontazerozohoriM. MasoudiaslA. MahmoudiG. WhiteJ.M. Sonication-assisted synthesis of a new cationic zinc nitrate complex with a tetradentate Schiff base ligand: Crystal structure, Hirshfeld surface analysis and investigation of different parameters influence on morphological properties.Ultrason. Sonochem.201846263510.1016/j.ultsonch.2018.02.050 29739510
    [Google Scholar]
  54. ChukwumaC.I. MatowaneG.R. RamorobiL.M. MasheleS.S. BonnetS.L. NoreljaleelA.E.M. SwainS.S. MakhafolaT.J. Novel Caffeic Acid - Zinc acetate complex: Studies on promising antidiabetic and antioxidative synergism through complexation.Med. Chem.202319214716210.2174/1573406418666220620144601 35726433
    [Google Scholar]
  55. RamorobiL.M. MatowaneG.R. MasheleS.S. ErukainureO.L. MakhafolaT.J. ChukwumaC.I. Therapeutic antidiabetic and antioxidative synergism of ZN(II)-Syringic acid complexation.Rev. Bras. Farmacogn.202333240241410.1007/s43450‑023‑00363‑0
    [Google Scholar]
  56. Retraction: Synthesis of efficient cobalt–metal organic framework as reusable nanocatalyst in the synthesis of new 1,4-dihydropyridine derivatives with antioxidant activity.Front Chem.202311128518310.3389/fchem.2023.1285183 37731455
    [Google Scholar]
  57. WeiH. SongH. RenY. YanX. FangG. WangW. RenW. ZhuM. LinJ. Solvent-free synthesis of Co@NC catalyst with Co—N species as active sites for chemoselective hydrogenation of nitro compounds.Sci. China Mater.202366116917810.1007/s40843‑022‑2108‑4
    [Google Scholar]
  58. FouadO.A. AliA.E. MohamedG.G. MahmoudN.F. Ultrasonic aided synthesis of a novel mesoporous cobalt-based metal-organic framework and its application in Cr(III) ion determination in centrum multivitamin and real water samples.Microchem. J.202217510722810.1016/j.microc.2022.107228
    [Google Scholar]
  59. ChenD. CaoY. ChenN. FengP. Synthesis and characterization of cobalt metal organic frameworks prepared by ultrasonic wave-assisted ball milling for adsorptive removal of congo red dye from aqueous solutions.J. Inorg. Organomet. Polym. Mater.20213131231124010.1007/s10904‑020‑01832‑y
    [Google Scholar]
  60. TripathiI. DwivediA. MishraM. Metal based α-glucosidase inhibitors: Synthesis, characterization and α-glucosidase inhibition activity of transition metal complexes.Asian J. Med. Health20172311410.9734/AJMAH/2017/31219
    [Google Scholar]
  61. TripathiI. KamalA. MishraM.K. DwivediA.K. TripathiR. MishraC. Synthesis, spectral, electrochemical analysis and screening for α-glucosidase inhibition of some complexes of copper (II) with amino acids.Int. J. Appl. Res.2011456669
    [Google Scholar]
  62. AlbakerW.I. Al-HaririM.T. Al ElqA.H. AlomairN.A. AlamoudiA.S. VoutchkovN. IhmS. NamaziM.A. AlsayyahA.A. AlRubaishF.A. AlohliF.T. ZainuddinF.A. AlobaidiA.A. AlmuzainF.A. ElaminM.O. AlamoudiN.B. AlamerM.A. AlghamdiA.A. AlRubaishN.A. Beneficial effects of adding magnesium to desalinated drinking water on metabolic and insulin resistance parameters among patients with type 2 diabetes mellitus: A randomized controlled clinical trial.npj Clean Water2022516310.1038/s41545‑022‑00207‑936408199
    [Google Scholar]
  63. El-MegharbelS.M. RefatM.S. Al-SalmiF.A. HamzaR.Z. In situ neutral system synthesis, spectroscopic, and biological interpretations of Magnesium (II), Calcium (II), Chromium (III), Zinc (II), Copper (II) and Selenium (IV) sitagliptin complexes.Int. J. Environ. Res. Public Health20211815803010.3390/ijerph18158030 34360322
    [Google Scholar]
  64. GhoshN. ChakrabortyT. MallickS. ManaS. SinghaD. GhoshB. RoyS. Synthesis, characterization and study of antioxidant activity of quercetin–magnesium complex.Spectrochim. Acta A Mol. Biomol. Spectrosc.201515180781310.1016/j.saa.2015.07.050 26172468
    [Google Scholar]
  65. JędrzkiewiczD. LangerJ. HarderS. Low‐valent Mg(I) complexes by ball‐milling.Z. Anorg. Allg. Chem.202264819e20220013810.1002/zaac.202200138
    [Google Scholar]
  66. ElkanziN.A.A. AliA.M. AlbqmiM. AbdouA. New benzimidazole‐based Fe (III) and Cr (III) complexes: Characterization, bioactivity screening, and theoretical implementations using DFT and molecular docking analysis.Appl. Organomet. Chem.20223611e686810.1002/aoc.6868
    [Google Scholar]
  67. AlyS.A. EldourghamyA. El-FikyB.A. MegahedA.A. El-SayedW.A. AbdallaE.M. ElganzoryH.H. Synthesis, spectroscopic characterization, thermal studies, and molecular docking of novel Cr(III), Fe(III), and Co(II) complexes based on Schiff base: In vitro antibacterial and antitumor activities.J. Appl. Pharm. Sci.202210.7324/JAPS.2023.141134
    [Google Scholar]
  68. Abdel-RahmanL.H. BashaM.T. Al-FarhanB.S. AlharbiW. ShehataM.R. Al ZamilN.O. Abou El-ezzD. Synthesis, characterization, DFT studies of novel CU(II), ZN(II), VO(II), CR(III), and LA(III) chloro-substituted schiff base complexes: Aspects of its antimicrobial, antioxidant, anti-inflammatory, and photodegradation of methylene blue.Molecules20232812477710.3390/molecules28124777 37375332
    [Google Scholar]
  69. MahmoudN.H. ElsayedG.H. AboelnagaA. FahimA.M. Spectroscopic studies, DFT calculations, cytotoxicity activity, and docking stimulation of novel metal complexes of Schiff base ligand of isonicotinohydrazide derivative.Appl. Organomet. Chem.2022367e669710.1002/aoc.6697
    [Google Scholar]
  70. AbdouA. MostafaH.M. Abdel-MawgoudA.M.M. Seven metal-based bi-dentate NO azocoumarine complexes: Synthesis, physicochemical properties, DFT calculations, drug-likeness, in vitro antimicrobial screening and molecular docking analysis.Inorg. Chim. Acta202253912104310.1016/j.ica.2022.121043
    [Google Scholar]
  71. PengM. YangX. Controlling diabetes by chromium complexes: The role of the ligands.J. Inorg. Biochem.20151469710310.1016/j.jinorgbio.2015.01.002 25631328
    [Google Scholar]
  72. LeeMH Method for producing chromium picolinate complex. Patent US5677461A1996
  73. LiuY. ZengS. LiuY. WuW. ShenY. ZhangL. LiC. ChenH. LiuA. ShenL. HuB. WangC. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum.Int. J. Biol. Macromol.201811463263910.1016/j.ijbiomac.2018.03.161 29601883
    [Google Scholar]
  74. Ramos-InzaS. PlanoD. SanmartínC. Metal-based compounds containing selenium: An appealing approach towards novel therapeutic drugs with anticancer and antimicrobial effects.Eur. J. Med. Chem.202224411483410.1016/j.ejmech.2022.114834 36215861
    [Google Scholar]
  75. NishiguchiT. YoshikawaY. YasuiH. Investigating the target organs of novel anti-diabetic zinc complexes with organo selenium ligands.J. Inorg. Biochem.201818510311210.1016/j.jinorgbio.2018.05.002 29843022
    [Google Scholar]
  76. CordeiroP. PradoM.S. NetoJ. NascimentoV. Efficient eco-friendly solvent-free obtaining bis-selenium-alkenes with high biological potential.Chemistry Proceedings.202022010.3390/ECCS2020‑07566
    [Google Scholar]
  77. YuanX. ChngL.L. YangJ. YingJ.Y. Miscible‐solvent‐assisted two‐phase synthesis of monolayer‐ligand‐protected metal nanoclusters with various sizes.Adv. Mater.2020329190606310.1002/adma.201906063 31985102
    [Google Scholar]
  78. GharibM. EsrafiliL. MorsaliA. RetailleauP. Solvent-assisted ligand exchange (SALE) for the enhancement of epoxide ring-opening reaction catalysis based on three amide-functionalized metal–organic frameworks.Dalton Trans.201948248803881410.1039/C9DT00941H 31134242
    [Google Scholar]
  79. YuD. ShaoQ. SongQ. CuiJ. ZhangY. WuB. GeL. WangY. ZhangY. QinY. VajtaiR. AjayanP.M. WangH. XuT. WuY. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures.Nat. Commun.202011192710.1038/s41467‑020‑14671‑9 32066754
    [Google Scholar]
  80. BegS. RahmanM. JainA. SainiS. MidouxP. PichonC. AhmadF.J. AkhterS. Nanoporous metal organic frameworks as hybrid polymer–metal composites for drug delivery and biomedical applications.Drug Discov. Today201722462563710.1016/j.drudis.2016.10.001 27742533
    [Google Scholar]
  81. EbrahimiZ. RadM. SafarifardV. MoradiM. Solvent-assisted ligand exchange as a post-synthetic surface modification approach of Zn-based (ZIF-7, ZIF-8) and Co-based (ZIF-9, ZIF-67) zeolitic frameworks for energy storage application.J. Mol. Liq.202236412001810.1016/j.molliq.2022.120018
    [Google Scholar]
  82. SmithE.L. AbbottA.P. RyderK.S. Deep eutectic solvents (DESs) and their applications.Chem. Rev.201411421110601108210.1021/cr300162p 25300631
    [Google Scholar]
  83. AdeyemiA.N. ClementeM. LeeS.J. MantravadiA. ZaikinaJ.V. Deep eutectic solvent-assisted microwave synthesis of thermoelectric AGBIS2 and CU3BIS3.ACS Appl. Energy Mater.2022512148581486810.1021/acsaem.2c02336
    [Google Scholar]
  84. ShaibunaM. KuniyilM.J.K. SreekumarK. Deep eutectic solvent assisted synthesis of dihydropyrimidinones/thiones via Biginelli reaction: Theoretical investigations on their electronic and global reactivity descriptors.New J. Chem.20214544207652077510.1039/D1NJ03879F
    [Google Scholar]
  85. EjeromedogheneO. OregeJ.I. OderindeO. OkoyeC.O. AlowakennuM. NnyiaM.O. FuG. Deep eutectic solvent-assisted stimuli-responsive smart hydrogels – A review.Eur. Polym. J.202218111171110.1016/j.eurpolymj.2022.111711
    [Google Scholar]
  86. GennariF.C. A systematic approach to the synthesis, thermal stability and hydrogen storage properties of rare-earth borohydrides.In: Emerging Materials for Energy Conversion and Storage, 1st ed CheongK.Y. ImpellizzeriG. FragaM.A. Elsevier: AmsterdamNetherlands201842945910.1016/B978‑0‑12‑813794‑9.00013‑2
    [Google Scholar]
  87. AllenbaughR.J. ShawA. Kinetic analysis of the liquid-assisted grinding (LAG) mechanosynthesis of metal bipyridine complexes.Results in Chemistry2023510082710.1016/j.rechem.2023.100827
    [Google Scholar]
  88. KharisovB.I. GarnovskiiA.D. KharissovaO.V. MéndezU.O. TsivadzeA.Y. Direct electrochemical synthesis of metal complexes of phthalocyanines and azomethines as model compounds: Advantages and problems of this methodversus traditional synthetic techniques.J. Coord. Chem.200760131435145510.1080/00958970601040658
    [Google Scholar]
  89. PuenteC. LópezI. Direct electrochemical synthesis of metal complexes.In: Direct Synthesis of Metal Complexes.1st ed KharisovB.I. Amsterdam, NetherlandsElsevier201887141
    [Google Scholar]
  90. ÖzdemirN. Yıldırım BaştemurG. AkpınarR. Perçin ÖzkorucukluS. Erdem TunçmenM. KaripçinF. Synthesis, electrochemical and antioxidant properties of new thiazolylazo‐based mixed ligand metal complexes.ChemistrySelect2023813e20220471910.1002/slct.202204719
    [Google Scholar]
  91. BentoO. LuttringerF. Mohy El DineT. PétryN. BantreilX. LamatyF. Sustainable mechanosynthesis of biologically active molecules.Eur. J. Org. Chem.2022202221e20210151610.1002/ejoc.202101516
    [Google Scholar]
  92. HanifehpourY. MirtamizdoustB. DadashiJ. WangR. RezaeiM. AbdolmalekiM. The synthesis and characterization of a novel One-Dimensional Bismuth (III) coordination polymer as a precursor for the production of bismuth (III) oxide nanorods.Crystals202212111310.3390/cryst12010113
    [Google Scholar]
  93. MirtamizdoustB. Sonochemical synthesis of nano lead(II) metalorganic coordination polymer; New precursor for the preparation of nanomnano-materials. Ultrasonics Sonochemistry.201735PtA26326910.1016/j.ultsonch.2016.10.001
    [Google Scholar]
  94. RanjbarM. ÇelikÖ. NajafiS.H.M. SheshmaniS. Mobarakeh, NA Synthesis of Lead(II) minoxidil coordination polymer: A new precursor for Lead(II) oxide and Lead(II) hydroxyl bromide.J. Inorg. Organomet. Polym. Mater.20112283784410.1007/s10904‑011‑9648‑6
    [Google Scholar]
  95. AfkhamiF.A. KhandarA.A. MahmoudiG. AbdollahiR. GurbanovA.V. Kirillov, AM Sonochemical synthesis of Cadmium(II) coordination polymer nanospheres as precursor for cadmium oxide nanoparticles.Crystals20199419910.3390/cryst9040199
    [Google Scholar]
  96. DuB. YanF. LinX. LiangC. GuoX. TanY. ZhenH. ZhaoC. ShiY. KibetE. HeY. YangX. A bottom-up sonication-assisted synthesis of Zn-BTC MOF nanosheets and the ppb-level acetone detection of their derived ZnO nanosheets.Sens. Actuators B Chem.202337513285410.1016/j.snb.2022.132854
    [Google Scholar]
  97. GoschJ. SynnatschkeK. StockN. BackesC. Comparative study of sonication-assisted liquid phase exfoliation of six layered coordination polymers.Chem. Commun.2022591555810.1039/D2CC03366F 36503965
    [Google Scholar]
  98. OgienkoA.G. MyzS.A. OgienkoA.A. NefedovA.A. StoporevA.S. Mel’gunovM.S. YunoshevA.S. ShakhtshneiderT.P. BoldyrevV.V. BoldyrevaE.V. Cryosynthesis of co-crystals of poorly water-soluble pharmaceutical compounds and their solid dispersions with polymers. The “Meloxicam–Succinic Acid” system as a case study.Cryst. Growth Des.201818127401740910.1021/acs.cgd.8b01070
    [Google Scholar]
  99. TrusovaE.A. TrutnevN.S. Cryochemical synthesis of ultrasmall, highly crystalline, nanostructured metal oxides and salts.Beilstein J. Nanotechnol.201891755176310.3762/bjnano.9.166 29977708
    [Google Scholar]
  100. PeedikakkalA.M.P. AljundiI.H. Mixed-metal Cu-BTC metal–organic frameworks as a strong adsorbent for molecular hydrogen at low temperatures.ACS Omega2020544284932849910.1021/acsomega.0c02810 33195899
    [Google Scholar]
  101. HoP.S. ChongK.C. LaiS.O. LeeS.S. LauW.J. LuS.Y. OoiB.S. Synthesis of CU-BTC metal-organic framework for CO2 capture via solvent-free method: Effect of metal precursor and molar ratio.Aerosol Air Qual. Res.2022221222023510.4209/aaqr.220235
    [Google Scholar]
  102. KugarajahV. HademH. OjhaA.K. RanjanS. DasguptaN. MishraB.N. Fabrication of nanomaterials.In: Food, Medical, and Environmental Applications of Nanomaterials.1st edNew York City, New York, United States of AmericaElsevier2018139
    [Google Scholar]
  103. SharanyakanthP.S. RadhakrishnanM. Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review.Trends Food Sci. Technol.202010410211610.1016/j.tifs.2020.08.004
    [Google Scholar]
  104. GabanoE. RaveraM. Microwave-Assisted synthesis: Can transition metal complexes take advantage of this “Green” method?Molecules20222713424910.3390/molecules27134249 35807493
    [Google Scholar]
  105. ChausmerA.B. Zinc, insulin and diabetes.J. Am. Coll. Nutr.199817210911510.1080/07315724.1998.10718735 9550453
    [Google Scholar]
  106. KurtzhalsP. KiehrB. SørensenA.R. The cobalt(III)-insulin hexamer is a prolonged-acting insulin prodrug.J. Pharm. Sci.199584101164116810.1002/jps.2600841006 8801329
    [Google Scholar]
  107. MacNeilC.S. ZhongH. PabstT.P. ShevlinM. ChirikP.J. Cationic Bis(phosphine) Cobalt(I) arene complexes as precatalysts for the asymmetric synthesis of sitagliptin.ACS Catal.20221284680468710.1021/acscatal.2c01059
    [Google Scholar]
  108. Principles and Modern Applications.10th edHoboken, New Jersey, United States of AmericaPrentice Hall2011
    [Google Scholar]
  109. AktarF. SultanM.Z. RashidM.A. Chromium (III) complexes of metformin, dapagliflozin, vildagliptin and glimepiride potentiate antidiabetic activity in animal model.Int. J. Curr. Res. Rev.2021135646910.31782/IJCRR.2021.13506
    [Google Scholar]
  110. 7. Approaches to glycemic treatment.Diabetes Care201639Suppl. 1S52S5910.2337/dc16‑S010 26696682
    [Google Scholar]
  111. IqbalS.A. JacobG. ZaafaranyI. Synthesis and characterization of tolbutamide–molybdenum complex by thermal, spectral and X-ray studies.J. Saudi Chem. Soc.201014434535010.1016/j.jscs.2010.04.008
    [Google Scholar]
  112. MohamedG.G. AbdallahS.M. NassarM.M.I. ZayedM.A. Metal complexes of gliclazide: Preparation, spectroscopic and thermal characterization. Biological potential study of sulphonylurea gliclazide on the house fly, Musca domestica (Diptera – Muscidae).Arab. J. Chem.20092210911710.1016/j.arabjc.2009.10.006
    [Google Scholar]
  113. RathoreN. KishanB. Synthesis and characterization of complexes of glipizide with zirconium and cobalt.Orient. J. Chem.20132931001100810.13005/ojc/290320
    [Google Scholar]
  114. OtuokereI.E. AmadiK.C. Synthesis and characterization of glimepiride yttrium complex.Int. J. Med. Pharm. Drug Res.2017121014
    [Google Scholar]
  115. Di MagnoL. Di PastenaF. BordoneR. ConiS. CanettieriG. The mechanism of action of biguanides: New answers to a complex question.Cancers20221413322010.3390/cancers14133220 35804992
    [Google Scholar]
  116. RusanovD.A. ZouJ. BabakM.V. Biological properties of transition metal complexes with metformin and its analogues.Pharmaceuticals202215445310.3390/ph15040453 35455450
    [Google Scholar]
  117. KoothappanM. Devi VellaiR. Pillai SubramanianI. Sorimuthu PillaiS. Synthesis and evaluation of antidiabetic properties of a zinc mixed ligand complex in high-fat diet-low-dose streptozotocin-induced diabetic rats.Asian J. Pharm. Clin. Res.201811542943810.22159/ajpcr.2018.v11i5.24870
    [Google Scholar]
  118. LebovitzH.E. Thiazolidinediones: The forgotten diabetes medications.Curr. Diab. Rep.2019191215110.1007/s11892‑019‑1270‑y 31776781
    [Google Scholar]
  119. PrakashO. IqbalS.A. Hypoglycemic study of Fe(II) and Zn(II) complexes of pioglitazone hydrochloride on wistar albino rats using alloxan induced method.Biomed. Pharmacol. J.201471758010.13005/bpj/454
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266356941250329172041
Loading
/content/journals/ctmc/10.2174/0115680266356941250329172041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test