Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Antibiotics are a revolutionary discovery in modern medicine, enabling the successful treatment of bacterial infections that were once untreatable and deadly. Teixobactin, a “head-to-side-chain” cyclodepsipeptide, shows great promise as a lead compound for developing new antibiotics to deal with multi-drug-resistant bacterial infections. The unique pharmacological profile and intriguing structural characteristics of teixobactin, including its unusual amino acid residues (three D-amino acids and L--enduracididine), have drawn the attention of multiple research groups seeking to create new antibiotics with innovative mechanisms. This review explores recent developments in the chemical structure of teixobactin, its biological role in cells, its biosynthetic production pathway, and how it disrupts bacteria (mode of action). Along with the structure-activity relationship (SAR) studies, this review also covers various synthetic approaches used to create teixobactin and its analogs. Finally, some observations regarding emerging patterns during the synthesis of unique analogs of teixobactin, as well as suggestions for further research and developments, are discussed.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266344835241125074030
2025-01-07
2025-10-25
Loading full text...

Full text loading...

References

  1. YahyaE.J. GerardoA.A. TriciaN. MelissaR. AymanE.F. ThavendranG. HendrikG.K. BeatrizG.D.T. FernandoA. Synthesis and biological evaluation of a teixobactin analogue.Org. Lett.201517246182618510.1021/acs.orglett.5b03176
    [Google Scholar]
  2. GuoC. MandalapuD. JiX. GaoJ. ZhangQ. Chemistry and biology of teixobactin.Chemistry201824215406542210.1002/chem.201704167
    [Google Scholar]
  3. SmithI. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence.Clin. Microbiol. Rev.200316346349610.1128/CMR.16.3.463‑496.2003
    [Google Scholar]
  4. ParmarA. IyerA. PriorS.H. LloydD.G. Leng GohE.T. VincentC.S. Palmai-PallagT. BachratiC.Z. BreukinkE. MadderA. LakshminarayananR. TaylorE.J. SinghI. Teixobactin analogues reveal enduracididine to be non-essential for highly potent antibacterial activity and lipid II binding.Chem. Sci.20178128183819210.1039/C7SC03241B
    [Google Scholar]
  5. SchlaefferF. Oxacillin-associated hypokalemia.Drug Intell. Clin. Pharm.198822969569610.1177/106002808802200909
    [Google Scholar]
  6. LollP.J. AxelsenP.H. The structural biology of molecular recognition by vancomycin.Annu. Rev. Biophys. Biomol. Struct.200029126528910.1146/annurev.biophys.29.1.265
    [Google Scholar]
  7. HighR.H. HuangN.N. Penicillin G and related compounds.Pediatr. Clin. North Am.196310374576410.1016/S0031‑3955(16)31449‑3
    [Google Scholar]
  8. ParmarA. IyerA. VincentC.S. Van LysebettenD. PriorS.H. MadderA. TaylorE.J. SinghI. Efficient total syntheses and biological activities of two teixobactin analogues.Chem. Commun.201652366060606310.1039/C5CC10249A
    [Google Scholar]
  9. (a GaoB. ChenS. HouY.N. ZhaoY.J.. YeT. XuZ. Solution- phase total synthesis of teixobactin. Org. Biomol. Chem.,.20191751141115310.1039/C8OB02803F
    [Google Scholar]
  10. (b LewisK. LeeR.E. Brötz-OesterheltH. HillerS. RodninaM.V. SchneiderT. Weingarth, M.; Wohlgemuth, I. Sophisticated natural products as antibiotics. Nature,20246328023394910.1038/s41586‑024‑07530‑w
    [Google Scholar]
  11. MühlbergE. UmstätterF. KleistC. DomhanC. MierW. UhlP. Renaissance of vancomycin: Approaches for breaking antibiotic resistance in multidrug-resistant bacteria.Can. J. Microbiol.2020661111610.1139/cjm‑2019‑0309
    [Google Scholar]
  12. MicklefieldJ. Daptomycin structure and mechanism of action revealed.Chem. Biol.200411788788810.1016/j.chembiol.2004.07.001
    [Google Scholar]
  13. KarasJ.A. CarterG.P. HowdenB.P. TurnerA.M. PaulinO.K.A. SwarbrickJ.D. BakerM.A. LiJ. VelkovT. Structure-activity relationships of daptomycin lipopeptides.J. Med. Chem.20206322132661329010.1021/acs.jmedchem.0c00780
    [Google Scholar]
  14. AvedissianS.N. LiuJ. RhodesN.J. LeeA. PaisG.M. HauserA.R. ScheetzM.H. A review of the clinical pharmacokinetics of Polymyxin B.Antibiotics (Basel)2019813110.3390/antibiotics8010031
    [Google Scholar]
  15. GoodeA. YehV. BonevB.B. Interactions of polymyxin B with lipopolysaccharide-containing membranes.Faraday Discuss.202123231732910.1039/D1FD00036E
    [Google Scholar]
  16. HannaC.C. HermantY.O. HarrisP.W.R. BrimbleM.A. Discovery, synthesis, and optimization of peptide-based antibiotics.Acc. Chem. Res.20215481878189010.1021/acs.accounts.0c00841
    [Google Scholar]
  17. ZhangY. CarneyD. HenninotA. SrinivasanK. Novel high-throughput strategy for the aqueous solubility assessment of peptides and proteins exhibiting a propensity for gelation: Application to the discovery of novel antibacterial teixobactin analogues.Mol. Pharm.202118146947410.1021/acs.molpharmaceut.0c00990
    [Google Scholar]
  18. LingL.L. SchneiderT. PeoplesA.J. SpoeringA.L. EngelsI. ConlonB.P. MuellerA. SchäberleT.F. HughesD.E. EpsteinS. JonesM. LazaridesL. SteadmanV.A. CohenD.R. FelixC.R. FettermanK.A. MillettW.P. NittiA.G. ZulloA.M. ChenC. LewisK. A new antibiotic kills pathogens without detectable resistance.Nature2015517753545545910.1038/nature14098
    [Google Scholar]
  19. SandleT. Teixobactin: A new class of antibiotic.SOJ Microbiol. Infect. Dis.201531110.15226/sojmid/3/2/00133
    [Google Scholar]
  20. JinK. PoK.H.L. KongW.Y. LoC.H. LoC.W. LamH.Y. SirinimalA. ReuvenJ.A. ChenS. LiX. Synthesis and antibacterial studies of teixobactin analogues with non-isostere substitution of enduracididine.Bioorg. Med. Chem.20182651062106810.1016/j.bmc.2018.01.016
    [Google Scholar]
  21. LamichhaneG. Novel targets in M. tuberculosis: Search for new drugs.Trends Mol. Med.2011171253310.1016/j.molmed.2010.10.004
    [Google Scholar]
  22. HussainS. YadavN. Teixobactin - A game changer antibiotic.Era’s J. Med. Res.20207222022410.24041/ejmr2020.37
    [Google Scholar]
  23. PiddockL.J.V. Teixobactin, the first of a new class of antibiotics discovered by iChip technology?J. Antimicrob. Chemother.201570102679268010.1093/jac/dkv175
    [Google Scholar]
  24. LuceñoM.A. MulitJ.M. MosquitoY. NavajaC. MalizaJ.E. MangaoangC.J. Abiso-PadillaJ. Unlocking the Pandora’s Box of Uncultivable Microbes: The “iChip” As A Gateway to Antimicrobial Drug Discovery.Int. J. Res. Publicat. Rev.20234123400340610.55248/gengpi.4.1223.123533
    [Google Scholar]
  25. NicholsD. CahoonN. TrakhtenbergE.M. PhamL. MehtaA. BelangerA. KaniganT. LewisK. EpsteinS.S. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species.Appl. Environ. Microbiol.20107682445245010.1128/AEM.01754‑09
    [Google Scholar]
  26. ChioreanS. AntwiI. CarneyD.W. KotsogianniI. GiltrapA.M. AlexanderF.M. CochraneS.A. PayneR.J. MartinN.I. HenninotA. VederasJ.C. Dissecting the binding interactions of teixobactin with the bacterial cell wall precursor lipid II.ChemBioChem202021678979210.1002/cbic.201900504
    [Google Scholar]
  27. von NussbaumF. SüssmuthR.D. Multiple attack on bacteria by the new antibiotic teixobactin.Angew. Chem. Int. Ed.201554236684668610.1002/anie.201501440
    [Google Scholar]
  28. Abdel MonaimS.A.H. JadY.E. El-FahamA. de la TorreB.G. AlbericioF. Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study.Bioorg. Med. Chem.201826102788279610.1016/j.bmc.2017.09.040
    [Google Scholar]
  29. YangH. PishenkoA.V. LiX. NowickJ.S. Design, synthesis, and study of lactam and ring-expanded analogues of teixobactin.J. Org. Chem.20208531331133910.1021/acs.joc.9b02631
    [Google Scholar]
  30. ShuklaR. LavoreF. MaityS. DerksM.G.N. JonesC.R. VermeulenB.J.A. MelcrováA. MorrisM.A. BeckerL.M. WangX. KumarR. Medeiros-SilvaJ. van BeekveldR.A.M. BonvinA.M.J.J. LorentJ.H. LelliM. NowickJ.S. MacGillavryH.D. PeoplesA.J. SpoeringA.L. LingL.L. HughesD.E. RoosW.H. BreukinkE. LewisK. WeingarthM. Teixobactin kills bacteria by a two-pronged attack on the cell envelope.Nature2022608792239039610.1038/s41586‑022‑05019‑y
    [Google Scholar]
  31. FiersW.D. CraigheadM. SinghI. Teixobactin and its analogues: A new hope in antibiotic discovery.ACS Infect. Dis.201731068869010.1021/acsinfecdis.7b00108
    [Google Scholar]
  32. (a HommaT. NuxollA. GandtA.B. EbnerP. EngelsI. SchneiderT. GötzF. LewisK. ConlonB.P Dual targeting of cell wall precursors by teixobactin leads to cell lysis.Antimicrob. Agents Chemother.201660116510651710.1128/AAC.01050‑16
    [Google Scholar]
  33. (bSwati, R. Adv. Microbiol.,202241
    [Google Scholar]
  34. MorrisM.A. VallmitjanaA. GreinF. SchneiderT. ArtsM. JonesC.R. NguyenB.T. HashemianM.H. MalekM. GrattonE. NowickJ.S. Visualizing the mode of action and supramolecular assembly of teixobactin analogues in Bacillus subtilis.Chem. Sci.202213267747775410.1039/D2SC01388F
    [Google Scholar]
  35. SchumacherC.E. HarrisP.W.R. DingX-B. KrauseB. WrightT.H. CookG.M. FurkertD.P. BrimbleM.A. Synthesis and biological evaluation of novel teixobactin analogues.Org. Biomol. Chem.201715418755876010.1039/C7OB02169K
    [Google Scholar]
  36. QiY.K. TangX. WeiN.N. PangC.J. DuS.S. WangK. Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance.J. Pept. Sci.20222811e342810.1002/psc.3428
    [Google Scholar]
  37. TorresC. AlonsoC.A. Ruiz-RipaL. León-SampedroR. Del CampoR. CoqueT.M. Antimicrobial resistance in Enterococcus spp. of animal origin. Microbiol. Spectr.2018646.4.2410.1128/microbiolspec.ARBA‑0032‑2018
    [Google Scholar]
  38. ChenK.H. LeS.P. HanX. FriasJ.M. NowickJ.S. Alanine scan reveals modifiable residues in teixobactin.Chem. Commun.20175382113571135910.1039/C7CC03415F
    [Google Scholar]
  39. VelkovT. SwarbrickJ.D. HusseinM.H. Schneider-FutschikE.K. HoyerD. LiJ. KarasJ.A. The impact of backbone N ‐methylation on the structure‐activity relationship of Leu 10 ‐teixobactin.J. Pept. Sci.2019259e320610.1002/psc.3206
    [Google Scholar]
  40. CraigW. ChenJ. RichardsonD. ThorpeR. YuanY. A highly stereoselective and scalable synthesis of 1-allo-enduracididine.Org. Lett.201517184620462310.1021/acs.orglett.5b02362
    [Google Scholar]
  41. AtkinsonD.J. NaysmithB.J. FurkertD.P. BrimbleM.A. Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis.Beilstein J. Org. Chem.2016122325234210.3762/bjoc.12.226
    [Google Scholar]
  42. GiltrapA.M. DowmanL.J. NagalingamG. OchoaJ.L. LiningtonR.G. BrittonW.J. PayneR.J. Total synthesis of teixobactin.Org. Lett.201618112788279110.1021/acs.orglett.6b01324
    [Google Scholar]
  43. DharaS. GunjalV.B. HandoreK.L. Srinivasa ReddyD. Solution‐phase synthesis of the macrocyclic core of teixobactin.Eur. J. Org. Chem.20162016254289429310.1002/ejoc.201600778
    [Google Scholar]
  44. LiuL. WuS. WangQ. ZhangM. WangB. HeG. ChenG. Total synthesis of teixobactin and its stereoisomers.Org. Chem. Front.2018591431143510.1039/C8QO00145F
    [Google Scholar]
  45. ZongY. FangF. MeyerK.J. WangL. NiZ. GaoH. LewisK. ZhangJ. RaoY. Gram-scale total synthesis of teixobactin promoting binding mode study and discovery of more potent antibiotics.Nat. Commun.2019101326810.1038/s41467‑019‑11211‑y
    [Google Scholar]
  46. LiuH. LiX. Serine/threonine ligation: Origin, mechanistic aspects, and applications.Acc. Chem. Res.20185171643165510.1021/acs.accounts.8b00151
    [Google Scholar]
  47. LiuH. LiuH. LiX. Use of serine/threonine ligation for the total chemical synthesis of HMGA1a protein with site‐specific lysine acetylations.ChemPlusChem201984777978510.1002/cplu.201900130
    [Google Scholar]
  48. JinK. SamI.H. PoK.H.L. LinD. Ghazvini ZadehE.H. ChenS. YuanY. LiX. Total synthesis of teixobactin.Nat. Commun.2016711239410.1038/ncomms12394
    [Google Scholar]
  49. GunjalV.B. ReddyD.S. Total synthesis of Met10-teixobactin.Tetrahedron Lett.201960291909191210.1016/j.tetlet.2019.06.027
    [Google Scholar]
  50. ZhangY. XuC. LamH.Y. LeeC.L. LiX. Protein chemical synthesis by serine and threonine ligation.Proc. Natl. Acad. Sci. USA2013110176657666210.1073/pnas.1221012110
    [Google Scholar]
  51. GunjalV.B. ThakareR. ChopraS. ReddyD.S. Teixobactin: A paving stone toward a new class of antibiotics?J. Med. Chem.20206321121711219510.1021/acs.jmedchem.0c00173
    [Google Scholar]
  52. WuC. PanZ. YaoG. WangW. FangL. SuW. Synthesis and structure - Activity relationship studies of teixobactin analogues.RSC Advances2017741923192610.1039/C6RA26567G
    [Google Scholar]
  53. NgV. KuehneS.A. ChanW.C. Rational design and synthesis of modified teixobactin analogues: In vitro antibacterial activity against Staphylococcus aureus, Propionibacterium acnes and Pseudomonas aeruginosa.Chemistry201824369136914710.1002/chem.201801423
    [Google Scholar]
  54. MorrisM.A. MalekM. HashemianM.H. NguyenB.T. ManuseS. LewisK. NowickJ.S. A fluorescent teixobactin analogue.ACS Chem. Biol.20201551222123110.1021/acschembio.9b00908
    [Google Scholar]
  55. Abdel MonaimS.A.H. JadY.E. RamchuranE.J. El-FahamA. GovenderT. KrugerH.G. de la TorreB.G. AlbericioF. Lysine scanning of arg10 –teixobactin: Deciphering the role of hydrophobic and hydrophilic residues.ACS Omega2016161262126510.1021/acsomega.6b00354
    [Google Scholar]
  56. YangH. ChenK.H. NowickJ.S. Elucidation of the teixobactin pharmacophore.ACS Chem. Biol.20161171823182610.1021/acschembio.6b00295
    [Google Scholar]
  57. (a Abdel MonaimS.A.H. RamchuranE.J. El-FahamA. AlbericioF. de la TorreB.G. KrugerH.G. TorreB.G. Converting teixobactin into a cationic antimicrobial peptide (AMP).J. Med. Chem.201760177476748210.1021/acs.jmedchem.7b00834
    [Google Scholar]
  58. (b LiH. GongQ. LuoK. Biomarker-driven molecular imaging probes in radiotherapy.Theranostics202414104127414610.7150/thno.97768
    [Google Scholar]
  59. WuQ. MishraB. WangG. Linearized teixobactin is inactive and after sequence enhancement, kills methicillin‐resistant Staphylococcus aureus via a different mechanism.Pept. Sci. (Hoboken)20221145e2426910.1002/pep2.24269
    [Google Scholar]
  60. JonesC.R. GuaglianoneG. LaiG.H. NowickJ.S. Isobactins: O-acyl isopeptide prodrugs of teixobactin and teixobactin derivatives.Chem. Sci.20221344131101311610.1039/D2SC02670H
    [Google Scholar]
  61. (a RamchuranE.J. SomboroA.M. Abdel MonaimS.A.H. AmoakoD.G. ParboosingR. KumaloH.M. AgrawalN. AlbericioF. TorreB.G.L. BesterL.A. In vitro antibacterial activity of Teixobactin derivatives on clinically relevant bacterial isolates.Front. Microbiol.20189153510.3389/fmicb.2018.01535
    [Google Scholar]
  62. (b FanY. ChenJ. ChenB. BaiJ. YangB. LiangF. FangL. Design, synthesis and biological evaluation of Leu10- teixobactin analogues.Chin. Chem. Lett.202411007511007510.1016/j.cclet.2024.110075
    [Google Scholar]
  63. MalkawiR. IyerA. ParmarA. LloydD.G. Leng GohE.T. TaylorE.J. SarmadS. MadderA. LakshminarayananR. SinghI. Cysteines and disulfide-bridged macrocyclic mimics of teixobactin analogues and their antibacterial activity evaluation against methicillin-resistant staphylococcus aureus (MRSA).Pharmaceutics201810418310.3390/pharmaceutics10040183
    [Google Scholar]
  64. JarkhiA. LeeA.H.C. SunZ. HuM. NeelakantanP. LiX. ZhangC. Antimicrobial effects of L-Chg10-Teixobactin against Enterococcus faecalis in vitro.Microorganisms2022106109910.3390/microorganisms10061099
    [Google Scholar]
  65. HunterP. Antibiotic discovery goes underground.EMBO Rep.201516556356510.15252/embr.201540385
    [Google Scholar]
  66. YangH. WierzbickiM. Du BoisD.R. NowickJ.S. X-ray crystallographic structure of a teixobactin derivative reveals amyloid-like assembly.J. Am. Chem. Soc.201814043140281403210.1021/jacs.8b07709
    [Google Scholar]
  67. HurstP.J. MorrisM.A. GrahamA.A. NowickJ.S. PattersonJ.P. Visualizing teixobactin supramolecular assemblies and cell wall damage in B. Subtilis using CryoEM.ACS Omega2021641274122741710.1021/acsomega.1c04331
    [Google Scholar]
  68. ParmarA. PriorS.H. IyerA. VincentC.S. Van LysebettenD. BreukinkE. MadderA. TaylorE.J. SinghI. Defining the molecular structure of teixobactin analogues and understanding their role in antibacterial activities.Chem. Commun.201753122016201910.1039/C6CC09490B
    [Google Scholar]
  69. HusseinM. KarasJ.A. Schneider-FutschikE.K. ChenF. SwarbrickJ. PaulinO.K.A. HoyerD. BakerM. ZhuY. LiJ. VelkovT. The killing mechanism of teixobactin against methicillin-resistant staphylococcus aureus: An untargeted metabolomics study.mSystems20205310.1128/msystems.00077‑20
    [Google Scholar]
  70. SchenkM.F. de VisserJ.A.G.M. Predicting the evolution of antibiotic resistance.BMC Biol.20131111410.1186/1741‑7007‑11‑14
    [Google Scholar]
  71. ShakaM. Arias-RojasA. HrdinaA. FrahmD. IatsenkoI. Lipopolysaccharide-mediated resistance to host antimicrobial peptides and hemocyte-derived reactive-oxygen species are the major Providencia alcalifaciens virulence factors in Drosophila melanogaster.PLoS Pathog.2022189e101082510.1371/journal.ppat.1010825
    [Google Scholar]
  72. KannanN.B. KohliP. ShekharM. SenS. LalithaP. PaiA. RamasamyK. Ochrobactrum anthropi: A rare cause of culture-proven acute post-operative cluster endophthalmitis.Ocul. Immunol. Inflamm.2022307-81756176210.1080/09273948.2021.1945636
    [Google Scholar]
  73. Davin-RegliA. Pagès, J-M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment.Front. Microbiol.2015639210.3389/fmicb.2015.00392
    [Google Scholar]
  74. AntunesL.C.S. ViscaP. TownerK.J. Acinetobacter baumannii: Evolution of a global pathogen.Pathog. Dis.201471329230110.1111/2049‑632X.12125
    [Google Scholar]
  75. OrtegaD.R. KjærA. BriegelA. The chemosensory systems of Vibrio cholerae.Mol. Microbiol.2020114336737610.1111/mmi.14520
    [Google Scholar]
  76. McClellandM. SandersonK.E. SpiethJ. CliftonS.W. LatreilleP. CourtneyL. PorwollikS. AliJ. DanteM. DuF. HouS. LaymanD. LeonardS. NguyenC. ScottK. HolmesA. GrewalN. MulvaneyE. RyanE. SunH. FloreaL. MillerW. StonekingT. NhanM. WaterstonR. WilsonR.K. Frizzled-7 signalling controls tissue separation during Xenopus gastrulation.Nature200141385210.1038/35101614
    [Google Scholar]
  77. McCarthyM.W. Teixobactin: A novel anti-infective agent.Expert Rev. Anti Infect. Ther.20191711310.1080/14787210.2019.1550357
    [Google Scholar]
  78. BliskaJ.B. BrodskyI.E. MecsasJ. Role of the Yersinia pseudotuberculosis virulence plasmid in pathogen-phagocyte interactions in mesenteric lymph nodes.Ecosal Plus202192eESP-0014-202110.1128/ecosalplus.ESP‑0014‑2021
    [Google Scholar]
  79. StogiosP.J. SavchenkoA. Molecular mechanisms of vancomycin resistance.Protein Sci.202029365466910.1002/pro.3819
    [Google Scholar]
  80. IyerA. MadderA. SinghI. Teixobactins: A new class of 21st century antibiotics to combat multidrug-resistant bacterial pathogens.Future Microbiol.201914645746010.2217/fmb‑2019‑0056
    [Google Scholar]
  81. LloydD.G. SchofieldB.J. GoddardM.R. TaylorE.J. De novo resistance to arg10-teixobactin occurs slowly and is costly.Antimicrob. Agents Chemother.2020651e01152e2010.1128/AAC.01152‑20
    [Google Scholar]
  82. SinghI. Simplified teixobactin analogues to target superbugs.Future Med. Chem.201810213313410.4155/fmc‑2017‑0256
    [Google Scholar]
  83. KarasJ.A. ChenF. Schneider-FutschikE.K. KangZ. HusseinM. SwarbrickJ. HoyerD. GiltrapA.M. PayneR.J. LiJ. VelkovT. Synthesis and structure-activity relationships of teixobactin.Ann. N. Y. Acad. Sci.2020145918610510.1111/nyas.14282
    [Google Scholar]
  84. Pelay-GimenoM. Tulla-PucheJ. AlbericioF. “Head-to-Side-Chain” cyclodepsipeptides of marine origin.Mar. Drugs20131151693171710.3390/md11051693
    [Google Scholar]
  85. LawrenceW.S. PeelJ.E. SivasubramaniS.K. BazeW.B. WhortonE.B. BeasleyD.W.C. ComerJ.E. HughesD.E. LingL.L. PetersonJ.W. Teixobactin provides protection against inhalation anthrax in the rabbit model.Pathogens20209977310.3390/pathogens9090773
    [Google Scholar]
  86. ValavanidisA. Antibiotics and antimicrobial resistance. A new discovery of antibiotic Teixobactin: Treating infections without detectable bacterial resistance.Pharmakeftiki201729111https://www.researchgate.net/publication/319876502
    [Google Scholar]
  87. LiuY. DingS. ShenJ. ZhuK. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria.Nat. Prod. Rep.201936457359210.1039/C8NP00031J
    [Google Scholar]
  88. KaliA. Teixobactin: A novel antibiotic in treatment of gram positive bacterial infections.J. Clin. Diagn. Res.2015910.7860/JCDR/2015/13033.5720
    [Google Scholar]
  89. TanK. ZhouM. JedrzejczakR.P. WuR. HigueraR.A. BorekD. BabniggG. JoachimiakA. Structures of teixobactin-producing nonribosomal peptide synthetase condensation and adenylation domains.Curr. Res. Struct. Biol.20202142410.1016/j.crstbi.2020.01.002
    [Google Scholar]
  90. ArnuschC.J. BonvinA.M.J.J. VerelA.M. JansenW.T.M. LiskampR.M.J. de KruijffB. PietersR.J. BreukinkE. The vancomycin−nisin(1−12) hybrid restores activity against vancomycin resistant Enterococci.Biochemistry20084748126611266310.1021/bi801597b
    [Google Scholar]
  91. WrightP.M. SeipleI.B. MyersA.G. The evolving role of chemical synthesis in antibacterial drug discovery.Angew. Chem. Int. Ed.201453348840886910.1002/anie.201310843
    [Google Scholar]
  92. Abdel MonaimS.A.H. JadY.E. AcostaG.A. NaickerT. RamchuranE.J. El-FahamA. GovenderT. KrugerH.G. de la TorreB.G. AlbericioF. Re-evaluation of the N-terminal substitution and the D-residues of teixobactin.RSC Advances2016677738277382910.1039/C6RA17720D
    [Google Scholar]
  93. GirtG.C. MahindraA. Al JabriZ.J.H. De Ste CroixM. OggioniM.R. JamiesonA.G. Lipopeptidomimetics derived from teixobactin have potent antibacterial activity against Staphylococcus aureus.Chem. Commun.201854222767277010.1039/C7CC06093A
    [Google Scholar]
  94. JinK. PoK.H.L. WangS. ReuvenJ.A. WaiC.N. LauH.T. ChanT.H. ChenS. LiX. Synthesis and structure-activity relationship of teixobactin analogues via convergent Ser ligation.Bioorg. Med. Chem.201725184990499510.1016/j.bmc.2017.04.039
    [Google Scholar]
  95. ZongY. SunX. GaoH. MeyerK.J. LewisK. RaoY. Developing equipotent teixobactin analogues against drug-resistant bacteria and discovering a hydrophobic interaction between lipid II and teixobactin.J. Med. Chem.20186183409342110.1021/acs.jmedchem.7b01241
    [Google Scholar]
  96. MathesonE. JinK. LiX. Establishing the structure-activity relationship of teixobactin.Chin. Chem. Lett.20193081468148010.1016/j.cclet.2019.07.004
    [Google Scholar]
  97. YangH. Du BoisD.R. ZillerJ.W. NowickJ.S. X-ray crystallographic structure of a teixobactin analogue reveals key interactions of the teixobactin pharmacophore.Chem. Commun.201753182772277510.1039/C7CC00783C
    [Google Scholar]
  98. ’t HartP. WoodT.M. TehraniK.H.M.E. van HartenR.M. ŚleszyńskaM. Rentero RebolloI. HendrickxA.P.A. WillemsR.J.L. BreukinkE. MartinN.I. De novo identification of lipid II binding lipopeptides with antibacterial activity against vancomycin-resistant bacteria.Chem. Sci.20178127991799710.1039/C7SC03413J
    [Google Scholar]
  99. ChandrasekharS. GangathadeN. NayaniK. BukyaH. MainkarP.S. Scalable synthesis of L-allo-Enduracididine: The unusual amino acid present in the Teixobactin.Synlett202132141465146810.1055/a‑1528‑0625
    [Google Scholar]
  100. DarnellR.L. KnottenbeltM.K. Todd RoseF.O. MonkI.R. StinearT.P. CookG.M. Genomewide profiling of the Enterococcus faecalis Transcriptional response to teixobactin reveals CroRS as an essential regulator of antimicrobial tolerance.MSphere201943e00228e1910.1128/mSphere.00228‑19
    [Google Scholar]
  101. ÖsterC. WalkowiakG.P. HughesD.E. SpoeringA.L. PeoplesA.J. CatherwoodA.C. TodJ.A. LloydA.J. HerrmannT. LewisK. DowsonC.G. LewandowskiJ.R. Structural studies suggest aggregation as one of the modes of action for teixobactin.Chem. Sci.20189478850885910.1039/C8SC03655A
    [Google Scholar]
  102. (a MonaimS.A.H.A. NokiS. RamchuranE.J. El-FahamA. AlbericioF. TorreB.G. Investigation of the N-terminus amino function of Arg10-teixobactin. Molecules,20172210163210.3390/molecules22101632
    [Google Scholar]
  103. (b AmerA.M. CharnockC. NguyenS. Novel teixobactin analogues show promising in vitro activity on biofilm formation by Staphylococcus aureus and Enterococcus faecalis. Curr. Microbiol.,2024811034910.1007/s00284‑024‑03857‑9
    [Google Scholar]
  104. LiuY. LiuY. Chan-ParkM.B. MuY. Binding modes of teixobactin to lipid II: Molecular dynamics study.Sci. Rep.2017711719710.1038/s41598‑017‑17606‑5
    [Google Scholar]
  105. LunguC.N. DiudeaM.V. SiteB. Binding site and potency prediction of teixobactin and other lipid II ligands by statistical base scoring of conformational space maps.Curr. Computeraided Drug Des.2018141293410.2174/1573409913666170927113813
    [Google Scholar]
  106. WenP.C. VanegasJ.M. Probing key elements of teixobactin-lipid II interactions in membrane.Chem. Sci.2018934699710.1039/C8SC02616E
    [Google Scholar]
  107. ChugunovA. PyrkovaD. NoldeD. PolyanskyA. PentkovskyV. EfremovR. Lipid-II forms potential “landing terrain” for lantibiotics in simulated bacterial membrane.Sci. Rep.201331167810.1038/srep01678
    [Google Scholar]
  108. FatemianK.A. Characterisation of the lipid II-teixobactin interaction by solid state NMR.. PhD thesis, University of Warwick., >2021
  109. MandalapuD. JiX. ChenJ. GuoC. LiuW.Q. DingW. ZhouJ. ZhangQ. Thioesterase-mediated synthesis of teixobactin analogues: Mechanism and substrate specificity.J. Org. Chem.201883137271727510.1021/acs.joc.7b02462
    [Google Scholar]
  110. ParmarA. LakshminarayananR. IyerA. MayandiV. Leng GohE.T. LloydD.G. ChalasaniM.L.S. VermaN.K. PriorS.H. BeuermanR.W. MadderA. TaylorE.J. SinghI. Design and syntheses of highly potent teixobactin analogues against Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE) in vitro and in vivo.J. Med. Chem.20186152009201710.1021/acs.jmedchem.7b01634
    [Google Scholar]
  111. AlbericioF. MonaimS.A.H.A. JadY.E. AcostaG.A.H. RamchuranE.J. El-FahamA. GovenderT. KrugerH.G. TorreB.G. TorreB.G. Structure-activity relationship of Arg10-teixobactin: A recently discovered antimicrobial peptide.Proc20171667110.3390/proceedings1060671
    [Google Scholar]
  112. ParmarA. IyerA. LloydD.G. VincentC.S. PriorS.H. MadderA. TaylorE.J. SinghI. Syntheses of potent teixobactin analogues against methicillin-resistant Staphylococcus aureus (MRSA) through the replacement of 1-allo-enduracididine with its isosteres.Chem. Commun.201753557788779110.1039/C7CC04021K
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266344835241125074030
Loading
/content/journals/ctmc/10.2174/0115680266344835241125074030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test