Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction/Objectives

Failures of osseointegrated implants pose significant challenges in the medical field, often due to prolonged osseointegration periods and bacterial infections. Functionalization of Titanium Dioxide Nanotubes (TNTs) has emerged as a promising strategy to improve osseointegration and mitigate infections. This study aims to conduct a bibliometric analysis and review to identify trends, gaps, and advancements in research on the functionalization of TNTs for osseointegration improvement.

Methods

Articles were retrieved from the Web of Science database using the keywords “osseointegration,” “titanium dioxide nanotubes,” and “functionalization.” The inclusion criteria were studies published between 2014 and 2023, written in English, and focusing on the use of TNTs in implant surface modifications. A total of 126 articles were included after screening. Data extraction and analysis were performed using VOS Viewer, Microsoft Excel, and GraphPad Prism.

Results

The review revealed a growing number of publications on TNTs functionalization, with China, the United States, and Brazil leading in contributions. Key findings include the effectiveness of TNTs loaded with bioactive agents (., silver, strontium, hydroxyapatite) in promoting osseointegration and antibacterial activity. Collaborative networks among institutions and authors were mapped, highlighting the Sao Paulo State University and Yong Huang as the most prolific contributors.

Conclusion

The findings underscore the potential of TNTs functionalization to enhance implant performance. However, a gap remains in translating preclinical findings into clinical trials. Future research should focus on clinical validation to bridge this gap and translate laboratory advancements into therapeutic solutions.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266334190241213101547
2025-01-21
2025-10-25
Loading full text...

Full text loading...

References

  1. OliveiraW.F. SilvaG.M.M. Cabral FilhoP.E. FontesA. OliveiraM.D.L. AndradeC.A.S. SilvaM.V. CoelhoL.C.B.B. MachadoG. CorreiaM.T.S. Titanium dioxide nanotubes functionalized with Cratylia mollis seed lectin, Cramoll, enhanced osteoblast-like cells adhesion and proliferation.Mater. Sci. Eng. C20189066467210.1016/j.msec.2018.04.089 29853137
    [Google Scholar]
  2. MuC. HuY. HuangL. ShenX. LiM. LiL. GuH. YuY. XiaZ. CaiK. Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits.Mater. Sci. Eng. C20188234535310.1016/j.msec.2017.08.056 29025668
    [Google Scholar]
  3. NegrescuA.M. MitranV. DraghicescuW. PopescuS. PirvuC. IonascuI. SoareT. UzunS. CroitoruS.M. CimpeanA. TiO2 nanotubes functionalized with icariin for an attenuated in vitro immune response and improved in vivo Osseointegration.J. Funct. Biomater.20221324310.3390/jfb13020043 35466225
    [Google Scholar]
  4. dos AnjosK.F.L. da SilvaC.D.C. de SouzaM.A.A. de MattosA.B. CoelhoL.C.B.B. MachadoG. de MeloJ.V. de FigueiredoR.C.B.Q. The Deposition of a Lectin from Oreochromis niloticus on the Surface of Titanium Dioxide Nanotubes Improved the Cell Adhesion, Proliferation, and Osteogenic Activity of Osteoblast-like Cells.Biomolecules20211112174810.3390/biom11121748 34944393
    [Google Scholar]
  5. WangY. TangS. DingN. ZhangZ. Biological properties of hydroxyapatite coatings on titanium dioxide nanotube surfaces using negative pressure method.J. Biomed. Mater. Res. B Appl. Biomater.202311171365137310.1002/jbm.b.35240 36826780
    [Google Scholar]
  6. QiaoxiaL. YujieZ. MengY. YizhuC. YanW. YinchunH. XiaojieL. WeiyiC. DiH. Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO2 nanotubes.Colloids Surf. B Biointerfaces202019611130410.1016/j.colsurfb.2020.111304 32777663
    [Google Scholar]
  7. YuY. TaoB. SunJ. LiuL. ZhengH. Fabrication of chitosan-graft-polyaniline-based multilayers on Ti substrates for enhancing antibacterial property and improving osteogenic activity.Mater. Lett.202026812742010.1016/j.matlet.2020.127420
    [Google Scholar]
  8. WangB. WuZ. LanJ. LiY. XieL. HuangX. ZhangA. QiaoH. ChangX. LinH. ZhangH. LiT. HuangY. Surface modification of titanium implants by silk fibroin/Ag co-functionalized strontium titanate nanotubes for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration.Surf. Coat. Tech.202140512670010.1016/j.surfcoat.2020.126700
    [Google Scholar]
  9. ZhangX. HuangY. WangB. ChangX. YangH. LanJ. WangS. QiaoH. LinH. HanS. GuoY. ZhangX. A functionalized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity.Ceram. Int.20204610147961480710.1016/j.ceramint.2020.03.004
    [Google Scholar]
  10. YangY. LiuL. LuoH. ZhangD. LeiS. ZhouK. Dual-Purpose Magnesium-Incorporated Titanium Nanotubes for Combating Bacterial Infection and Ameliorating Osteolysis to Realize Better Osseointegration.ACS Biomater. Sci. Eng.20195105368538310.1021/acsbiomaterials.9b00938 33464078
    [Google Scholar]
  11. SowmiyaM. SenthilkumarK. Adsorption of proline, hydroxyproline and glycine on anatase (001) surface: a first-principle study.Theor. Chem. Acc.201613511210.1007/s00214‑015‑1783‑7
    [Google Scholar]
  12. XuA. DongC. WeiX. ZhangY. LiX. The effect of surface electronic structure on the bioactivity of neutral dopant Si, Ge, and Sn on TiO2 (110): A DFT Study.Physica status solidi20182551700185
    [Google Scholar]
  13. AgrelliA. VasconcelosN.F. SilvaR.C.S. Mendes-MarquesC.L. ArrudaI.R.S. OliveiraP.S.S. SantosL.R.L. AndradeA.N. MouraR.R. Bernardo-MenezesL.C. SilvaN.P. MachadoG. Peptides for Coating TiO2 Implants: An in silico approach.Int. J. Mol. Sci.202223221404810.3390/ijms232214048 36430525
    [Google Scholar]
  14. TarjányiT. BogárF. MinarovitsJ. GajdácsM. TóthZ. Interaction of KRSR Peptide with Titanium Dioxide Anatase (100) Surface: A Molecular Dynamics Simulation Study.Int. J. Mol. Sci.202122241325110.3390/ijms222413251 34948048
    [Google Scholar]
  15. HuangM.S. ChenL.K. OuK.L. ChengH.Y. WangC.S. Rapid Osseointegration of Titanium Implant With Innovative Nanoporous Surface Modification. Implant Dent.2015Publish Ahead of Print444144710.1097/ID.0000000000000258 25946663
    [Google Scholar]
  16. WangB. BianA. JiaF. LanJ. YangH. YanK. XieL. QiaoH. ChangX. LinH. ZhangH. HuangY. “Dual-functional” strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration.Biomaterials Advances202213311265010.1016/j.msec.2022.112650 35034822
    [Google Scholar]
  17. WangB. LanJ. QiaoH. XieL. YangH. LinH. LiX. HuangY. Porous surface with fusion peptides embedded in strontium titanate nanotubes elevates osteogenic and antibacterial activity of additively manufactured titanium alloy.Colloids Surf. B Biointerfaces202322411318810.1016/j.colsurfb.2023.113188 36773409
    [Google Scholar]
  18. ZhangK. ZhuY. LiuX. CuiZ. XianjinYang; Yeung, K.W.K.; Pan, H.; Wu, S. Sr/ZnO doped titania nanotube array: An effective surface system with excellent osteoinductivity and self-antibacterial activity.Mater. Des.201713040341210.1016/j.matdes.2017.05.085
    [Google Scholar]
  19. QiaoH. ZouQ. YuanC. ZhangX. HanS. WangZ. BuX. TangH. HuangY. Composite coatings of lanthanum-doped fluor-hydroxyapatite and a layer of strontium titanate nanotubes: fabrication, bio-corrosion resistance, cytocompatibility and osteogenic differentiation.Ceram. Int.20184414166321664610.1016/j.ceramint.2018.06.090
    [Google Scholar]
  20. ChenY. GaoA. BaiL. WangY. WangX. ZhangX. HuangX. HangR. TangB. ChuP.K. Antibacterial, osteogenic, and angiogenic activities of SrTiO 3 nanotubes embedded with Ag 2 O nanoparticles.Mater. Sci. Eng. C2017751049105810.1016/j.msec.2017.03.014 28415389
    [Google Scholar]
  21. van HengelI.A.J. PutraN.E. TierolfM.W.A.M. MinnebooM. FluitA.C. Fratila-ApachiteiL.E. ApachiteiI. ZadpoorA.A. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria.Acta Biomater.202010732533710.1016/j.actbio.2020.02.044 32145392
    [Google Scholar]
  22. HeX. ZhangX. BaiL. HangR. HuangX. QinL. YaoX. TangB. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO 2 coatings.Biomed. Mater.201611404500810.1088/1748‑6041/11/4/045008 27508428
    [Google Scholar]
  23. QiaoH. ZhangC. DangX. YangH. WangY. ChenY. MaL. HanS. LinH. ZhangX. LanJ. HuangY. Gallium loading into a polydopamine-functionalised SrTiO3 nanotube with combined osteoinductive and antimicrobial activities.Ceram. Int.20194517221832219510.1016/j.ceramint.2019.07.240
    [Google Scholar]
  24. ShenY. WangK. WuW. FengW. ChenJ. GaoQ. A strontium/vancomycin composite coating on titanium implants for preventing bacterial infection and improving osseointegration.Mater. Des.202323111203210.1016/j.matdes.2023.112032
    [Google Scholar]
  25. van HengelI.A.J. LaçinM. MinnebooM. Fratila-ApachiteiL.E. ApachiteiI. ZadpoorA.A. The effects of plasma electrolytically oxidized layers containing Sr and Ca on the osteogenic behavior of selective laser melted Ti6Al4V porous implants.Mater. Sci. Eng. C202112411207410.1016/j.msec.2021.112074 33947566
    [Google Scholar]
  26. WenJ. LiJ. PanH. ZhangW. ZengD. XuL. WuQ. ZhangX. LiuX. JiangX. Strontium delivery on topographical titanium to enhance bioactivity and osseointegration in osteoporotic rats.J. Mater. Chem. B Mater. Biol. Med.20153244790480410.1039/C5TB00128E 32262668
    [Google Scholar]
  27. VisentinF. El HabraN. FabrizioM. BrianeseN. GerbasiR. NodariL. ZinV. GalendaA. TiO2-HA bi-layer coatings for improving the bioactivity and service-life of Ti dental implants.Surf. Coat. Tech.201937812504910.1016/j.surfcoat.2019.125049
    [Google Scholar]
  28. FominA. DorozhkinS. FominaM. KoshuroV. RodionovI. ZakharevichA. PetrovaN. SkaptsovA. Composition, structure and mechanical properties of the titanium surface after induction heat treatment followed by modification with hydroxyapatite nanoparticles.Ceram. Int.2016429108381084610.1016/j.ceramint.2016.03.213
    [Google Scholar]
  29. LoY.S. ChangC.C. LinP.C. LinS.P. WangC.L. Direct growth of structurally controllable hydroxyapatite coating on Ti-6Al-4V through a rapid hydrothermal synthesis.Appl. Surf. Sci.202155614967210.1016/j.apsusc.2021.149672
    [Google Scholar]
  30. JasinskiJ.J. Investigation of Bio-Functional Properties of Titanium Substrates after Hybrid Oxidation.Arch. Metall. Mater.202065141149
    [Google Scholar]
  31. HeG. GuoB. WangH. LiangC. YeL. LinY. CaiX. Surface characterization and osteoblast response to a functionally graded hydroxyapatite/fluoro‐hydroxyapatite/titanium oxide coating on titanium surface by sol–gel method.Cell Prolif.201447325826610.1111/cpr.12105 24738936
    [Google Scholar]
  32. WatcharajittanontN. TabrizianM. PutsonC. PripatnanontP. MeesaneJ. Osseointegrated membranes based on electro-spun TiO2/hydroxyapatite/polyurethane for oral maxillofacial surgery.Mater. Sci. Eng. C202010811047910.1016/j.msec.2019.110479 31923963
    [Google Scholar]
  33. ZhangX. YuY. JiangD. JiaoY. WuY. PengZ. ZhouJ. WuJ. DongZ. Synthesis and characterization of a bi-functional hydroxyapatite/Cu-doped TiO2 composite coating.Ceram. Int.20194566693670110.1016/j.ceramint.2018.12.158
    [Google Scholar]
  34. YangW. XiX. SiY. HuangS. WangJ. CaiK. Surface engineering of titanium alloy substrates with multilayered biomimetic hierarchical films to regulate the growth behaviors of osteoblasts.Acta Biomater.201410104525453610.1016/j.actbio.2014.05.033 24905934
    [Google Scholar]
  35. PawlikA. JaroszM. SochaR.P. SulkaG.D. The Impacts of Crystalline Structure and Different Surface Functional Groups on Drug Release and the Osseointegration Process of Nanostructured TiO2.Molecules2021266172310.3390/molecules26061723 33808785
    [Google Scholar]
  36. LeeH. LeeM.K. HanG. KimH.E. SongJ. NaY. YoonC.B. OhS. JangT.S. JungH-D. Customizable design of multiple-biomolecule delivery platform for enhanced osteogenic responses via ‘tailored assembly system’.Biodes. Manuf.20225345146410.1007/s42242‑022‑00190‑7
    [Google Scholar]
  37. DraghiL. PredaV. MoscatelliM. SantinM. ChiesaR. Gentamicin-Loaded TiO2 Nanotubes as Improved Antimicrobial Surfaces for Orthopedic Implants.Front. Mater.2020723310.3389/fmats.2020.00233
    [Google Scholar]
  38. MaA. ShangH. SongY. ChenB. YouY. HanW. ZhangX. ZhangW. LiY. LiC. Icariin-functionalized coating on TiO2 nanotubes surface to improve osteoblast activity in vitro and osteogenesis ability in vivo.Coatings20199532710.3390/coatings9050327
    [Google Scholar]
  39. MaA. YouY. ChenB. WangW. LiuJ. QiH. LiangY. LiY. LiC. Icariin/Aspirin Composite Coating on TiO2 Nanotubes Surface Induce Immunomodulatory Effect of Macrophage and Improve Osteoblast Activity.Coatings202010442710.3390/coatings10040427
    [Google Scholar]
  40. LaiM. JinZ. YangX. WangH. XuK. The controlled release of simvastatin from TiO2 nanotubes to promote osteoblast differentiation and inhibit osteoclast resorption.Appl. Surf. Sci.20173961741175110.1016/j.apsusc.2016.11.228
    [Google Scholar]
  41. PetrovićŽ. ŠarićA. DespotovićI. KatićJ. PeterR. PetravićM. PetkovićM. A New Insight into Coating’s Formation Mechanism Between TiO2 and Alendronate on Titanium Dental Implant.Materials (Basel)20201314322010.3390/ma13143220 32698367
    [Google Scholar]
  42. CapellatoP. CamargoS.E.A. SilvaG. SachsD. VilelaF.B. ZavagliaC.A.C. PopatK.C. ClaroA.P.R.A. Coated Surface on Ti-30Ta Alloy for Biomedical Application: Mechanical and in-vitro Characterization.Mater. Res.2020236e2020030510.1590/1980‑5373‑mr‑2020‑0305
    [Google Scholar]
  43. SudhishaV. RajendranN. ZnP-PEDOT: A potential hybrid coating on titania nanotubes For orthopaedic applications.Surf. Interfaces20233910289810.1016/j.surfin.2023.102898
    [Google Scholar]
  44. TangQ. ZhangX. ShenK. ZhuZ. HouY. LaiM. Dual-functionalized titanium for enhancing osteogenic and antibacterial properties.Colloid Interface Sci. Commun.20214410048110.1016/j.colcom.2021.100481
    [Google Scholar]
  45. YuanZ. HuangS. LanS. XiongH. TaoB. DingY. LiuY. LiuP. CaiK. Surface engineering of titanium implants with enzyme-triggered antibacterial properties and enhanced osseointegration in vivo.J. Mater. Chem. B Mater. Biol. Med.20186488090810410.1039/C8TB01918E 32254929
    [Google Scholar]
  46. MaQ. JiangN. LiangS. ChenF. FangL. WangX. WangJ. ChenL. Functionalization of a clustered TiO2 nanotubular surface with platelet derived growth factor-BB covalent modification enhances osteogenic differentiation of bone marrow mesenchymal stem cells.Biomaterials202023011965010.1016/j.biomaterials.2019.119650 31806404
    [Google Scholar]
  47. WigmostaT.B. PopatK.C. KipperM.J. Bone morphogenetic protein‐2 delivery from polyelectrolyte multilayers enhances osteogenic activity on nanostructured titania.J. Biomed. Mater. Res. A202110971173118210.1002/jbm.a.37109 32985077
    [Google Scholar]
  48. LiY. SongY. MaA. LiC. Surface immobilization of TiO2 nanotubes with bone morphogenetic protein-2 synergistically enhances initial preosteoblast adhesion and osseointegration.Biomed Res Int 20192019
    [Google Scholar]
  49. HuangY. LiJ. MaG. LiuZ. LiY. MaoY. Bone Morphogenetic Protein-2 Immobilized on Titanium Oxide Nanotubes Promotes Rat Bone Marrow Stromal Cells.J. Biomater. Tissue Eng.2018891342134710.1166/jbt.2018.1867
    [Google Scholar]
  50. ZhangX. ZhangZ. ShenG. ZhaoJ. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition.Int. J. Nanomedicine201611429439 26869786
    [Google Scholar]
  51. MaY. ZhangZ. LiuY. LiH. WangN. LiuW. LiW. JinL. WangJ. ChenS. Nanotubes Functionalized with BMP2 Knuckle Peptide Improve the Osseointegration of Titanium Implants in Rabbits.J. Biomed. Nanotechnol.201511223624410.1166/jbn.2015.2006 26349299
    [Google Scholar]
  52. WeiF. LiM. CrawfordR. ZhouY. XiaoY. Exosome-integrated titanium oxide nanotubes for targeted bone regeneration.Acta Biomater.20198648049210.1016/j.actbio.2019.01.006 30630122
    [Google Scholar]
  53. GaoH. LiB. ZhaoL. JinY. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration.Int. J. Nanomedicine20151040094027 26150714
    [Google Scholar]
  54. WangY. JiangZ. YuK. FengY. XiY. LaiK. HuangT. WangH. YangG. Improved osseointegrating functionality of cell sheets on anatase TiO 2 nanoparticle surfaces.RSC Advances2017757358453585310.1039/C7RA05134D
    [Google Scholar]
  55. JiaX. WangL. ChenY. NingX. ZhangZ. XinH. LvQ. HouY. LiuF. KongL. TiO 2 nanotubes induce early mitochondrial fission in BMMSCs and promote osseointegration.Biomed. Mater.202318202500810.1088/1748‑605X/acb7bc
    [Google Scholar]
  56. Gitelman PovimonskyA. RapaportH. Peptide coating applied on the spot improves osseointegration of titanium implants.J. Mater. Chem. B Mater. Biol. Med.20175112096210510.1039/C6TB03093A 32263683
    [Google Scholar]
  57. MickschT. HerrmannE. ScharnweberD. SchwenzerB. A modular peptide-based immobilization system for ZrO 2, TiZr and TiO 2 surfaces.Acta Biomater.20151229029710.1016/j.actbio.2014.10.020 25449919
    [Google Scholar]
  58. SunJ. HuangY. ZhaoH. NiuJ. LingX. ZhuC. WangL. YangH. YangZ. PanG. ShiQ. Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation.Bioact. Mater.2022911410.1016/j.bioactmat.2021.10.003 34820551
    [Google Scholar]
  59. LaiM. JinZ. SuZ. Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation.Mater. Sci. Eng. C20177349049710.1016/j.msec.2016.12.083 28183637
    [Google Scholar]
  60. PanG. SunS. ZhangW. ZhaoR. CuiW. HeF. HuangL. LeeS.H. SheaK.J. ShiQ. YangH. Biomimetic Design of Mussel-Derived Bioactive Peptides for Dual-Functionalization of Titanium-Based Biomaterials.J. Am. Chem. Soc.201613845150781508610.1021/jacs.6b09770 27778505
    [Google Scholar]
  61. PăunA.G. PopescuS. UngureanuC. TruscaR. PirvuC. Reduced TiO 2 Nanotubes/Silk Fibroin/ZnO as a Promising Hybrid Antibacterial Coating.ChemPlusChem2024893e20230045010.1002/cplu.202300450 37888941
    [Google Scholar]
  62. Bronze-UhleE.S. DiasL.F.G. TrinoL.D. MatosA.A. de OliveiraR.C. Lisboa-FilhoP.N. Physicochemical characterization of albumin immobilized on different TiO2 surfaces for use in implant materials.Colloids Surf. A Physicochem. Eng. Asp.2019564395010.1016/j.colsurfa.2018.12.028
    [Google Scholar]
  63. AlbanoC.S. GomesA.M. da Silva FeltranG. da Costa FernandesC.J. TrinoL.D. ZambuzziW.F. Lisboa-FilhoP.N. Bisphosphonate-Based Surface Biofunctionalization Improves Titanium Biocompatibility.J. Mater. Sci. Mater. Med.202031114
    [Google Scholar]
  64. BarberiJ. FerrarisS. GiovannozziA.M. MandrileL. PiattiE. RossiA.M. SprianoS. Advanced characterization of albumin adsorption on a chemically treated surface for osseointegration: An innovative experimental approach.Mater. Des.202221811071210.1016/j.matdes.2022.110712
    [Google Scholar]
  65. ZhangG. ZhangX. YangY. ChiR. ShiJ. HangR. HuangX. YaoX. ChuP.K. ZhangX. Dual light-induced in situ antibacterial activities of biocompatibleTiO 2/MoS 2/PDA/RGD nanorod arrays on titanium.Biomater. Sci.20208139140410.1039/C9BM01507H 31728464
    [Google Scholar]
  66. LiuC. SunM. WangY. ZhuT. YeG. YouD. DongL. ZhaoW. ChengK. WengW. ZhangY.S. YuM. WangH. Ultraviolet Radiant Energy-Dependent Functionalization Regulates Cellular Behavior on Titanium Dioxide Nanodots.ACS Appl. Mater. Interfaces20201228317933180310.1021/acsami.0c07761 32485098
    [Google Scholar]
  67. QiaoZ. DingJ. WuC. ZhouT. WuK. ZhangY. XiaoZ. WeiD. SunJ. FanH. One‐Pot Synthesis of Bi 2 S 3/TiO 2/rGO Heterostructure with Red Light‐Driven Photovoltaic Effect for Remote Electrotherapy‐Assisted Wound Repair.Small2023197220623110.1002/smll.202206231
    [Google Scholar]
  68. TangY. WangK. WuB. YaoK. FengS. ZhouX. XiangL. Photoelectrons Sequentially Regulate Antibacterial Activity and Osseointegration of Titanium Implants.Adv. Mater.2024362230775610.1002/adma.202307756 37974525
    [Google Scholar]
  69. OgawaT. Ultraviolet photofunctionalization of titanium implants.Int. J. Oral Maxillofac. Implants2014291e95e10210.11607/jomi.te47 24451893
    [Google Scholar]
  70. WangT. BaiJ. LuM. HuangC. GengD. ChenG. WangL. QiJ. CuiW. DengL. Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking.Nat. Commun.202213116010.1038/s41467‑021‑27816‑1 35013289
    [Google Scholar]
  71. MartinelliS. PavariniM. MoscatelliM. SteevesA.J. ChiesaR. VariolaF. Enhanced Embedding of Cations into Titanium Surfaces by AC Plasma Electrolytic Oxidation for Osteointegrated Implants.Adv. Eng. Mater.20232519230064210.1002/adem.202300642
    [Google Scholar]
  72. ZhangY. CuiS. CaoS. YangL. QinG. ZhangE. To improve the angiogenesis of endothelial cells on Ti-Cu alloy by the synergistic effects of Cu ions release and surface nanostructure.Surf. Coat. Tech.202243312811610.1016/j.surfcoat.2022.128116
    [Google Scholar]
  73. AlvesS.A. RossiA.L. RibeiroA.R. WerckmannJ. CelisJ.P. RochaL.A. ShokuhfarT. A first insight on the bio-functionalization mechanisms of TiO2 nanotubes with calcium, phosphorous and zinc by reverse polarization anodization.Surf. Coat. Tech.201732415316610.1016/j.surfcoat.2017.05.073
    [Google Scholar]
  74. AlvesS.A. RossiA.L. RibeiroA.R. ToptanF. PintoA.M. ShokuhfarT. CelisJ.P. RochaL.A. Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva.J. Mech. Behav. Biomed. Mater.20188014315410.1016/j.jmbbm.2018.01.038 29414470
    [Google Scholar]
  75. AlvesS.A. RossiA.L. RibeiroA.R. ToptanF. PintoA.M. CelisJ.P. ShokuhfarT. RochaL.A. Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: Understanding of degradation mechanisms.Wear2017384-385284210.1016/j.wear.2017.05.005
    [Google Scholar]
  76. AlvesS.A. RibeiroA.R. Gemini-PiperniS. SilvaR.C. SaraivaA.M. LeiteP.E. PerezG. OliveiraS.M. AraujoJ.R. ArchanjoB.S. RodriguesM.E. HenriquesM. CelisJ.P. ShokuhfarT. BorojevicR. GranjeiroJ.M. RochaL.A. TiO 2 nanotubes enriched with calcium, phosphorous and zinc: promising bio-selective functional surfaces for osseointegrated titanium implants.RSC Advances2017778497204973810.1039/C7RA08263K
    [Google Scholar]
  77. CordeiroJ.M. NagayB.E. DiniC. SouzaJ.G.S. RangelE.C. da CruzN.C. YangF. van den BeuckenJ.J.J.P. BarãoV.A.R. Copper source determines chemistry and topography of implant coatings to optimally couple cellular responses and antibacterial activity.Biomaterials Advances202213411255010.1016/j.msec.2021.112550 35523647
    [Google Scholar]
  78. AlvesS.A. PatelS.B. SukotjoC. MathewM.T. FilhoP.N. CelisJ.P. RochaL.A. ShokuhfarT. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface.Appl. Surf. Sci.201739968270110.1016/j.apsusc.2016.12.105
    [Google Scholar]
  79. NagayB.E. DiniC. CordeiroJ.M. Ricomini-FilhoA.P. de AvilaE.D. RangelE.C. da CruzN.C. BarãoV.A.R. Visible-Light-Induced Photocatalytic and Antibacterial Activity of TiO 2 Codoped with Nitrogen and Bismuth: New Perspectives to Control Implant-Biofilm-Related Diseases.ACS Appl. Mater. Interfaces20191120181861820210.1021/acsami.9b03311 31038914
    [Google Scholar]
  80. GulatiK. PrideauxM. KogawaM. Lima-MarquesL. AtkinsG.J. FindlayD.M. LosicD. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells.J. Tissue Eng. Regen. Med.201711123313332510.1002/term.2239 27925441
    [Google Scholar]
  81. SouzaJ.C.M. SordiM.B. KanazawaM. RavindranS. HenriquesB. SilvaF.S. AparicioC. CooperL.F. Nano-scale modification of titanium implant surfaces to enhance osseointegration.Acta Biomater.20199411213110.1016/j.actbio.2019.05.045 31128320
    [Google Scholar]
  82. AwadN.K. EdwardsS.L. MorsiY.S. A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants.Mater. Sci. Eng. C2017761401141210.1016/j.msec.2017.02.150 28482507
    [Google Scholar]
  83. WangQ. ZhouP. LiuS. AttarilarS. MaR.L.W. ZhongY. WangL. Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review.Nanomaterials (Basel)2020106124410.3390/nano10061244 32604854
    [Google Scholar]
  84. XueT. AttarilarS. LiuS. LiuJ. SongX. LiL. ZhaoB. TangY. Surface Modification Techniques of Titanium and its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review.Front. Bioeng. Biotechnol.2020860307210.3389/fbioe.2020.603072 33262980
    [Google Scholar]
  85. SarrafM. Rezvani GhomiE. AlipourS. RamakrishnaS. Liana SukimanN. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications.Biodes. Manuf.20225237139510.1007/s42242‑021‑00170‑3 34721937
    [Google Scholar]
  86. YeoI.S.L. Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration.Materials (Basel)20191318910.3390/ma13010089 31878016
    [Google Scholar]
  87. OliveiraW.F. ArrudaI.R.S. SilvaG.M.M. MachadoG. CoelhoL.C.B.B. CorreiaM.T.S. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications.Mater. Sci. Eng. C20178159760610.1016/j.msec.2017.08.017 28888015
    [Google Scholar]
  88. GulatiK. MaherS. FindlayD.M. LosicD. Titania nanotubes for orchestrating osteogenesis at the bone-implant interface.Nanomedicine (Lond.)201611141847186410.2217/nnm‑2016‑0169 27389393
    [Google Scholar]
  89. WangL. JinM. ZhengY.D. GuanY.P. LuX. LuoJ.L. Nanotubular surface modification of metallic implants via electrochemical anodization technique.Int. J. Nanomedicine201494421443510.2147/IJN.S65866 25258532
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266334190241213101547
Loading
/content/journals/ctmc/10.2174/0115680266334190241213101547
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): antibacterial activity; biocompatibility; Implants; surface modification; titanium
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test