Skip to content
2000
Volume 25, Issue 20
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

The escalating growth and global dissemination of antimicrobial resistance underscore the urgency for the discovery of innovative antimicrobial agents. Antibacterial Peptides (AMPs) have emerged as promising candidates, distinctly outperforming conventional antibiotics due to their mitigated propensity for resistance development, expansive antibiofilm activity, and capacity to favorably modulate host immune responses. Consequently, AMPs have garnered significant attention in medical research circles and are anticipated to serve as novel therapeutic alternatives in combating microbial infections, particularly those involving drug-resistant bacteria, thereby inaugurating a novel paradigm in treatment strategies. This comprehensive review delves into the intricate structural and physicochemical attributes of AMPs, providing a concise overview. It further examines the advancements and anticipated clinical trajectories of AMP research, with a pivotal focus on elucidating their antimicrobial mechanisms and the intricate interplay between structure and activity. The aim of this review is twofold: firstly, to enhance the scientific community's comprehension of the antimicrobial mechanisms and Structure-Activity Relationships (SAR) across all classes of AMPs; secondly, to address existing research gaps in the SAR of AMPs, thereby laying a solid foundation for future research endeavors and facilitating the development of these promising therapeutic agents.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266350153250121072651
2025-02-07
2026-02-02
Loading full text...

Full text loading...

References

  1. FarrarJ.J. YenL.M. CookT. FairweatherN. BinhN. ParryJ. ParryC.M. Neurological aspects of tropical disease: Tetanus.J. Neurol. Neurosurg. Psychiatry200069329230110.1136/jnnp.69.3.292 10945801
    [Google Scholar]
  2. FuchsF. MarkertD. WagnerI.V. LiebauM.C. BergerA. DangelA. SingA. FabriM. PlumG. Toxigenic Corynebacterium diphtheriae –associated genital ulceration.Emerg. Infect. Dis.20202692180218110.3201/eid2609.180830 32818407
    [Google Scholar]
  3. DubyanskiyV.M. YeszhanovA.B. Ecology of yersinia pestis and the epidemiology of plague.Adv. Exp. Med. Biol.201691810117010.1007/978‑94‑024‑0890‑4_5 27722862
    [Google Scholar]
  4. HayatS.M.G. FarahaniN. GolichenariB. SahebkarA. Recombinant protein expression in Escherichia coli (E.coli): What we need to know.Curr. Pharm. Des.201824671872510.2174/1381612824666180131121940 29384059
    [Google Scholar]
  5. TakayaA. YamamotoT. TokoyodaK. Humoral immunity vs.Salmonella. Front. Immunol.202010315510.3389/fimmu.2019.03155 32038650
    [Google Scholar]
  6. YorkA. Exfoliating neisseria gonorrhoeae.Nat. Rev. Microbiol.2020186317 32317730
    [Google Scholar]
  7. XuS. QiuX. HouX. ZhouH. ChenD. WangX. HanL. LiD. SunL. JiX. LiM. ZhangJ. LiM. LiZ. Direct detection of Corynebacterium striatum, Corynebacterium propinquum, and Corynebacterium simulans in sputum samples by high-resolution melt curve analysis.BMC Infect. Dis.20212112110.1186/s12879‑020‑05633‑z 33413116
    [Google Scholar]
  8. GoldsteinE.J.C. TyrrellK.L. CitronD.M. Lactobacillus species: Taxonomic complexity and controversial susceptibilities.Clin. Infect. Dis.201560Suppl. 2S98S10710.1093/cid/civ072 25922408
    [Google Scholar]
  9. HuemerM. Mairpady ShambatS. BruggerS.D. ZinkernagelA.S. Antibiotic resistance and persistence—Implications for human health and treatment perspectives.EMBO Rep.20202112e5103410.15252/embr.202051034 33400359
    [Google Scholar]
  10. TanwarJ. DasS. FatimaZ. HameedS. Multidrug resistance: An emerging crisis.Interdiscip. Perspect. Infect. Dis.201420141710.1155/2014/541340 25140175
    [Google Scholar]
  11. DarbyE.M. TrampariE. SiasatP. GayaM.S. AlavI. WebberM.A. BlairJ.M.A. Molecular mechanisms of antibiotic resistance revisited.Nat. Rev. Microbiol.202321528029510.1038/s41579‑022‑00820‑y 36411397
    [Google Scholar]
  12. DalalV. Golemi-KotraD. KumarP. Quantum mechanics/molecular mechanics studies on the catalytic mechanism of a Novel Esterase (FmtA) of Staphylococcus aureus.J. Chem. Inf. Model.202262102409242010.1021/acs.jcim.2c00057 35475370
    [Google Scholar]
  13. CzaplewskiL. BaxR. ClokieM. DawsonM. FairheadH. FischettiV.A. FosterS. GilmoreB.F. HancockR.E.W. HarperD. HendersonI.R. HilpertK. JonesB.V. KadiogluA. KnowlesD. ÓlafsdóttirS. PayneD. ProjanS. ShaunakS. SilvermanJ. ThomasC.M. TrustT.J. WarnP. RexJ.H. Alternatives to antibiotics—a pipeline portfolio review.Lancet Infect. Dis.201616223925110.1016/S1473‑3099(15)00466‑1 26795692
    [Google Scholar]
  14. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  15. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  16. DalalV. DhankharP. SinghV. SinghV. RakhaminovG. Golemi-KotraD. KumarP. Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑6 33421024
    [Google Scholar]
  17. Erdem BüyükkirazM. KesmenZ. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.J. Appl. Microbiol.202213231573159610.1111/jam.15314 34606679
    [Google Scholar]
  18. ChewA.B.L. Combating antimicrobial resistance: Novel targets and anti-infectives development.2021
    [Google Scholar]
  19. MalmstenM. Antimicrobial peptides.Ups. J. Med. Sci.2014119219920410.3109/03009734.2014.899278 24758244
    [Google Scholar]
  20. Dehghan EsmatabadiM.J. BozorgmehrA. HajjariS.N. Sadat SombolestaniA. MalekshahiZ.V. SadeghizadehM. Review of new insights into antimicrobial agents.Cell. Mol. Biol.2017632404810.14715/cmb/2017.63.2.6 28364794
    [Google Scholar]
  21. JiangY. ChenY. SongZ. TanZ. ChengJ. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation.Adv. Drug Deliv. Rev.202117026128010.1016/j.addr.2020.12.016 33400958
    [Google Scholar]
  22. MwangiJ. HaoX. LaiR. ZhangZ-Y. Antimicrobial peptides: New hope in the war against multidrug resistance.Zool. Res.201940648850510.24272/j.issn.2095‑8137.2019.062 31592585
    [Google Scholar]
  23. WangC. HongT. CuiP. WangJ. XiaJ. Antimicrobial peptides towards clinical application: Delivery and formulation.Adv. Drug Deliv. Rev.202117511381810.1016/j.addr.2021.05.028 34090965
    [Google Scholar]
  24. ShinS.H. LeeY.S. ShinY.P. KimB. KimM.H. ChangH.R. JangW.S. LeeI.H. Therapeutic efficacy of halocidin-derived peptide HG1 in a mouse model of Candida albicans oral infection.J. Antimicrob. Chemother.20136851152116010.1093/jac/dks513 23302580
    [Google Scholar]
  25. MigońD. NeubauerD. KamyszW. Hydrocarbon stapled antimicrobial peptides.Protein J.201837121210.1007/s10930‑018‑9755‑0 29330644
    [Google Scholar]
  26. HaneyE.F. PletzerD. HancockR.E.W. Impact of Host Defense Peptides on Chronic Wounds and Infections. Chronic Wounds, Wound Dressings and Wound Healing ShiffmanM.A. LowM. ChamSpringer International Publishing2021319
    [Google Scholar]
  27. WnorowskaU. FiedorukK. PiktelE. PrasadS.V. SulikM. JanionM. DanilukT. SavageP.B. BuckiR. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: Current status and potential future applications.J. Nanobiotechnology2020181310.1186/s12951‑019‑0566‑z 31898542
    [Google Scholar]
  28. ZhuY. Haow. WangX. OuyangJ. DengX. YuH. WangY. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug‐resistant infections.Med. Res. Rev.20224241377142210.1002/med.21879 34984699
    [Google Scholar]
  29. HaoY. WangJ. de la Fuente-NunezC. FrancoO.L. Editorial: Antimicrobial peptides: Molecular design, structure-function relationship, and biosynthesis optimization.Front. Microbiol.20221388854010.3389/fmicb.2022.888540 35495692
    [Google Scholar]
  30. LuoX. YeX. DingL. ZhuW. YiP. ZhaoZ. GaoH. ShuZ. LiS. SangM. WangJ. ZhongW. ChenZ. Fine-tuning of alkaline residues on the hydrophilic face provides a non-toxic Cationic α-helical antimicrobial peptide against antibiotic-resistant ESKAPE pathogens.Front. Microbiol.20211268459110.3389/fmicb.2021.684591 34335511
    [Google Scholar]
  31. SultanaM.F. SuzukiM. YamasakiF. KubotaW. TakahashiK. AboH. KawashimaH. Identification of crucial amino acid residues for antimicrobial activity of angiogenin 4 and its modulation of gut microbiota in mice.Front. Microbiol.20221390094810.3389/fmicb.2022.900948 35733962
    [Google Scholar]
  32. HansenI.K.Ø. LövdahlT. SimonovicD. HansenK.Ø. AndersenA.J.C. DevoldH. RichardC.S.M. AndersenJ.H. StrømM.B. HaugT. Antimicrobial activity of small synthetic peptides based on the marine peptide turgencin A: Prediction of antimicrobial peptide sequences in a natural peptide and strategy for optimization of potency.Int. J. Mol. Sci.20202115546010.3390/ijms21155460 32751755
    [Google Scholar]
  33. KamyszE. SikorskaE. JaśkiewiczM. BauerM. NeubauerD. BartoszewskaS. Barańska-RybakW. KamyszW. Lipidated analogs of the LL-37-derived peptide fragment KR12—structural analysis, surface-active properties and antimicrobial activity.Int. J. Mol. Sci.202021388710.3390/ijms21030887 32019109
    [Google Scholar]
  34. LeeT-H. HallK.N. AguilarM-I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure.Curr. Top. Med. Chem.2016161253910.2174/1568026615666150703121700 26139112
    [Google Scholar]
  35. Di SommaA. MorettaA. CanèC. CirilloA. DuilioA. Antimicrobial and antibiofilm peptides.Biomolecules202010465210.3390/biom10040652 32340301
    [Google Scholar]
  36. MorettaA. ScieuzoC. PetroneA.M. SalviaR. MannielloM.D. FrancoA. LucchettiD. VassalloA. VogelH. SgambatoA. FalabellaP. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields.Front. Cell. Infect. Microbiol.20211166863210.3389/fcimb.2021.668632 34195099
    [Google Scholar]
  37. Di SommaA. AvitabileC. CirilloA. MorettaA. MerlinoA. PaduanoL. DuilioA. RomanelliA. The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex.Biochim. Biophys. Acta, Gen. Subj.20201864712960610.1016/j.bbagen.2020.129606 32229224
    [Google Scholar]
  38. GrafM. WilsonD.N. Intracellular antimicrobial peptides targeting the protein synthesis machinery.Adv. Exp. Med. Biol.20191117738910.1007/978‑981‑13‑3588‑4_6 30980354
    [Google Scholar]
  39. PeptidesA. Features, action, and their resistance mechanisms in bacteria.2018246747767
    [Google Scholar]
  40. YanY. LiY. ZhangZ. WangX. NiuY. ZhangS. XuW. RenC. Advances of peptides for antibacterial applications.Colloids Surf. B Biointerfaces202120211168210.1016/j.colsurfb.2021.111682 33714188
    [Google Scholar]
  41. HendersonJ.M. LeeK.Y.C. Promising antimicrobial agents designed from natural peptide templates.Curr. Opin. Solid State Mater. Sci.201317417519210.1016/j.cossms.2013.08.003
    [Google Scholar]
  42. StrömstedtA.A. ingstadL. SchmidtchenA. MalmstenM. Interaction between amphiphilic peptides and phospholipid membranes.Curr. Opin. Colloid Interface Sci.201015646747810.1016/j.cocis.2010.05.006
    [Google Scholar]
  43. JenssenH. HamillP. HancockR.E.W. Peptide antimicrobial agents.Clin. Microbiol. Rev.200619349151110.1128/CMR.00056‑05 16847082
    [Google Scholar]
  44. SenguptaD. LeontiadouH. MarkA.E. MarrinkS.J. Toroidal pores formed by antimicrobial peptides show significant disorder.Biochim. Biophys. Acta Biomembr.20081778102308231710.1016/j.bbamem.2008.06.007 18602889
    [Google Scholar]
  45. MatsuzakiK. SugishitaK. IshibeN. UehaM. NakataS. MiyajimaK. EpandR.M. Relationship of membrane curvature to the formation of pores by magainin 2.Biochemistry19983734118561186310.1021/bi980539y 9718308
    [Google Scholar]
  46. HallockK.J. LeeD.K. RamamoorthyA. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain.Biophys. J.20038453052306010.1016/S0006‑3495(03)70031‑9 12719236
    [Google Scholar]
  47. KumarP. KizhakkedathuJ. StrausS. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo.Biomolecules201881410.3390/biom8010004 29351202
    [Google Scholar]
  48. KabelkaI. VachaR. Advances in molecular understanding of α-helical membrane-active peptides.Acc. Chem. Res.20215492196220410.1021/acs.accounts.1c00047 33844916
    [Google Scholar]
  49. GanB.H. GaynordJ. RoweS.M. DeingruberT. SpringD.R. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions.Chem. Soc. Rev.202150137820788010.1039/d0cs00729c 34042120
    [Google Scholar]
  50. ReddyK.V.R. YederyR.D. AranhaC. Antimicrobial peptides: Premises and promises.Int. J. Antimicrob. Agents200424653654710.1016/j.ijantimicag.2004.09.005 15555874
    [Google Scholar]
  51. YangL. HarrounT.A. WeissT.M. DingL. HuangH.W. Barrel-stave model or toroidal model? A case study on melittin pores.Biophys. J.20018131475148510.1016/S0006‑3495(01)75802‑X 11509361
    [Google Scholar]
  52. HaleJ.D.F. HancockR.E.W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria.Expert Rev. Anti Infect. Ther.20075695195910.1586/14787210.5.6.951 18039080
    [Google Scholar]
  53. HancockR. PatrzykatA. Clinical development of cationic antimicrobial peptides: From natural to novel antibiotics.Curr. Drug Targets Infect. Disord.200221798310.2174/1568005024605855 12462155
    [Google Scholar]
  54. LiangY. ZhangX. YuanY. BaoY. XiongM. Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity.Biomater. Sci.20208246858686610.1039/D0BM00801J 32815940
    [Google Scholar]
  55. JohanssonJ. GudmundssonG.H. RottenbergM.E. BerndtK.D. AgerberthB. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37.J. Biol. Chem.199827363718372410.1074/jbc.273.6.3718 9452503
    [Google Scholar]
  56. RončevićT. VukičevićD. IlićN. KrceL. GajskiG. TonkićM. Goić-BarišićI. ZoranićL. SonavaneY. BenincasaM. JuretićD. MaravićA. TossiA. Antibacterial activity affected by the conformational flexibility in Glycine–Lysine Based α-helical antimicrobial peptides.J. Med. Chem.20186172924293610.1021/acs.jmedchem.7b01831 29553266
    [Google Scholar]
  57. EdwardsI.A. ElliottA.G. KavanaghA.M. BlaskovichM.A.T. CooperM.A. Structure–activity and −toxicity relationships of the antimicrobial peptide tachyplesin-1.ACS Infect. Dis.201731291792610.1021/acsinfecdis.7b00123 28960954
    [Google Scholar]
  58. EdwardsI.A. ElliottA.G. KavanaghA.M. ZueggJ. BlaskovichM.A.T. CooperM.A. Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides.ACS Infect. Dis.20162644245010.1021/acsinfecdis.6b00045 27331141
    [Google Scholar]
  59. GuanQ. HuangS. JinY. CampagneR. AlezraV. WanY. Recent advances in the exploration of therapeutic analogues of gramicidin S, an old but still potent antimicrobial peptide.J. Med. Chem.201962177603761710.1021/acs.jmedchem.9b00156 30938996
    [Google Scholar]
  60. JainS. ZainJ. Romidepsin in the treatment of cutaneous T-cell lymphoma.J. Blood Med.201123747 22287862
    [Google Scholar]
  61. ScheinpflugK. KrylovaO. NikolenkoH. ThurmC. DatheM. Evidence for a novel mechanism of antimicrobial action of a cyclic R-,W-rich hexapeptide.PLoS One2015104e012505610.1371/journal.pone.0125056 25875357
    [Google Scholar]
  62. MannielloM.D. MorettaA. SalviaR. ScieuzoC. LucchettiD. VogelH. SgambatoA. FalabellaP. Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance.Cell. Mol. Life Sci.20217894259428210.1007/s00018‑021‑03784‑z 33595669
    [Google Scholar]
  63. CiullaM.G. GelainF. Structure–activity relationships of antibacterial peptides.Microb. Biotechnol.202316475777710.1111/1751‑7915.14213 36705032
    [Google Scholar]
  64. KurpeS.R. GrishinS.Y. SurinA.K. PanfilovA.V. SlizenM.V. ChowdhuryS.D. GalzitskayaO.V. Antimicrobial and amyloidogenic activity of peptides. Can antimicrobial peptides be used against SARS-CoV-2?Int. J. Mol. Sci.20202124955210.3390/ijms21249552 33333996
    [Google Scholar]
  65. HancockR.E.W. Cationic peptides: Effectors in innate immunity and novel antimicrobials.Lancet Infect. Dis.20011315616410.1016/S1473‑3099(01)00092‑5 11871492
    [Google Scholar]
  66. DatheM. WieprechtT. NikolenkoH. HandelL. MaloyW.L. MacDonaldD.L. BeyermannM. BienertM. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides.FEBS Lett.1997403220821210.1016/S0014‑5793(97)00055‑0 9042968
    [Google Scholar]
  67. GrimseyE. CollisD.W.P. MikutR. HilpertK. The effect of lipidation and glycosylation on short cationic antimicrobial peptides.Biochim. Biophys. Acta Biomembr.20201862818319510.1016/j.bbamem.2020.183195 32130974
    [Google Scholar]
  68. MihajlovicM. LazaridisT. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides.Biochim. Biophys. Acta Biomembr.2012181851274128310.1016/j.bbamem.2012.01.016 22290189
    [Google Scholar]
  69. ZhangL. BulajG. Converting peptides into drug leads by lipidation.Curr. Med. Chem.201219111602161810.2174/092986712799945003 22376031
    [Google Scholar]
  70. VascoA.V. BrodeM. MéndezY. ValdésO. RiveraD.G. WessjohannL.A. Synthesis of lactam-bridged and lipidated cyclo-peptides as promising anti-phytopathogenic agents.Molecules202025481110.3390/molecules25040811 32069902
    [Google Scholar]
  71. BellavitaR. FalangaA. BuomminoE. MerlinoF. CasciaroB. CappielloF. MangoniM.L. NovellinoE. CataniaM.R. PaolilloR. GriecoP. GaldieroS. Novel temporin L antimicrobial peptides: Promoting self-assembling by lipidic tags to tackle superbugs.J. Enzyme Inhib. Med. Chem.20203511751176410.1080/14756366.2020.1819258 32957844
    [Google Scholar]
  72. YoganathanS. MillerS.J. Structure diversification of vancomycin through peptide-catalyzed, site-selective lipidation: A catalysis-based approach to combat glycopeptide-resistant pathogens.J. Med. Chem.20155852367237710.1021/jm501872s 25671771
    [Google Scholar]
  73. SatoH. FeixJ.B. Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides.Biochim. Biophys. Acta Biomembr.2006175891245125610.1016/j.bbamem.2006.02.021 16697975
    [Google Scholar]
  74. SuC.J. WuS.S. JengU.S. LeeM.T. SuA.C. LiaoK.F. LinW.Y. HuangY.S. ChenC.Y. Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering.Biochim. Biophys. Acta Biomembr.20131828252853410.1016/j.bbamem.2012.10.027 23123565
    [Google Scholar]
  75. LiuJ. SunZ. YuanY. TianX. LiuX. DuanG. YangY. YuanL. LinH.C. LiX. Peptide glycosylation generates supramolecular assemblies from glycopeptides as biomimetic scaffolds for cell adhesion and proliferation.ACS Appl. Mater. Interfaces20168116917692410.1021/acsami.6b00850 26930123
    [Google Scholar]
  76. McDonaldL.C. KuehnertM.J. TenoverF.C. JarvisW.R. Vancomycin-resistant enterococci outside the health-care setting: Prevalence, sources, and public health implications.Emerg. Infect. Dis.19973331131710.3201/eid0303.970307 9284375
    [Google Scholar]
  77. GongY. AndinaD. NaharS. LerouxJ.C. GauthierM.A. Releasable and traceless PEGylation of arginine-rich antimicrobial peptides.Chem. Sci. (Camb.)2017854082408610.1039/C7SC00770A 30155213
    [Google Scholar]
  78. MorrisC.J. BeckK. FoxM.A. UlaetoD. ClarkG.C. GumbletonM. Pegylation of antimicrobial peptides maintains the active peptide conformation, model membrane interactions, and antimicrobial activity while improving lung tissue biocompatibility following airway delivery.Antimicrob. Agents Chemother.20125663298330810.1128/AAC.06335‑11 22430978
    [Google Scholar]
  79. CochraneS.A. FindlayB. BakhtiaryA. AcedoJ.Z. Rodriguez-LopezE.M. MercierP. VederasJ.C. Antimicrobial lipopeptide tridecaptin A 1 selectively binds to Gram-negative lipid II.Proc. Natl. Acad. Sci. USA201611341115611156610.1073/pnas.1608623113 27688760
    [Google Scholar]
  80. SwiecickiJ.M. Di PisaM. LippiF. ChwetzoffS. MansuyC. TrugnanG. ChassaingG. LavielleS. BurlinaF. Unsaturated acyl chains dramatically enhanced cellular uptake by direct translocation of a minimalist oligo-arginine lipopeptide.Chem. Commun. (Camb.)20155178146561465910.1039/C5CC06116D 26291669
    [Google Scholar]
  81. AllenN.E. HobbsJ.N.Jr NicasT.I. Inhibition of peptidoglycan biosynthesis in vancomycin-susceptible and -resistant bacteria by a semisynthetic glycopeptide antibiotic.Antimicrob. Agents Chemother.199640102356236210.1128/AAC.40.10.2356 8891144
    [Google Scholar]
  82. AmpeE. DelaereB. HecqJ.D. TulkensP.M. GlupczynskiY. Implementation of a protocol for administration of vancomycin by continuous infusion: Pharmacokinetic, pharmacodynamic and toxicological aspects.Int. J. Antimicrob. Agents201341543944610.1016/j.ijantimicag.2013.01.009 23523733
    [Google Scholar]
  83. AndreuD. RivasL. Animal antimicrobial peptides: An overview.Biopolymers199847641543310.1002/(SICI)1097‑0282(1998)47:6<415::AID‑BIP2>3.0.CO;2‑D 10333735
    [Google Scholar]
  84. CascalesL. CraikD.J. Naturally occurring circular proteins: Distribution, biosynthesis and evolution.Org. Biomol. Chem.20108225035504710.1039/c0ob00139b 20835453
    [Google Scholar]
  85. LeiJ. SunL. HuangS. ZhuC. LiP. HeJ. MackeyV. CoyD.H. HeQ. The antimicrobial peptides and their potential clinical applications.Am. J. Transl. Res.201911739193931 31396309
    [Google Scholar]
  86. WhiteS.H. WimleyW.C. SelstedM.E. Structure, function, and membrane integration of defensins.Curr. Opin. Struct. Biol.19955452152710.1016/0959‑440X(95)80038‑7 8528769
    [Google Scholar]
  87. MaoR. ZhaoQ. LuH. YangN. LiY. TengD. HaoY. GuX. WangJ. The marine antimicrobial peptide AOD with intact disulfide bonds has remarkable antibacterial and anti-biofilm activity.Mar. Drugs2024221046310.3390/md22100463 39452871
    [Google Scholar]
  88. D’SouzaC. HenriquesS.T. WangC.K. CraikD.J. Structural parameters modulating the cellular uptake of disulfide-rich cyclic cell-penetrating peptides: MCoTI-II and SFTI-1.Eur. J. Med. Chem.201488101810.1016/j.ejmech.2014.06.047 24985034
    [Google Scholar]
  89. MatsuzakiK. YoneyamaS. FujiiN. MiyajimaK. YamadaK. KirinoY. AnzaiK. Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog.Biochemistry199736329799980610.1021/bi970588v 9245412
    [Google Scholar]
  90. MaX. WangQ. RenK. XuT. ZhangZ. XuM. RaoZ. ZhangX. A review of antimicrobial peptides: Structure, mechanism of action, and molecular optimization strategies.Fermentation2024101154010.3390/fermentation10110540
    [Google Scholar]
  91. ZhangQ.Y. YanZ.B. MengY.M. HongX.Y. ShaoG. MaJ.J. ChengX.R. LiuJ. KangJ. FuC.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential.Mil. Med. Res.2021814810.1186/s40779‑021‑00343‑2 34496967
    [Google Scholar]
  92. SlezinaM.P. OdintsovaT.I. Plant antimicrobial peptides: Insights into structure-function relationships for practical applications.Curr. Issues Mol. Biol.20234543674370410.3390/cimb45040239 37185763
    [Google Scholar]
  93. HeF. ChaiY. ZengZ. LuF. ChenH. ZhuJ. FangY. ChengK. MicletE. AlezraV. WanY. Rapid formation of intramolecular disulfide bridges using light: An efficient method to control the conformation and function of bioactive peptides.J. Am. Chem. Soc.202314541226392264810.1021/jacs.3c07795 37788450
    [Google Scholar]
  94. DennisonS.R. MuraM. HarrisF. MortonL.H.G. ZvelindovskyA. PhoenixD.A. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5.Biochim. Biophys. Acta Biomembr.2015184851111111810.1016/j.bbamem.2015.01.014 25640709
    [Google Scholar]
  95. SaikiaK. SravaniY.D. RamakrishnanV. ChaudharyN. Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli MreB.Sci. Rep.2017714299410.1038/srep42994 28230084
    [Google Scholar]
  96. DattaA. KunduP. BhuniaA. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding.J. Colloid Interface Sci.201646133534510.1016/j.jcis.2015.09.036 26407061
    [Google Scholar]
  97. ParkI.Y. ChoJ.H. KimK.S. KimY.B. KimM.S. KimS.C. Helix stability confers salt resistance upon helical antimicrobial peptides.J. Biol. Chem.200427914138961390110.1074/jbc.M311418200 14718539
    [Google Scholar]
  98. XiY. SongT. TangS. WangN. DuJ. Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities.Biomacromolecules201617123922393010.1021/acs.biomac.6b01285 27936717
    [Google Scholar]
  99. SepahiM. JalalR. MashreghiM. Antibacterial activity of poly-l-arginine under different conditions.Iran. J. Microbiol.201792103111 29214002
    [Google Scholar]
  100. HoldbrookD.A. SinghS. ChoongY.K. PetrlovaJ. MalmstenM. BondP.J. VermaN.K. SchmidtchenA. SaravananR. Influence of pH on the activity of thrombin-derived antimicrobial peptides.Biochim. Biophys. Acta Biomembr.20181860112374238410.1016/j.bbamem.2018.06.002 29885294
    [Google Scholar]
  101. GuoZ. PengH. KangJ. SunD. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications.Biomed. Rep.20164552853410.3892/br.2016.639 27123243
    [Google Scholar]
  102. LeeH.J. HuangY.W. ChiouS.H. AronstamR.S. Polyhistidine facilitates direct membrane translocation of cell-penetrating peptides into cells.Sci. Rep.201991939810.1038/s41598‑019‑45830‑8 31253836
    [Google Scholar]
  103. HamamotoK. KidaY. ZhangY. ShimizuT. KuwanoK. Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions.Microbiol. Immunol.2002461174174910.1111/j.1348‑0421.2002.tb02759.x 12516770
    [Google Scholar]
  104. HongS.Y. OhJ.E. LeeK.H. Effect of d-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide.Biochem. Pharmacol.199958111775178010.1016/S0006‑2952(99)00259‑2 10571252
    [Google Scholar]
  105. LooY. GoktasM. TekinayA.B. GulerM.O. HauserC.A.E. MitrakiA. Self-assembled proteins and peptides as scaffolds for tissue regeneration.Adv. Healthc. Mater.20154162557258610.1002/adhm.201500402 26461979
    [Google Scholar]
  106. MandalD. Nasrolahi ShiraziA. ParangK. Self-assembly of peptides to nanostructures.Org. Biomol. Chem.201412223544356110.1039/C4OB00447G 24756480
    [Google Scholar]
  107. ZengZ. ZhuJ. DengX. ChenH. JinY. MicletE. AlezraV. WanY. Customized reversible stapling for selective delivery of bioactive peptides.J. Am. Chem. Soc.202214451236142362110.1021/jacs.2c10949 36530144
    [Google Scholar]
  108. BabiiO. AfoninS. BerditschM. ReiβerS. MykhailiukP.K. KubyshkinV.S. SteinbrecherT. UlrichA.S. KomarovI.V. Controlling biological activity with light: Diarylethene-containing cyclic peptidomimetics.Angew. Chem. Int. Ed.201453133392339510.1002/anie.201310019 24554486
    [Google Scholar]
  109. KamalyN. KamalyZ. ValenciaP.M. Radovic-MorenoA.F. FarokhzadO.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation.Chem. Soc. Rev.20124172971301010.1039/c2cs15344k 22388185
    [Google Scholar]
  110. UrnukhsaikhanE. BoldB.E. GunbilegA. SukhbaatarN. Mishig-OchirT. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus.Sci. Rep.20211112104710.1038/s41598‑021‑00520‑2 34702916
    [Google Scholar]
  111. CiumacD. GongH. HuX. LuJ.R. Membrane targeting cationic antimicrobial peptides.J. Colloid Interface Sci.201953716318510.1016/j.jcis.2018.10.103 30439615
    [Google Scholar]
  112. JinL. BaiX. LuanN. YaoH. ZhangZ. LiuW. ChenY. YanX. RongM. LaiR. LuQ. A designed tryptophan- and lysine/arginine-rich antimicrobial peptide with therapeutic potential for clinical antibiotic-resistant Candida albicans vaginitis.J. Med. Chem.20165951791179910.1021/acs.jmedchem.5b01264 26881456
    [Google Scholar]
  113. TanP. FuH. MaX. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications.Nanotoday20213910.1016/j.nantod.2021.101229
    [Google Scholar]
  114. LachowiczJ.I. SzczepskiK. ScanoA. CasuC. FaisS. OrrùG. PisanoB. PirasM. JaremkoM. The best peptidomimetic strategies to undercover antibacterial peptides.Int. J. Mol. Sci.20202119734910.3390/ijms21197349 33027928
    [Google Scholar]
  115. MatthyssenT. LiW. HoldenJ.A. LenzoJ.C. HadjigolS. O’Brien-SimpsonN.M. The potential of modified and multimeric antimicrobial peptide materials as superbug killers.Front Chem.2022979543310.3389/fchem.2021.795433 35083194
    [Google Scholar]
  116. OngZ.Y. WiradharmaN. YangY.Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials.Adv. Drug Deliv. Rev.201478284510.1016/j.addr.2014.10.013 25453271
    [Google Scholar]
  117. LiW. SeparovicF. O’Brien-SimpsonN.M. WadeJ.D. Chemically modified and conjugated antimicrobial peptides against superbugs.Chem. Soc. Rev.2021504932497310.1039/D0CS01026J
    [Google Scholar]
  118. HuanY. KongQ. MouH. YiH. Antimicrobial peptides: Classification, design, application and research progress in multiple fields.Front. Microbiol.20201158277910.3389/fmicb.2020.582779 33178164
    [Google Scholar]
  119. LiX. ZuoS. WangB. ZhangK. WangY. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides.Molecules2022279267510.3390/molecules27092675 35566025
    [Google Scholar]
  120. SoniM. PratapJ.V. Development of novel anti-leishmanials: The case for structure-based approaches.Pathogens202211895010.3390/pathogens11080950 36015070
    [Google Scholar]
  121. WangG. ZietzC.M. MudgapalliA. WangS. WangZ. The evolution of the antimicrobial peptide database over 18 years: Milestones and new features.Protein Sci.20223119210610.1002/pro.4185 34529321
    [Google Scholar]
  122. OrenZ. ShaiY. Mode of action of linear amphipathic α-helical antimicrobial peptides.Biopolymers199847645146310.1002/(SICI)1097‑0282(1998)47:6<451::AID‑BIP4>3.0.CO;2‑F 10333737
    [Google Scholar]
  123. WuM. MaierE. BenzR. HancockR.E.W. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli.Biochemistry199938227235724210.1021/bi9826299 10353835
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266350153250121072651
Loading
/content/journals/ctmc/10.2174/0115680266350153250121072651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test