Skip to content
2000
Volume 25, Issue 20
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Recent advancements in the synthesis of novel heterocyclic compounds, particularly oxadiazole derivatives, have garnered significant interest due to their broad pharmacological activities. Despite the oxadiazole ring being a relatively small structure, its derivatives have shown considerable therapeutic potential across a range of diseases. These compounds have been explored for a variety of biological effects, including anti-inflammatory, anticonvulsant, hypoglycemic, antitubercular, anxiolytic, antimicrobial, antitumor, and anticancer properties. The growing issue of drug resistance has further fueled research into the therapeutic promise of oxadiazole-based compounds, particularly for their ability to target resistant diseases.

Objective

This review aims to highlight the pharmacological profiles of oxadiazole derivatives, with a focus on how structural modifications can enhance their activity against specific therapeutic targets. Additionally, the review seeks to explore strategies for overcoming resistance mechanisms associated with these compounds, underscoring their potential in addressing emerging drug-resistant diseases.

Conclusion

Oxadiazole derivatives represent a promising class of compounds with significant therapeutic potential, particularly in the face of increasing drug resistance. Their diverse pharmacological activities and ability to be structurally optimized for specific therapeutic targets position them as valuable candidates for further research. Continued exploration of oxadiazole derivatives, with an emphasis on overcoming resistance, may lead to the development of novel treatments for a variety of challenging diseases.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266349715250122001314
2025-08-01
2026-02-02
Loading full text...

Full text loading...

References

  1. Zhdankin, V.V.; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K. Elsevier: Oxford, U.K,20085243314
    [Google Scholar]
  2. Venkatesan, V; Hemalatha, K A pharmacological update of triazole derivative: A review. Curr. Top Med. Chem.,2024242033204910.2174/011568026630835924070809400139069706
    [Google Scholar]
  3. WangP.Y. ShaoW.B. XueH.T. FangH.S. ZhouJ. WuZ.B. SongB.A. YangS. Synthesis of novel 1,3,4-oxadiazole derivatives containing diamides as promising antibacterial and antiviral agents.Res. Chem. Intermed.201743116115613010.1007/s11164‑017‑2980‑x
    [Google Scholar]
  4. KaurM. SinghS. KaurM. Synthesis, spectral study and biological activity of some 2,5-disubstituted 1,3,4-oxadiazole.Eur. J. Pharm. Med. Res.201859277282
    [Google Scholar]
  5. AhsanM.J. Synthesis and cytotoxicity evaluation of [(2,4-dichlorophenoxy)methyl]-5-aryl-1,3,4-oxadiazole/4 H -1,2,4-triazole analogues.Turk. J. Chem.20184251334134310.3906/kim‑1803‑25
    [Google Scholar]
  6. AlrazzakA.N. Synthesis, characterization, and study some of physical properties of novel 1,3,4-oxadiazole derivatives.IOP ConfSer Mater SciEng201810.1088/1757‑899X/454/1/012096
    [Google Scholar]
  7. KanthiahS. KalusalingamA. VelayuthamR. VimalaA.T. BeyatricksJ. 5-(2-aminophenyl)-1,3,4-oxadiazole-2 (3H)-thione derivatives: Synthesis, characterization and antimicrobial evaluation.Int. J. Chemtech Res.2011616467
    [Google Scholar]
  8. SalahuddinM.A. MazumderA. YarM.S. MazumderR. ChakraborthyG.S. AhsanM.J. RahmanM.U. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review.Synth. Commun.201747201805184710.1080/00397911.2017.1360911
    [Google Scholar]
  9. PatelK.D. PrajapatiS.M. PanchalS.N. PatelH.D. Review of synthesis 1,3,4-oxadiazole derivatives.Synth. Commun.201444131859187510.1080/00397911.2013.879901
    [Google Scholar]
  10. AhsanM.J. HassanM.Z. JadavS.S. GeesiM.H. BakhtM.A. RiadiY. Salahuddin AkhtarM.S. MallickM.N. AkhterM.H. Synthesis and Biological Potentials of 5-aryl-N-[4-(trifluoromethyl) phenyl]-1,3,4-oxadiazol-2-amines.Lett. Org. Chem.202017213314010.2174/1570178616666190401193928
    [Google Scholar]
  11. KavithaS. KannanK. GnanavelS. Synthesis, characterization and biological evaluation of novel 2,5 substituted-1,3,4 oxadiazole derivatives.Saudi Pharm. J.201725333734510.1016/j.jsps.2016.07.004 28344487
    [Google Scholar]
  12. YajimaW. RahmanM.H. DasD. SureshM.R. KavN.N.V. Detection of Sclerotinia sclerotiorum using a monomeric and dimeric single-chain fragment variable (scFv) antibody.J. Agric. Food Chem.200856209455946310.1021/jf801768g 18800799
    [Google Scholar]
  13. AlbrattyM. El-SharkawyK.A. AlhazmiH.A. Synthesis and evaluation of some new 1,3,4-oxadiazoles bearing thiophene, thiazole, coumarin, pyridine and pyridazine derivatives as antiviral agents.Acta Pharm.201969226127610.2478/acph‑2019‑0015 31259726
    [Google Scholar]
  14. AhsanM.J. SamyJ.G. KhalilullahH. NomaniM.S. SaraswatP. GaurR. SinghA. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents.Bioorg. Med. Chem. Lett.201121247246725010.1016/j.bmcl.2011.10.057 22071303
    [Google Scholar]
  15. AkhterM. HusainA. AzadB. AjmalM. Aroylpropionic acid based 2,5-disubstituted-1,3,4-oxadiazoles: Synthesis and their anti-inflammatory and analgesic activities.Eur. J. Med. Chem.20094462372237810.1016/j.ejmech.2008.09.005 18977556
    [Google Scholar]
  16. GlombT. ŚwiątekP. Antimicrobial activity of 1,3,4-oxadiazole derivatives.Int. J. Mol. Sci.20212213697910.3390/ijms22136979 34209520
    [Google Scholar]
  17. LelyukhM. MartynetsM. KalytovskaM. DrapakI. HarkovS. ChabanT. ChabanI. MatiychukV. Approaches for synthesis and chemical modification of non-condensed heterocyclic systems based on 1,3,4-oxadiazole ring and their biological activity: A review.J. Appl. Pharm. Sci.202010151165
    [Google Scholar]
  18. Ajay KumarK. JayaroopaP. Vasanth KumarG. Comprehensive review on the chemistry of 1,3,4-oxadiazoles and their applications.Int. J. Chemtech Res.2012417821791
    [Google Scholar]
  19. YadavS. VashistN. GahlotV. RajputA. MarathaS. Oxadiazole and their synthetic analogues: An updated review.Int J Pharm Biol Sci Arch.20189349
    [Google Scholar]
  20. ChakrapaniB. RameshV. Pourna Chander RaoG. RamachandranD. Madhukar ReddyT. Kalyan ChakravarthyA. SridharG. Synthesis and anticancer evaluation of 1,2,4-oxadiazole linked imidazothiadiazole derivatives.Russ. J. Gen. Chem.20188851020102410.1134/S1070363218050304
    [Google Scholar]
  21. RedhuS. KharbR. Recent updates on chemistry and pharmacological aspects of 1,3,4-oxadiazole scaffold.Int. J. Pharm. Innov.2013393110
    [Google Scholar]
  22. SinghA. Kociok-KöhnG. TrivediM. ChauhanR. KumarA. GosaviS.W. TerashimaC. FujishimaA. Ferrocenylethenyl-substituted oxadiazoles with phenolic and nitro anchors as sensitizers in dye sensitized solar cells.New J. Chem.201943124745475610.1039/C8NJ06242K
    [Google Scholar]
  23. PandeyK.K. Raltegravir in HIV-1 infection: Safety and efficacy in treatment-naïve patients.Clin. Med. Rev. Ther.2011201241330 22389581
    [Google Scholar]
  24. SiwachA. VermaP.K. Therapeutic potential of oxadiazole or furadiazole containing compounds.BMC Chem.20201417010.1186/s13065‑020‑00721‑2 33372629
    [Google Scholar]
  25. SchleckerR. ThiemeP.C. The synthesis of antihypertensive 3-(1,3,4-oxadiazol-2-yl)phenoxypropanolahines.Tetrahedron198844113289329410.1016/S0040‑4020(01)85962‑7
    [Google Scholar]
  26. VardanS. SmulyanH. MookherjeeS. EichR. Effects of tiodazosin, a new antihypertensive, hemodynamics and clinical variables.Clin. Pharmacol. Ther.198334329029610.1038/clpt.1983.170 6883905
    [Google Scholar]
  27. MercierA.K. SunnåkerM. UeckertS. PawlikT. HenricsonE. MolodetskyiO. LawG.C. ParkerV.E.R. OscarssonJ. Pharmacokinetics and tolerability of zibotentan in patients with concurrent moderate renal and moderate hepatic impairment.Clin. Pharmacokinet.202362121713172410.1007/s40262‑023‑01306‑7 37801266
    [Google Scholar]
  28. HanA.H. BurroughsC.R. FalgoustE.P. HasoonJ. HuntG. KakazuJ. LeeT. KayeA.M. KayeA.D. GantiL. Suvorexant, a novel dual orexin receptor antagonist, for the management of insomnia.Health Psychol. Res.20231056789810.52965/001c.67898 36726477
    [Google Scholar]
  29. NamgoongJ.H. BertoniC. Clinical potential of ataluren in the treatment of Duchenne muscular dystrophy.Degener. Neurol. Neuromuscul. Dis.201663748 30050367
    [Google Scholar]
  30. PainvainE. RusticaliB. Comparative study of the effects of proxazole on the duration of the dilatation period in labor.Patol. Clin. Ostet. Ginecol.197976407411 527762
    [Google Scholar]
  31. RahulR. JatR.K. SaravananJ. Synthesis and in-vitro antioxidant activity of novel 1,3,4-oxadiazole-2-thione.J. Innov. Pharm. Biol. Sci.20163114122
    [Google Scholar]
  32. MishraP. RajakH. MehtaA. Synthesis of Schiff bases of 2-amino-5-aryl-1, 3, 4-oxadiazoles and their evaluation for antimicrobial activities.J. Gen. Appl. Microbiol.200551213314110.2323/jgam.51.133 15942874
    [Google Scholar]
  33. GuoY. XuT. BaoC. LiuZ. FanJ. YangR. QinS. Design and synthesis of new norfloxacin-1,3,4-oxadiazole hybrids as antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA).Eur. J. Pharm. Sci.201913610496610.1016/j.ejps.2019.104966 31233865
    [Google Scholar]
  34. Al-WahaibiL.H. MohamedA.A.B. TawfikS.S. HassanH.M. El-EmamA.A. 1,3,4-Oxadiazole N-Mannich Bases: Synthesis, Antimicrobial, and Anti-Proliferative Activities.Molecules2021268211010.3390/molecules26082110 33916955
    [Google Scholar]
  35. BalaS. KambojS. KajalA. SainiV. PrasadD.N. 1,3,4-oxadiazole derivatives: Synthesis, characterization, antimicrobial potential, and computational studies.BioMed Res. Int.2014201411810.1155/2014/172791 25147788
    [Google Scholar]
  36. ShiG. HeX. ShangY. XiangL. YangC. HanG. DuB. Synthesis of 3′,4′‐Diaryl‐4′ H ‐spiro[indoline‐3,5′‐[1′,2′,4′]oxadiazol]‐2‐ones via DMAP‐catalyzed Domino Reactions and Their Antibacterial Activity.Chin. J. Chem.201634990190910.1002/cjoc.201600285
    [Google Scholar]
  37. Al-OmarM.A. Synthesis and antimicrobial activity of new 5-(2-thienyl)-1,2,4-triazoles and 5-(2-thienyl)-1,3,4-oxadiazoles and related derivatives.Molecules201015150251410.3390/molecules15010502 20110905
    [Google Scholar]
  38. BagcchiS. WHO’s Global Tuberculosis Report 2022.Lancet Microbe202341e2010.1016/S2666‑5247(22)00359‑7 36521512
    [Google Scholar]
  39. ChakayaJ. PetersenE. NantandaR. MungaiB.N. MiglioriG.B. AmanullahF. LunguP. NtoumiF. KumarasamyN. MaeurerM. ZumlaA. The WHO Global Tuberculosis 2021 Report – not so good news and turning the tide back to End TB.Int. J. Infect. Dis.2022124Suppl. 1S26S2910.1016/j.ijid.2022.03.011 35321845
    [Google Scholar]
  40. VilchèzeC. Mycobacterial cell wall: A source of successful targets for old and new drugs.Appl. Sci. (Basel)2020107227810.3390/app10072278
    [Google Scholar]
  41. AlderwickL.J. HarrisonJ. LloydG.S. BirchH.L. The mycobacterial cell wall—peptidoglycan and arabinogalactan.Cold Spring Harb. Perspect. Med.201558a02111310.1101/cshperspect.a021113 25818664
    [Google Scholar]
  42. OhS. TrifonovL. YadavV.D. BarryC.E.III BoshoffH.I. Tuberculosis drug discovery: A decade of hit assessment for defined targets.Front. Cell. Infect. Microbiol.20211161130410.3389/fcimb.2021.611304 33791235
    [Google Scholar]
  43. YadavV.D. BoshoffH.I. TrifonovL. RomaJ.S.O. IoergerT.R. BarryC.E.III OhS. Synthesis and structure–activity relationships of a new class of oxadiazoles targeting DprE1 as antitubercular agents.ACS Med. Chem. Lett.20231491275128310.1021/acsmedchemlett.3c00295 37736177
    [Google Scholar]
  44. JoshiS.D. MoreU.A. KulkarniM.S. NelaguddadK. KulkarniV.H. Combined pharmacophore and molecular docking-based in silico study of some pyrrolyl 1,3,4-oxadiazole benzothioate derivatives.RGUHS J. Pharm. Sci.201552698010.5530/rjps.2015.2.6
    [Google Scholar]
  45. DesaiN.C. TrivediA. SomaniH. JadejaK.A. VajaD. NawaleL. KhedkarV.M. SarkarD. Synthesis, biological evaluation, and molecular docking study of pyridine clubbed 1,3,4-oxadiazoles as potential antituberculars.Synth. Commun.201848552454010.1080/00397911.2017.1410892
    [Google Scholar]
  46. MihailovićN. MarkovićV. MatićI.Z. StanisavljevićN.S. JovanovićŽ.S. TrifunovićS. JoksovićL. Synthesis and antioxidant activity of 1,3,4-oxadiazoles and their diacylhydrazine precursors derived from phenolic acids.RSC Advances20177148550856010.1039/C6RA28787E
    [Google Scholar]
  47. PapatheodorouK. BanachM. BekiariE. RizzoM. EdmondsM. Complications of diabetes 2017.J. Diabetes Res.201820181410.1155/2018/3086167 29713648
    [Google Scholar]
  48. LeRoithD. BiesselsG.J. BraithwaiteS.S. CasanuevaF.F. DrazninB. HalterJ.B. HirschI.B. McDonnellM.E. MolitchM.E. MuradM.H. SinclairA.J. Treatment of diabetes in older adults: An endocrine society clinical practice guideline.J. Clin. Endocrinol. Metab.201910451520157410.1210/jc.2019‑00198 30903688
    [Google Scholar]
  49. Gout-ZwartJ.J. de JongL.A. SaptennoL. PostmaM.J. Budget impact analysis of metformin sustained release for the treatment of type 2 diabetes in the Netherlands.PharmacoEconom. Open20204232133010.1007/s41669‑019‑00179‑6 31535305
    [Google Scholar]
  50. PatelK.D. PrajapatiS.M. PanchalS.N. PatelH.D. Review of synthesis of 1,3,4-oxadiazole derivatives.Synth. Commun.201444131859187510.1080/00397911.2013.879901
    [Google Scholar]
  51. SrinivasaM.G. PaithankarJ.G. Saheb BirangalS.R. PaiA. PaiV. DeshpandeS.N. RevanasiddappaB.C. Novel hybrids of thiazolidinedione-1,3,4-oxadiazole derivatives: synthesis, molecular docking, MD simulations, ADMET study, in vitro, and in vivo anti-diabetic assessment.RSC Advances20231331567157910.1039/D2RA07247E 36712616
    [Google Scholar]
  52. QaziA.I. AhmadB. SahibzadaM.U.K. AnwarF. KhusroA. AlhumaydhiF.A. MohamedA.A. -.R.; Mostafa-Hedeab, G.; Emran, T.B. Evaluation of antidiabetic activity of oxadiazole derivative in rats.Evid. Based Complement. Alternat. Med.20232023114155410.1155/2023/1141554 37143509
    [Google Scholar]
  53. ShymaP.C. BalakrishnaK. PeethambarS.K. VijeshA.M. Synthesis, characterization, antidiabetic and antioxidant activity of 1,3,4-oxadiazole derivatives bearing 6-methyl pyridine moiety.Pharma Chem.2015712137145
    [Google Scholar]
  54. GaniR.S. KudvaA.K. TimanagoudaK. Raghuveer MujawarS.B.H. JoshiS.D. RaghuS.V. Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors.Bioorg. Chem.202111410504610.1016/j.bioorg.2021.105046
    [Google Scholar]
  55. SalveM.T. JadhavS.B.Sr Synthesis, characterization and antidiabetic evaluation of sulfonamide in corporated with 1,3,4-oxadiazole derivatives.Indian Journal of Pharmaceutical Education and Research20215541145115010.5530/ijper.55.4.214
    [Google Scholar]
  56. BukhariA. NadeemH. ImranM. MuhammadS.A. Novel oxadiazole derivatives as potent inhibitors of α-amylase and α-glucosidase enzymes: Synthesis, in vitro evaluation, and molecular docking studies.Iran. J. Basic Med. Sci.2021241216321642 35432813
    [Google Scholar]
  57. SravanthiB. KaviarasanL. PraveenT.K. PindiproluS.S. SaiK. PavankumarC. GowrammaB. Synthesis and pharmacological evaluation of 1, 3, 4-thiadiazole bearing pyrimidine derivatives as STAT3 inhibitor for treatment of breast cancer.J. Indian Chem. Soc.20201723592370
    [Google Scholar]
  58. KaviarasanL. GowrammaB. KalirajanR. MevithraM. ChandralekhaS. Molecular docking studies and synthesis of a new class of chroman 4 one fused 1,3,4 thiadiazole derivatives and evaluation for their anticancer potential.J. Indian Chem. Soc.20201720832094
    [Google Scholar]
  59. KaviarasanL. GowrammaB. ManalM. A brief review on dual target of PARP1 and STAT3 for cancer therapy: A novel perception.Curr. Enzym. Inhib.202016120
    [Google Scholar]
  60. LakshmananK. ByranG. BandlamudiS. KrishnamurthyP.T. The role of STAT3 signaling in different types of cancers: A comprehensive review.Curr. Enzym. Inhib.202016318919810.2174/1573408016999200708160300
    [Google Scholar]
  61. DilipkumarS. KarthikV. ShanmuganathanD.K. GowrammaB. KaviarasanL. In-silico screening and molecular dynamics simulation of quinazolinone derivatives as PARP1 and STAT3 dual inhibitors: A novel DML approaches.J. Biomol. Struct. Dyn.2023 37735921
    [Google Scholar]
  62. FarghalyT.A.E.R. AbdallahM.A. MahmoudH.K. Synthesis of novel 1,2,4-triazoles and triazolo-thiadiazines as anticancer agents.Turk. J. Chem.20153995596910.3906/kim‑1504‑13
    [Google Scholar]
  63. ZhangX.M. QiuM. SunJ. ZhangY.B. YangY.S. WangX.L. TangJ.F. ZhuH.L. Synthesis, biological evaluation, and molecular docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents.Bioorg. Med. Chem.201119216518652410.1016/j.bmc.2011.08.013 21962523
    [Google Scholar]
  64. YurttaşL. EvrenA.E. KubilayA. AksoyM.O. TemelH.E. Akalın ÇiftçiG. Synthesis of some new 1,3,4-oxadiazole derivatives and evaluation of their anticancer activity.ACS Omega2023851493114932610.1021/acsomega.3c07776 38162760
    [Google Scholar]
  65. ZhengQ.Z. ZhangX.M. XuY. ChengK. JiaoQ.C. ZhuH.L. Synthesis, biological evaluation, and molecular docking studies of 2-chloropyridine derivatives possessing 1,3,4-oxadiazole moiety as potential antitumor agents.Bioorg. Med. Chem.201018227836784110.1016/j.bmc.2010.09.051 20947362
    [Google Scholar]
  66. BanikB.K. SahooB.M. KumarB.V.V.R. PandaK.C. JenaJ. MahapatraM.K. BorahP. Green synthetic approach: An efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives.Molecules2021264116310.3390/molecules26041163 33671751
    [Google Scholar]
  67. Jawed AhsanM. MeenaR. DubeyS. KhanV. MandaS. Singh JadavS. SharmaP. GeesiM.H. HassanM.Z. Afroz BakhtM. RiadiY. AkhterM.H. Salahuddin GundlaR. Synthesis and biological potentials of some new 1,3,4-oxadiazole analogues.Med. Chem. Res.201827386488310.1007/s00044‑017‑2109‑1
    [Google Scholar]
  68. AhsanM.J. YadavR.P. SainiS. HassanM. BakhtM.A. JadavS.S. Al TamimiS. BinA. GeesiM.H. AnsariM.Y. KhalilullahH. Synthesis, cytotoxic evaluation, and molecular docking studies of new oxadiazole analogues.Lett. Org. Chem.20181514956
    [Google Scholar]
  69. SrivastavaR.M. de Almeida LimaA. VianaO.S. da Costa SilvaM.J. CatanhoM.T.J.A. de MoraisJ.O.F. Antiinflammatory property of 3-aryl-5-(n-propyl)-1,2,4-oxadiazoles and antimicrobial property of 3-aryl-5-(n-propyl)-4,5-dihydro-1,2,4-oxadiazoles: Their syntheses and spectroscopic studies.Bioorg. Med. Chem.20031181821182710.1016/S0968‑0896(03)00035‑X 12659768
    [Google Scholar]
  70. RanaS.M. IslamM. SaeedH. RafiqueH. MajidM. AqeelM.T. ImtiazF. AshrafZ. Synthesis, computational studies, antioxidant and anti-inflammatory bio-evaluation of 2,5-disubstituted-1,3,4-oxadiazole derivatives.Pharmaceuticals (Basel)2023167104510.3390/ph16071045 37513956
    [Google Scholar]
  71. YatamS. GundlaR. JadavS.S. PedavenkatagariN. ChimakurthyJ. Rani BN. KedamT. Focused library design and synthesis of 2-mercapto benzothiazole linked 1,2,4-oxadiazoles as COX-2/5-LOX inhibitors.J. Mol. Struct.2018115919320410.1016/j.molstruc.2018.01.060
    [Google Scholar]
  72. DuarteC. BarreiroE. FragaC. Privileged structures: A useful concept for the rational design of new lead drug candidates.Mini Rev. Med. Chem.20077111108111910.2174/138955707782331722 18045214
    [Google Scholar]
  73. De ClercqE. FieldH.J. Antiviral prodrugs – the development of successful prodrug strategies for antiviral chemotherapy.Br. J. Pharmacol.2006147111110.1038/sj.bjp.0706446 16284630
    [Google Scholar]
  74. De ClercqE. New developments in anti-HIV chemotherapy.Curr. Med. Chem.20018131543157210.2174/0929867013371842 11562282
    [Google Scholar]
  75. SilvestriM.A. NagarajanM. De ClercqE. PannecouqueC. CushmanM. Design, synthesis, anti-HIV activities, and metabolic stabilities of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors.J. Med. Chem.200447123149316210.1021/jm049916x 15163195
    [Google Scholar]
  76. BenmansourF. EydouxC. QueratG. de LamballerieX. CanardB. AlvarezK. GuillemotJ.C. BarralK. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase.Eur. J. Med. Chem.201610914615610.1016/j.ejmech.2015.12.046 26774922
    [Google Scholar]
  77. TawfikS.S. FarahatA.A. El-SayedM. TantawyA.S. BagatoO. AliM.A. Synthesis and anti-influenza activity of novel thiadiazole, oxadiazole and triazole based scaffolds.Lett. Drug Des. Discov.20181536337410.2174/1570180814666170512122832
    [Google Scholar]
  78. El MansouriA.E. MaatallahM. Ait BenhassouH. MoumenA. MehdiA. SnoeckR. AndreiG. ZahouilyM. LazrekH.B. Design, synthesis, chemical characterization, biological evaluation, and docking study of new 1,3,4-oxadiazole homonucleoside analogs.Nucleosides Nucleotides Nucleic Acids20203981088110710.1080/15257770.2020.1761982 32397827
    [Google Scholar]
  79. HjermitslevM. GrimmD.G. WehlandM. SimonsenU. KrügerM. Azilsartan medoxomil, an angiotensin II receptor antagonist for the treatment of hypertension.Basic Clin. Pharmacol. Toxicol.2017121422523310.1111/bcpt.12800 28444983
    [Google Scholar]
  80. De CaterinaA. HarperA.R. CuculiF. Critical evaluation of the efficacy and tolerability of azilsartan.Vasc. Health Risk Manag.2012829930510.2147/VHRM.S22589 22661897
    [Google Scholar]
  81. SparksM.A. CrowleyS.D. GurleyS.B. MirotsouM. CoffmanT.M. Classical renin-angiotensin system in kidney physiology.Compr. Physiol.2014431201122810.1002/cphy.c130040 24944035
    [Google Scholar]
  82. AngeloniE. Azilsartan medoxomil in the management of hypertension: An evidence-based review of its place in therapy.Core Evid.20161111010.2147/CE.S81776 27103882
    [Google Scholar]
  83. JonesJ.D. JacksonS.H. AgbotonC. MartinT.S. Azilsartan Medoxomil (Edarbi): The eighth angiotensin II receptor blocker.P&T20113610634640 22346296
    [Google Scholar]
  84. ZhuW. BaoX. RenH. LiaoP. ZhuW. YanY. WangL. Chen. Z. Clin. Exp. Hypertens.20163843544210.3109/10641963.2016.1151527
    [Google Scholar]
  85. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments for Alzheimer’s disease.Ther. Adv. Neurol. Disord.201361193310.1177/1756285612461679 23277790
    [Google Scholar]
  86. PasseriE. ElkhouryK. MorsinkM. BroersenK. LinderM. TamayolA. MalaplateC. YenF.T. Arab-TehranyE. Alzheimer’s disease: Treatment strategies and their limitations.Int. J. Mol. Sci.202223221395410.3390/ijms232213954 36430432
    [Google Scholar]
  87. PiplaniP. JainA. DeviD. Anjali SharmaA. SilakariP. Design, synthesis and pharmacological evaluation of some novel indanone derivatives as acetylcholinesterase inhibitors for the management of cognitive dysfunction.Bioorg. Med. Chem.201826121522410.1016/j.bmc.2017.11.033 29195794
    [Google Scholar]
  88. NaseemS. TemirakA. ImranA. JalilS. FatimaS. TaslimiP. IqbalJ. TasleemM. TahirM.N. ShafiqZ. Therapeutic potential of 1,3,4-oxadiazoles as potential lead compounds for the treatment of Alzheimer’s disease.RSC Advances20231326175261753510.1039/D3RA01953E 37304812
    [Google Scholar]
  89. RehmanA. NafeesaK. AbbasiM.A. SiddiquiS.Z. RasoolS. ShahS.A.A. AshrafM. Synthesis of new heterocyclic 3-piperidinyl-1,3,4-oxadiazole derivatives as potential drug candidate for the treatment of Alzheimer’s disease.Cogent Chem.201841147219710.1080/23312009.2018.1472197
    [Google Scholar]
  90. AyoupM.S. GhanemM. Abdel-HamidH. Abu-SerieM.M. MasoudA. GhareebD.A. HawsawiM.B. SonousiA. KassabA.E. New 1,2,4-oxadiazole derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease: Design, synthesis, and biological evaluation.BMC Chem.202418113010.1186/s13065‑024‑01235‑x 39003489
    [Google Scholar]
  91. JacobsonL.H. CallanderG.E. HoyerD. Suvorexant for the treatment of insomnia.Expert Rev. Clin. Pharmacol.20147671173010.1586/17512433.2014.966813 25318834
    [Google Scholar]
  92. HeidmannB. GatfieldJ. RochC. TreiberA. TortoioliS. BrotschiC. WilliamsJ.T. BolliM.H. AbeleS. SifferlenT. JenckF. BossC. Discovery of highly potent dual orexin receptor antagonists via a scaffold‐hopping approach.ChemMedChem201611192132214610.1002/cmdc.201600175 27390287
    [Google Scholar]
  93. SifferlenT. BollerA. ChardonneauA. CottreelE. GatfieldJ. TreiberA. RochC. JenckF. AissaouiH. WilliamsJ.T. BrotschiC. HeidmannB. SiegristR. BossC. Substituted pyrrolidin-2-ones: Centrally acting orexin receptor antagonists promoting sleep. Part 2.Bioorg. Med. Chem. Lett.20152591884189110.1016/j.bmcl.2015.03.035 25838147
    [Google Scholar]
  94. DubeyA.K. HanduS.S. MedirattaP.K. Suvorexant: The first orexin receptor antagonist to treat insomnia.J. Pharmacol. Pharmacother.20156211812110.4103/0976‑500X.155496 25969666
    [Google Scholar]
  95. BossC. Roch-BrisbareC. SteinerM.A. TreiberA. DietrichH. JenckF. von RaumerM. SifferlenT. BrotschiC. HeidmannB. WilliamsJ.T. AissaouiH. SiegristR. GatfieldJ. Structure-activity relationship, biological, and pharmacological characterization of the proline sulfonamide ACT-462206: a potent, brain-penetrant dual orexin 1/orexin 2 receptor antagonist.ChemMedChem20149112486249610.1002/cmdc.201402258 25147058
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266349715250122001314
Loading
/content/journals/ctmc/10.2174/0115680266349715250122001314
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Heterocyclic compound; oxadiazole; pharmacological activity; SAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test