Skip to content
2000
Volume 25, Issue 23
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Cancer and neurological diseases are among the major causes of mortality and disabilities around the world. Neurological diseases are accounting for 12% of all fatalities. The major challenge in treating these diseases is the effective drug delivery to the disease site, where traditional approaches fail to give satisfactory results. As nanoparticles have many major benefits over conventional drug delivery, they have become the preferred method for drug delivery.

Aim

The main objective of this review is to discuss the recent advancements and the role of nanoparticles in the effective treatment of cancer and neurodegenerative diseases.

Methods

Properties of nanoparticles, such as size, shape, and surface, utilized in medical therapy showed a promising impact on the efficacy of nano-drug transportation and, as a result, therapeutic efficiency. Many potentially helpful drugs for neurological disorders cannot enter the brain in therapeutic concentrations because of the blood-brain barrier, while nanoparticles can pass through it because of their size-specific properties. Besides contributing to bioavailability and half-life, nanoparticle surface properties are also important.

Results

The use of nanotechnology in medicine has demonstrated its importance in the field of medicine and led to the development of novel therapeutic alternatives for neurological disorders and cancer. The various types of nanoparticles, like liposomes, polymeric micelle, solid nanoparticles, quantum dots, and nanogels, have shown promising results in models and clinical investigations.

Conclusion

This review provides a concise description of the recent implications of various nanoparticles for the treatment of cancer and neurodegenerative disorders. It also helps in concise discussion of future opportunities of applications and challenges related to the production, efficacy, and safety of nanoparticles.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347145250321085902
2025-04-10
2026-02-02
Loading full text...

Full text loading...

References

  1. MoradiF. DashtiN. Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: A comprehensive review.Naunyn Schmiedebergs Arch. Pharmacol.2022395213314810.1007/s00210‑021‑02196‑x 34982185
    [Google Scholar]
  2. BoisseauP. LoubatonB. Nanomedicine, nanotechnology in medicine.C. R. Phys.201112762063610.1016/j.crhy.2011.06.001
    [Google Scholar]
  3. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m 19206243
    [Google Scholar]
  4. CalzoniE. CesarettiA. PolchiA. Di MicheleA. TanciniB. EmilianiC. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies.J. Funct. Biomater.2019101410.3390/jfb10010004 30626094
    [Google Scholar]
  5. ChivereV.T. KondiahP.P.D. ChoonaraY.E. PillayV. Nanotechnology-based biopolymeric oral delivery platforms for advanced cancer treatment.Cancers202012252210.3390/cancers12020522 32102429
    [Google Scholar]
  6. BhattP. LalaniR. MashruR. MisraA. Abstract 2065: Anti-FSHR antibody Fab’ fragment conjugated immunoliposomes loaded with cyclodextrin-paclitaxel complex for improved in vitro efficacy on ovarian cancer cells.Cancer Res.20167614Supplement206510.1158/1538‑7445.AM2016‑2065
    [Google Scholar]
  7. VhoraI. PatilS. BhattP. MisraA. Protein- and Peptide-drug conjugates: An emerging drug delivery technology.Adv. Protein Chem. Struct. Biol.20159815510.1016/bs.apcsb.2014.11.001 25819275
    [Google Scholar]
  8. PateiroM. GómezB. MunekataP.E.S. BarbaF.J. PutnikP. KovačevićD.B. LorenzoJ.M. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products.Molecules2021266154710.3390/molecules26061547 33799855
    [Google Scholar]
  9. Abd El-SalamM.H. El-ShibinyS. Natural biopolymers as nanocarriers for bioactive ingredients used in food industries.In: Encapsulations.Academic Press2016
    [Google Scholar]
  10. Martín-BanderasL. HolgadoM.A. Durán-LobatoM. InfanteJ.J. Álvarez-FuentesJ. Fernández-ArévaloM. Role of nanotechnology for enzyme replacement therapy in lysosomal diseases. A focus on Gaucher’s disease.Curr. Med. Chem.201623992995210.2174/0929867323666160210130608 26860997
    [Google Scholar]
  11. SahooS.K. LabhasetwarV. Nanotech approaches to drug delivery and imaging.Drug Discov. Today20038241112112010.1016/S1359‑6446(03)02903‑9 14678737
    [Google Scholar]
  12. LogothetidisS. Nanotechnology: Principles and applications.In: Nanostructured materials and their applications.Berlin, HeidelbergSpringer201212210.1007/978‑3‑642‑22227‑6_1
    [Google Scholar]
  13. RajagopalK. SchneiderJ.P. Self-assembling peptides and proteins for nanotechnological applications.Curr. Opin. Struct. Biol.200414448048610.1016/j.sbi.2004.06.006 15313243
    [Google Scholar]
  14. SalvadorA. IgartuaM. HernándezR.M. PedrazJ.L. An overview on the field of micro- and nanotechnologies for synthetic Peptide-based vaccines.J. Drug Deliv.2011201111810.1155/2011/181646 21773041
    [Google Scholar]
  15. SalmasoS. BersaniS. SemenzatoA. CalicetiP. Nanotechnologies in protein delivery.J. Nanosci. Nanotechnol.2006692736275310.1166/jnn.2006.456 17048478
    [Google Scholar]
  16. KrizkovaS. HegerZ. ZalewskaM. MoulickA. AdamV. KizekR. Nanotechnologies in protein microarrays.Nanomedicine201510172743275510.2217/nnm.15.81 26039143
    [Google Scholar]
  17. LabhasetwarV. Nanotechnology for drug and gene therapy: The importance of understanding molecular mechanisms of delivery.Curr. Opin. Biotechnol.200516667468010.1016/j.copbio.2005.10.009 16263259
    [Google Scholar]
  18. GuanS. RoseneckerJ. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems.Gene Ther.201724313314310.1038/gt.2017.5 28094775
    [Google Scholar]
  19. JainK.K. The role of nanobiotechnology in drug discovery.Drug Discov. Today200510211435144210.1016/S1359‑6446(05)03573‑7 16243263
    [Google Scholar]
  20. ChatterjeeB. SenguptaP. TekadeR.K. Pharmacokinetic characterization of drugs and new product developmentIn: Biopharmaceutics and Pharmacokinetics Considerations; Academic Press2021119527710.1016/B978‑0‑12‑814425‑1.00010‑3
    [Google Scholar]
  21. AmetaR.K. SoniK. BhattaraiA. Recent advances in improving the bioavailability of hydrophobic/lipophilic drugs and their delivery via self-emulsifying formulations.Colloids and Interfaces2023711610.3390/colloids7010016
    [Google Scholar]
  22. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  23. ChenC. LvG. PanC. SongM. WuC. GuoD. WangX. ChenB. GuZ. Poly(lactic acid) (PLA) based nanocomposites—a novel way of drug-releasing.Biomed. Mater.200724L1L410.1088/1748‑6041/2/4/L01 18458473
    [Google Scholar]
  24. KobayashiH. TeradaD. YokoyamaY. MoonD.W. YasudaY. KoyamaH. TakatoT. Vascular-inducing poly(glycolic acid)-collagen nanocomposite-fiber scaffold.J. Biomed. Nanotechnol.2013981318132610.1166/jbn.2013.1638 23926797
    [Google Scholar]
  25. LüJ.M. WangX. Marin-MullerC. WangH. LinP.H. YaoQ. ChenC. Current advances in research and clinical applications of PLGA-based nanotechnology.Expert Rev. Mol. Diagn.20099432534110.1586/erm.09.15 19435455
    [Google Scholar]
  26. TorchilinV.P. Drug targeting.Eur. J. Pharm. Sci.200011Suppl. 2S81S9110.1016/S0928‑0987(00)00166‑4 11033430
    [Google Scholar]
  27. BrunellaT. GiovanniT. BarbaraB. DiegoD. AlessandroM. EleonoraD.M. LorenaU. BarbaraR. FlavioF. CarlaE. AngelaV.M. MariaS.G. Use of polylactide-co-glycolide-nanoparticles for lysosomal delivery of a therapeutic enzyme in glycogenosis type II fibroblasts.J. Nanosci. Nanotechnol.20151542657266610.1166/jnn.2015.9251 26353478
    [Google Scholar]
  28. RaufA. Al-AwthanY.S. KhanI.A. MuhammadN. Ali ShahS.U. BahattabO. Al-DuaisM.A. SharmaR. RahmanM.M. In vivo anti-inflammatory, analgesic, muscle relaxant, and sedative activities of extracts from Syzygium cumini (L.) skeels in mice.Evid. Based Complement. Alternat. Med.202220221710.1155/2022/6307529 35449824
    [Google Scholar]
  29. LogothetidisS., Ed.; Nanomedicine and nanobiotechnology.Springer Science & Business Media201210.1007/978‑3‑642‑24181‑9
    [Google Scholar]
  30. BanikB.L. BrownJ.L. Polymeric biomaterials in nanomedicine.Natural and Synthetic Biomedical Polymers.Elsevier201438739510.1016/B978‑0‑12‑396983‑5.00024‑7
    [Google Scholar]
  31. AvramovićN. MandićB. Savić-RadojevićA. SimićT. Polymeric nanocarriers of drug delivery systems in cancer therapy.Pharmaceutics202012429810.3390/pharmaceutics12040298 32218326
    [Google Scholar]
  32. MulvihillJ.J.E. CunnaneE.M. RossA.M. DuskeyJ.T. TosiG. GrabruckerA.M. Drug delivery across the blood-brain barrier: Recent advances in the use of nanocarriers.Nanomedicine202015220521410.2217/nnm‑2019‑0367 31916480
    [Google Scholar]
  33. FengJ. Lepetre-MouelhiS. GautierA. MuraS. CailleauC. CoudoreF. HamonM. CouvreurP. A new painkiller nanomedicine to bypass the blood-brain barrier and the use of morphine.Sci. Adv.201952eaau514810.1126/sciadv.aau5148 30788432
    [Google Scholar]
  34. IslamF. BibiS. MeemA.F.K. IslamM.M. RahamanM.S. BeparyS. RahmanM.M. RahmanM.M. ElzakiA. KajoakS. OsmanH. ElSamaniM. KhandakerM.U. IdrisA.M. EmranT.B. Natural bioactive molecules: An alternative approach to the treatment and control of COVID-19.Int. J. Mol. Sci.202122231263810.3390/ijms222312638 34884440
    [Google Scholar]
  35. RahmanM.M. IslamM.R. ShohagS. HossainM.E. ShahM. shuvo, S.; Khan, H.; Chowdhury, M.A.R.; Bulbul, I.J.; Hossain, M.S.; Sultana, S.; Ahmed, M.; Akhtar, M.F.; Saleem, A.; Rahman, M.H. Multifaceted role of natural sources for COVID-19 pandemic as marine drugs.Environ. Sci. Pollut. Res. Int.20222931465274655010.1007/s11356‑022‑20328‑5 35507224
    [Google Scholar]
  36. McNamaraK. TofailS.A.M. Nanosystems: The use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications.Phys. Chem. Chem. Phys.20151742279812799510.1039/C5CP00831J 26024211
    [Google Scholar]
  37. HelmF. FrickerG. Liposomal conjugates for drug delivery to the central nervous system.Pharmaceutics201572274210.3390/pharmaceutics7020027 25835091
    [Google Scholar]
  38. VisserC.C. StevanovićS. VoorwindenL.H. BlooisL. GaillardP.J. DanhofM. CrommelinD.J.A. BoerA.G. Targeting liposomes with protein drugs to the blood–brain barrier in vitro.Eur. J. Pharm. Sci.2005252-329930510.1016/j.ejps.2005.03.008 15911226
    [Google Scholar]
  39. GuoJ. ChenG. WuJ. ChinC.T. ShenY. ChenJ. SuoY. Passive delivery of liposomes to mouse brain after blood-brain barrier opening induced by focused ultrasound with microbubbles.2015 IEEE International Ultrasonics Symposium (IUS) 2015, , pp. 1-4. Taipei, 21-24 October 2015, pp. 1-410.1109/ULTSYM.2015.0405
    [Google Scholar]
  40. BregoliL. MoviaD. Gavigan-ImedioJ.D. LysaghtJ. ReynoldsJ. Prina-MelloA. Nanomedicine applied to translational oncology: A future perspective on cancer treatment.Nanomedicine20161218110310.1016/j.nano.2015.08.006 26370707
    [Google Scholar]
  41. ThorleyA.J. TetleyT.D. New perspectives in nanomedicine.Pharmacol. Ther.2013140217618510.1016/j.pharmthera.2013.06.008 23811125
    [Google Scholar]
  42. MirzaA.Z. SiddiquiF.A. Nanomedicine and drug delivery: A mini review.Int. Nano Lett.2014419410.1007/s40089‑014‑0094‑7
    [Google Scholar]
  43. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.3330 26348965
    [Google Scholar]
  44. PillaiJ.A. ApplebyB.S. SafarJ. LeverenzJ.B. Rapidly progressive Alzheimer’s disease in two distinct autopsy cohorts.J. Alzheimers Dis.201864397398010.3233/JAD‑180155 29966195
    [Google Scholar]
  45. LoS.T. KumarA. HsiehJ.T. SunX. Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry.Mol. Pharm.201310379381210.1021/mp3005325 23294202
    [Google Scholar]
  46. ThomsenL.B. LinemannT. PondmanK.M. LichotaJ. KimK.S. PietersR.J. VisserG.M. MoosT. Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells.ACS Chem. Neurosci.20134101352136010.1021/cn400093z 23919894
    [Google Scholar]
  47. WangS.L. LiY. WenY. ChenY.F. NaL.X. LiS.T. SunC.H. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway.Biomed. Environ. Sci.2009221323910.1016/S0895‑3988(09)60019‑2 19462685
    [Google Scholar]
  48. WagnerV. DullaartA. BockA.K. ZweckA. The emerging nanomedicine landscape.Nat. Biotechnol.200624101211121710.1038/nbt1006‑1211 17033654
    [Google Scholar]
  49. PennS. HeL. NatanM.J. Nanoparticles for bioanalysis.Curr. Opin. Chem. Biol.20037560961510.1016/j.cbpa.2003.08.013 14580566
    [Google Scholar]
  50. KatzE. WillnerI. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications.Angew. Chem. Int. Ed.200443456042610810.1002/anie.200400651 15538757
    [Google Scholar]
  51. WillnerI. BasnarB. WillnerB. Nanoparticle–enzyme hybrid systems for nanobiotechnology.FEBS J.2007274230230910.1111/j.1742‑4658.2006.05602.x 17181543
    [Google Scholar]
  52. NaqviS. PanghalA. FloraS.J.S. Nanotechnology: A promising approach for delivery of neuroprotective drugs.Front. Neurosci.20201449410.3389/fnins.2020.00494 32581676
    [Google Scholar]
  53. HuwylerJ. WuD. PardridgeW.M. Brain drug delivery of small molecules using immunoliposomes.Proc. Natl. Acad. Sci. USA19969324141641416910.1073/pnas.93.24.14164 8943078
    [Google Scholar]
  54. KozubekA. GubernatorJ. PrzeworskaE. StasiukM. Liposomal drug delivery, a novel approach: PLARosomes.Acta Biochim. Pol.200047363964910.18388/abp.2000_3985 11310966
    [Google Scholar]
  55. VoineaM. SimionescuM. Designing of ‘intelligent’ liposomes for efficient delivery of drugs.J. Cell. Mol. Med.20026446547410.1111/j.1582‑4934.2002.tb00450.x 12611636
    [Google Scholar]
  56. AlyaudtinR.N. ReichelA. LöbenbergR. RamgeP. KreuterJ. BegleyD.J. Interaction of Poly(butylcyanoacrylate) Nanoparticles with the Blood-Brain Barrier in vivo and in vitro.J. Drug Target.20019320922110.3109/10611860108997929 11697206
    [Google Scholar]
  57. RoneyC. KulkarniP. AroraV. AntichP. BonteF. WuA. MallikarjuanaN.N. ManoharS. LiangH.F. KulkarniA.R. SungH.W. SairamM. AminabhaviT.M. Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease.J. Control. Release20051082-319321410.1016/j.jconrel.2005.07.024 16246446
    [Google Scholar]
  58. LiuX. ChenC. Strategies to optimize brain penetration in drug discovery.Curr. Opin. Drug Discov. Devel.200584505512 16022187
    [Google Scholar]
  59. VinogradovS. BatrakovaE. KabanovA. Poly(ethylene glycol)–polyethyleneimine NanoGel™ particles: Novel drug delivery systems for antisense oligonucleotides.Colloids Surf. B Biointerfaces1999161-429130410.1016/S0927‑7765(99)00080‑6
    [Google Scholar]
  60. MoghimiS.M. IllumL. DavisS.S. Physiopathological and physicochemical considerations in targeting of colloids and drug carriers to the bone marrow.Crit. Rev. Ther. Drug Carrier Syst.199073187209 2073686
    [Google Scholar]
  61. PawarS. RaufM.A. AbdelhadyH. IyerA.K. Tau-targeting nanoparticles for treatment of Alzheimer’s disease.In: Exploration.John Wiley & Sons20232023013710.1002/EXP.20230137
    [Google Scholar]
  62. PeracchiaM.T. VauthierC. DesmaëleD. GulikA. DedieuJ.C. DemoyM. d’AngeloJ. CouvreurP. Pegylated nanoparticles from a novel methoxypolyethylene glycol cyanoacrylate-hexadecyl cyanoacrylate amphiphilic copolymer.Pharm. Res.199815455055610.1023/A:1011973625803 9587950
    [Google Scholar]
  63. TorchilinV.P. Polymer-coated long-circulating microparticulate pharmaceuticals.J. Microencapsul.199815111910.3109/02652049809006831 9463803
    [Google Scholar]
  64. KreuterJ. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain.J. Nanosci. Nanotechnol.20044548448810.1166/jnn.2003.077 15503433
    [Google Scholar]
  65. CalvoP. GouritinB. VillarroyaH. EclancherF. GiannavolaC. KleinC. AndreuxJ.P. CouvreurP. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat.Eur. J. Neurosci.20021581317132610.1046/j.1460‑9568.2002.01967.x 11994126
    [Google Scholar]
  66. KulkarniP.V. RoneyC.A. AntichP.P. BonteF.J. RaghuA.V. AminabhaviT.M. Quinoline‐ n ‐butylcyanoacrylate‐based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201021354710.1002/wnan.59 20049829
    [Google Scholar]
  67. MaddiboyinaB. Ramaiah NakkalaR.K. RoyH. Perspectives on cutting‐edge nanoparticulate drug delivery technologies based on lipids and their applications.Chem. Biol. Drug Des.2023102237739410.1111/cbdd.14230 36916008
    [Google Scholar]
  68. LiJ. SabliovC. PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier.Nanotechnol. Rev.20132324125710.1515/ntrev‑2012‑0084
    [Google Scholar]
  69. KwonG.S. Polymeric micelles for delivery of poorly water-soluble compounds.Crit. Rev. Ther. Drug Carrier Syst.200320535740310.1615/CritRevTherDrugCarrierSyst.v20.i5.20 14959789
    [Google Scholar]
  70. KataokaK. HaradaA. NagasakiY. Block copolymer micelles for drug delivery: Design, characterization and biological significance.Adv. Drug Deliv. Rev.201264374810.1016/j.addr.2012.09.013 11251249
    [Google Scholar]
  71. KabanovA.V. AlakhovV.Y. Pluronic block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers.Crit. Rev. Ther. Drug Carrier Syst.200219117210.1615/CritRevTherDrugCarrierSyst.v19.i1.10 12046891
    [Google Scholar]
  72. TorchilinV.P. Targeted polymeric micelles for delivery of poorly soluble drugs.Cell. Mol. Life Sci.20046119-202549255910.1007/s00018‑004‑4153‑5 15526161
    [Google Scholar]
  73. AllenT.M. CullisP.R. Drug delivery systems: Entering the mainstream.Science200430356651818182210.1126/science.1095833 15031496
    [Google Scholar]
  74. YokoyamaM. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials.Expert Opin. Drug Deliv.20107214515810.1517/17425240903436479 20095939
    [Google Scholar]
  75. LuY. ParkK. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs.Int. J. Pharm.2013453119821410.1016/j.ijpharm.2012.08.042 22944304
    [Google Scholar]
  76. ShiY. PorterW. MerdanT. LiL.C. Recent advances in intravenous delivery of poorly water-soluble compounds.Expert Opin. Drug Deliv.20096121261128210.1517/17425240903307423 19941409
    [Google Scholar]
  77. ArmstrongA. BrewerJ. NewmanC. AlakhovV. PietrzynskiG. CampbellS. SP1049C as first-line therapy in advanced (inoperable or metastatic) adenocarcinoma of the oesophagus: A phase II window study.JCO20062418Suppl.4080408010.1200/jco.2006.24.18_suppl.4080
    [Google Scholar]
  78. BonthaS. KabanovA.V. BronichT.K. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs.J. Control. Release2006114216317410.1016/j.jconrel.2006.06.015 16914223
    [Google Scholar]
  79. BronichT.K. BonthaS. ShlyakhtenkoL.S. BrombergL. Alan HattonT. KabanovA.V. Template-assisted synthesis of nanogels from Pluronic-modified poly(acrylic acid).J. Drug Target.200614635736610.1080/10611860600833781 17092836
    [Google Scholar]
  80. VinogradovS. ZemanA. BatrakovaE. KabanovA. Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs.J. Control. Release2005107114315710.1016/j.jconrel.2005.06.002 16039001
    [Google Scholar]
  81. NguyenL.N.M. NgoW. LinZ.P. SindhwaniS. MacMillanP. MladjenovicS.M. ChanW.C.W. The mechanisms of nanoparticle delivery to solid tumours.Nature Reviews Bioengineering20242320121310.1038/s44222‑024‑00154‑9
    [Google Scholar]
  82. VinogradovS.V. BronichT.K. KabanovA.V. Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells.Adv. Drug Deliv. Rev.200254113514710.1016/S0169‑409X(01)00245‑9 11755709
    [Google Scholar]
  83. FangJ. NakamuraH. MaedaH. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect.Adv. Drug Deliv. Rev.201163313615110.1016/j.addr.2010.04.009 20441782
    [Google Scholar]
  84. RahmanM.M. IslamM.R. AkashS. Harun-Or-RashidM. RayT.K. RahamanM.S. IslamM. AnikaF. HosainM.K. AoviF.I. HemegH.A. RaufA. WilairatanaP. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance.Biomed. Pharmacother.202215311330510.1016/j.biopha.2022.113305 35717779
    [Google Scholar]
  85. YangQ. JonesS.W. ParkerC.L. ZamboniW.C. BearJ.E. LaiS.K. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation.Mol. Pharm.20141141250125810.1021/mp400703d 24521246
    [Google Scholar]
  86. PerraultS.D. WalkeyC. JenningsT. FischerH.C. ChanW.C.W. Mediating tumor targeting efficiency of nanoparticles through design.Nano Lett.2009951909191510.1021/nl900031y 19344179
    [Google Scholar]
  87. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  88. JiangY. HuoS. HardieJ. LiangX.J. RotelloV.M. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems.Expert Opin. Drug Deliv.201613454755910.1517/17425247.2016.1134486 26735861
    [Google Scholar]
  89. ChengJ. GuY.J. ChengS.H. WongW.T. Surface functionalized gold nanoparticles for drug delivery.J. Biomed. Nanotechnol.2013981362136910.1166/jbn.2013.1536 23926802
    [Google Scholar]
  90. ShankarS.S. AhmadA. PasrichaR. SastryM. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes.J. Mater. Chem.20031371822182610.1039/b303808b
    [Google Scholar]
  91. ShevtsovM. ZhouY. KhachatryanW. MulthoffG. GaoH. Recent advances in gold nanoformulations for cancer therapy.Curr. Drug Metab.201819976878010.2174/1389200219666180611080736 29886825
    [Google Scholar]
  92. AlmeidaP.V. ShahbaziM.A. MäkiläE. KaasalainenM. SalonenJ. HirvonenJ. SantosH.A. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors.Nanoscale2014617103771038710.1039/C4NR02187H 25074521
    [Google Scholar]
  93. GaoF. WuJ. NiuS. SunT. LiF. BaiY. JinL. LinL. ShiQ. ZhuL.M. DuL. Biodegradable, pH-sensitive hollow mesoporous organosilica nanoparticle (HMON) with controlled release of pirfenidone and ultrasound-target-microbubble-destruction (UTMD) for pancreatic cancer treatment.Theranostics20199206002601810.7150/thno.36135 31534533
    [Google Scholar]
  94. ChengC.A. DengT. LinF.C. CaiY. ZinkJ.I. Supramolecular nanomachines as stimuli-responsive gatekeepers on mesoporous silica nanoparticles for antibiotic and cancer drug delivery.Theranostics20199113341336410.7150/thno.34576 31244957
    [Google Scholar]
  95. LeiW. SunC. JiangT. GaoY. YangY. ZhaoQ. WangS. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy.Mater. Sci. Eng. C201910511010310.1016/j.msec.2019.110103 31546357
    [Google Scholar]
  96. ZhangH. SachdevD. WangC. HubelA. Gaillard-KellyM. YeeD. Detection and downregulation of type I IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells.Breast Cancer Res. Treat.2009114227728510.1007/s10549‑008‑0014‑5 18418709
    [Google Scholar]
  97. MananF.A.A. YusofN.A. AbdullahJ. MohammadF. NurdinA. YazanL.S. KhisteS.K. Al-LohedanH.A. Drug release profiles of mitomycin c encapsulated quantum dots–chitosan nanocarrier system for the possible treatment of non-muscle invasive bladder cancer.Pharmaceutics2021139137910.3390/pharmaceutics13091379 34575455
    [Google Scholar]
  98. FelixD.M. Rebelo AlencarL.M. Duarte de MenezesF. MidlejV.V.P. AguiarL. Gemini PiperniS. ZhangJ. LiuY. Ricci-JuniorE. AlexisF. JuniorS.A. ZhuL. Santos-OliveiraR. Graphene quantum dots decorated with imatinib for leukemia treatment.J. Drug Deliv. Sci. Technol.20216110211710.1016/j.jddst.2020.102117 34457042
    [Google Scholar]
  99. HeisterE. NevesV. TîlmaciuC. LipertK. BeltránV.S. ColeyH.M. SilvaS.R.P. McFaddenJ. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy.Carbon20094792152216010.1016/j.carbon.2009.03.057
    [Google Scholar]
  100. JamiesonT. BakhshiR. PetrovaD. PocockR. ImaniM. SeifalianA.M. Biological applications of quantum dots.Biomaterials200728314717473210.1016/j.biomaterials.2007.07.014 17686516
    [Google Scholar]
  101. PittellaF. MiyataK. MaedaY. SumaT. WatanabeS. ChenQ. ChristieR.J. OsadaK. NishiyamaN. KataokaK. Pancreatic cancer therapy by systemic administration of VEGF siRNA contained in calcium phosphate/charge-conversional polymer hybrid nanoparticles.J. Control. Release2012161386887410.1016/j.jconrel.2012.05.005 22580114
    [Google Scholar]
  102. TobinL.A. XieY. TsokosM. ChungS.I. MerzA.A. ArnoldM.A. LiG. MalechH.L. KwongK.F. Pegylated siRNA-loaded calcium phosphate nanoparticle-driven amplification of cancer cell internalization in vivo.Biomaterials201334122980299010.1016/j.biomaterials.2013.01.046 23369215
    [Google Scholar]
  103. LuG. DuanY.Y. WangX.D. Surface tension, viscosity, and rheology of water-based nanofluids: A microscopic interpretation on the molecular level.J. Nanopart. Res.2014169256410.1007/s11051‑014‑2564‑2
    [Google Scholar]
  104. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  105. MozafariM.R. ReedC.J. RostronC. KocumC. PiskinE. Construction of stable anionic liposome-plasmid particles using the heating method: A preliminary investigation.Cell. Mol. Biol. Lett.200273923927 12378277
    [Google Scholar]
  106. LiQ. ChaoY. LiuB. XiaoZ. YangZ. WuY. LiuZ. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy.Biomaterials202229112188010.1016/j.biomaterials.2022.121880 36334355
    [Google Scholar]
  107. MozafariM.R. ReedC.J. RostronC. Cytotoxicity evaluation of anionic nanoliposomes and nanolipoplexes prepared by the heating method without employing volatile solvents and detergents.Pharmazie2007623205209 17416197
    [Google Scholar]
  108. KneuerC. SametiM. BakowskyU. SchiestelT. SchirraH. SchmidtH. LehrC.M. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro.Bioconjug. Chem.200011692693210.1021/bc0000637 11087343
    [Google Scholar]
  109. HuaS. WuS.Y. The use of lipid-based nanocarriers for targeted pain therapies.Front. Pharmacol.2013414310.3389/fphar.2013.00143 24319430
    [Google Scholar]
  110. LemièreJ. CarvalhoK. SykesC. Cell-sized liposomes that mimic cell motility and the cell cortex.In: Inmethods in cell biology.Academic Press2015Vol. 12810.1016/bs.mcb.2015.01.013
    [Google Scholar]
  111. ChenY. ZhuX. ZhangX. LiuB. HuangL. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy.Mol. Ther.20101891650165610.1038/mt.2010.136 20606648
    [Google Scholar]
  112. WangX. LiuX. LiY. WangP. FengX. LiuQ. YanF. ZhengH. Sensitivity to antitubulin chemotherapeutics is potentiated by a photoactivable nanoliposome.Biomaterials2017141506210.1016/j.biomaterials.2017.06.034 28667899
    [Google Scholar]
  113. YariH. NkepangG. AwasthiV. Surface modification of liposomes by a lipopolymer targeting prostate specific membrane antigen for theranostic delivery in prostate cancer.Materials201912575610.3390/ma12050756 30841602
    [Google Scholar]
  114. DilleyR.J. MorrisonW.A. Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.Int. J. Biochem. Cell Biol.201456384610.1016/j.biocel.2014.10.020 25449260
    [Google Scholar]
  115. HanB. YangY. ChenJ. TangH. SunY. ZhangZ. WangZ. LiY. LiY. LuanX. LiQ. RenZ. ZhouX. CongD. LiuZ. MengQ. SunF. PeiJ. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity.Int. J. Nanomedicine20201555357110.2147/IJN.S228715 32158208
    [Google Scholar]
  116. GeisbergC.A. SawyerD.B. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage.Curr. Hypertens. Rep.201012640441010.1007/s11906‑010‑0146‑y 20842465
    [Google Scholar]
  117. AmreddyN. BabuA. MuralidharanR. PanneerselvamJ. SrivastavaA. AhmedR. MehtaM. MunshiA. RameshR. Recent advances in nanoparticle-based cancer drug and gene delivery.Adv. Cancer Res.201813711517010.1016/bs.acr.2017.11.003 29405974
    [Google Scholar]
  118. SanejaA. KumarR. MintooM.J. DubeyR.D. SangwanP.L. MondheD.M. PandaA.K. GuptaP.N. Gemcitabine and betulinic acid co-encapsulated PLGA−PEG polymer nanoparticles for improved efficacy of cancer chemotherapy.Mater. Sci. Eng. C20199876477110.1016/j.msec.2019.01.026 30813082
    [Google Scholar]
  119. AcharyaS. SahooS.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.Adv. Drug Deliv. Rev.201163317018310.1016/j.addr.2010.10.008 20965219
    [Google Scholar]
  120. SamadianH. Hosseini-NamiS. KamravaS.K. GhaznaviH. Shakeri-ZadehA. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy.J. Cancer Res. Clin. Oncol.2016142112217222910.1007/s00432‑016‑2179‑3 27209529
    [Google Scholar]
  121. MasoodF. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.Mater. Sci. Eng. C20166056957810.1016/j.msec.2015.11.067 26706565
    [Google Scholar]
  122. KempK. GriffithsJ. CampbellS. LovellK. An exploration of the follow-up up needs of patients with inflammatory bowel disease.J. Crohn’s Colitis201379e386e39510.1016/j.crohns.2013.03.001 23541150
    [Google Scholar]
  123. ElsabahyM. WooleyK.L. Design of polymeric nanoparticles for biomedical delivery applications.Chem. Soc. Rev.20124172545256110.1039/c2cs15327k 22334259
    [Google Scholar]
  124. VickersN.J. Animal communication: When I’m calling you, will you answer too?Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.064 28743020
    [Google Scholar]
  125. SamadA. SultanaY. AqilM. Liposomal drug delivery systems: An update review.Curr. Drug Deliv.20074429730510.2174/156720107782151269 17979650
    [Google Scholar]
  126. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  127. AliE.S. SharkerS.M. IslamM.T. KhanI.N. ShawS. RahmanM.A. UddinS.J. ShillM.C. RehmanS. DasN. AhmadS. ShilpiJ.A. TripathiS. MishraS.K. MubarakM.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives.Semin. Cancer Biol.202169526810.1016/j.semcancer.2020.01.011 32014609
    [Google Scholar]
  128. JaiswalM. DudheR. SharmaP.K. Nanoemulsion: An advanced mode of drug delivery system.3 Biotech20155212312710.1007/s13205‑014‑0214‑0 28324579
    [Google Scholar]
  129. KamalM.A. RahmanM.M. MimS.A. IslamM.R. SultanaN. AhmedM. Role of G-proteins and GPCR-mediated signalling in neuropathophysiology.CNS Neurol. Disord. Drug Targets20232212510.2174/1871527321666220430142722 35507780
    [Google Scholar]
  130. DianzaniC. MongeC. MiglioG. SerpeL. MartinaK. CangemiL. FerrarisC. MiolettiS. OsellaS. GigliottiC.L. BoggioE. ClementeN. DianzaniU. BattagliaL. Nanoemulsions as delivery systems for poly-chemotherapy aiming at melanoma treatment.Cancers2020125119810.3390/cancers12051198 32397484
    [Google Scholar]
  131. MottaghitalabF. FarokhiM. FatahiY. AtyabiF. DinarvandR. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment.J. Control. Release201929525026710.1016/j.jconrel.2019.01.009 30639691
    [Google Scholar]
  132. HuC.M.J. KaushalS. CaoH.S.T. AryalS. SartorM. EsenerS. BouvetM. ZhangL. Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells.Mol. Pharm.20107391492010.1021/mp900316a 20394436
    [Google Scholar]
  133. GaoF. ZhangJ. FuC. XieX. PengF. YouJ. TangH. WangZ. LiP. ChenJ. iRGD-modified lipid–polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability.Int. J. Nanomedicine2017124147416210.2147/IJN.S134148 28615942
    [Google Scholar]
  134. LiY. XiaoY. LinH.P. ReichelD. BaeY. LeeE.Y. JiangY. HuangX. YangC. WangZ. In vivo β-catenin attenuation by the integrin α5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis.Biomaterials201918816017210.1016/j.biomaterials.2018.10.019 30352320
    [Google Scholar]
  135. WangQ. AlshakerH. BöhlerT. SrivatsS. ChaoY. CooperC. PchejetskiD. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer.Sci. Rep.201771590110.1038/s41598‑017‑06142‑x 28724986
    [Google Scholar]
  136. CheowW.S. HadinotoK. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles.Colloids Surf. B Biointerfaces201185221422010.1016/j.colsurfb.2011.02.033 21439797
    [Google Scholar]
  137. ZhangR.X. AhmedT. LiL.Y. LiJ. AbbasiA.Z. WuX.Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks.Nanoscale2017941334135510.1039/C6NR08486A 27973629
    [Google Scholar]
  138. MengH. WangM. LiuH. LiuX. SituA. WuB. JiZ. ChangC.H. NelA.E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice.ACS Nano2015943540355710.1021/acsnano.5b00510 25776964
    [Google Scholar]
  139. KongF. ZhangX. ZhangH. QuX. ChenD. ServosM. MäkiläE. SalonenJ. SantosH.A. HaiM. WeitzD.A. Inhibition of multidrug resistance of cancer cells by co‐delivery of DNA nanostructures and drugs using porous silicon nanoparticles@giant liposomes.Adv. Funct. Mater.201525223330334010.1002/adfm.201500594
    [Google Scholar]
  140. TriesscheijnM. BaasP. SchellensJ.H.M. StewartF.A. Photodynamic therapy in oncology.Oncologist20061191034104410.1634/theoncologist.11‑9‑1034 17030646
    [Google Scholar]
  141. ChatterjeeD.K. YongZ. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells.Nanomedicine200831738210.2217/17435889.3.1.73 18393642
    [Google Scholar]
  142. AllisonR.R. BagnatoV.S. SibataC.H. Future of oncologic photodynamic therapy.Future Oncol.20106692994010.2217/fon.10.51 20528231
    [Google Scholar]
  143. AllisonR.R. DownieG.H. CuencaR. HuX.H. ChildsC.J.H. SibataC.H. Photosensitizers in clinical PDT.Photodiagn. Photodyn. Ther.200411274210.1016/S1572‑1000(04)00007‑9 25048062
    [Google Scholar]
  144. ChatterjeeD.K. FongL.S. ZhangY. ZhangY. Nanoparticles in photodynamic therapy: An emerging paradigm.Adv. Drug Deliv. Rev.200860151627163710.1016/j.addr.2008.08.003 18930086
    [Google Scholar]
  145. Khaing OoM.K. YangX. DuH. WangH. 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer.Nanomedicine20083677778610.2217/17435889.3.6.777 19025452
    [Google Scholar]
  146. KuruppuarachchiM. SavoieH. LowryA. AlonsoC. BoyleR.W. Polyacrylamide nanoparticles as a delivery system in photodynamic therapy.Mol. Pharm.20118392093110.1021/mp200023y 21410233
    [Google Scholar]
  147. CouleaudP. MorosiniV. FrochotC. RicheterS. RaehmL. DurandJ.O. Silica-based nanoparticles for photodynamic therapy applications.Nanoscale2010271083109510.1039/c0nr00096e 20648332
    [Google Scholar]
  148. Zeisser-LabouèbeM. LangeN. GurnyR. DelieF. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer.Int. J. Pharm.20063261-217418110.1016/j.ijpharm.2006.07.012 16930882
    [Google Scholar]
  149. LiuL. MiaoP. XuY. TianZ. ZouZ. LiG. Study of Pt/TiO2 nanocomposite for cancer-cell treatment.J. Photochem. Photobiol. B201098320721010.1016/j.jphotobiol.2010.01.005 20149675
    [Google Scholar]
  150. YamaguchiS. KobayashiH. NaritaT. KanehiraK. SonezakiS. KubotaY. TerasakaS. IwasakiY. Novel photodynamic therapy using water-dispersed TiO2-polyethylene glycol compound: Evaluation of antitumor effect on glioma cells and spheroids in vitro.Photochem. Photobiol.201086496497110.1111/j.1751‑1097.2010.00742.x 20492566
    [Google Scholar]
  151. JańczykA. Wolnicka-GłubiszA. UrbanskaK. KischH. StochelG. MacykW. Photodynamic activity of platinum(IV) chloride surface-modified TiO2 irradiated with visible light.Free Radic. Biol. Med.20084461120113010.1016/j.freeradbiomed.2007.12.019 18194674
    [Google Scholar]
  152. HainfeldJ.F. SlatkinD.N. SmilowitzH.M. The use of gold nanoparticles to enhance radiotherapy in mice.Phys. Med. Biol.20044918N309N31510.1088/0031‑9155/49/18/N03 15509078
    [Google Scholar]
  153. YamaguchiS. KobayashiH. NaritaT. KanehiraK. SonezakiS. KudoN. KubotaY. TerasakaS. HoukinK. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: Comparison of cytotoxic mechanism with photodynamic therapy.Ultrason. Sonochem.20111851197120410.1016/j.ultsonch.2010.12.017 21257331
    [Google Scholar]
  154. WilsonB.C. PattersonM.S. The physics, biophysics and technology of photodynamic therapy.Phys. Med. Biol.2008539R61R10910.1088/0031‑9155/53/9/R01 18401068
    [Google Scholar]
  155. YuC. CanteenwalaT. El-KhoulyM.E. ArakiY. PritzkerK. ItoO. WilsonB.C. ChiangL.Y. Efficiency of singlet oxygen production from self-assembled nanospheres of molecular micelle-like photosensitizers FC4S.J. Mater. Chem.200515181857186410.1039/b500369e
    [Google Scholar]
  156. Priya JamesH. JohnR. AlexA. AnoopK.R. Smart polymers for the controlled delivery of drugs – A concise overview.Acta Pharm. Sin. B20144212012710.1016/j.apsb.2014.02.005 26579373
    [Google Scholar]
  157. FleigeE. QuadirM.A. HaagR. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications.Adv. Drug Deliv. Rev.201264986688410.1016/j.addr.2012.01.020 22349241
    [Google Scholar]
  158. PolchiA. MaginiA. MazurykJ. TanciniB. GapińskiJ. PatkowskiA. GiovagnoliS. EmilianiC. Rapamycin loaded solid lipid nanoparticles as a new tool to deliver mTOR inhibitors: Formulation and in vitro characterization.Nanomaterials2016658710.3390/nano6050087 28335215
    [Google Scholar]
  159. CacciatoreI. CiullaM. FornasariE. MarinelliL. Di StefanoA. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases.Expert Opin. Drug Deliv.20161381121113110.1080/17425247.2016.1178237 27073977
    [Google Scholar]
  160. RahmanM.M. IslamF. ParvezA. AzadM.A.K. AshrafG.M. UllahM.F. AhmedM. Citrus limon L. (lemon) seed extract shows neuro-modulatory activity in an in vivo thiopental-sodium sleep model by reducing the sleep onset and enhancing the sleep duration.J. Integr. Neurosci.20222114210.31083/j.jin2101042 35164478
    [Google Scholar]
  161. AnchordoquyT. ArtziN. BalyasnikovaI.V. BarenholzY. La-BeckN.M. BrennerJ.S. ChanW.C.W. DecuzziP. ExnerA.A. GabizonA. GodinB. LaiS.K. LammersT. MitchellM.J. MoghimiS.M. MuzykantovV.R. PeerD. NguyenJ. PopovtzerR. RiccoM. SerkovaN.J. SinghR. SchroederA. SchwendemanA.A. StraehlaJ.P. TeesaluT. TildenS. SimbergD. Mechanisms and barriers in nanomedicine: Progress in the field and future directions.ACS Nano20241822139831399910.1021/acsnano.4c00182 38767983
    [Google Scholar]
  162. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.108 27834398
    [Google Scholar]
  163. van der MeelR. SulheimE. ShiY. KiesslingF. MulderW.J.M. LammersT. Smart cancer nanomedicine.Nat. Nanotechnol.201914111007101710.1038/s41565‑019‑0567‑y 31695150
    [Google Scholar]
  164. HareJ.I. LammersT. AshfordM.B. PuriS. StormG. BarryS.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective.Adv. Drug Deliv. Rev.2017108253810.1016/j.addr.2016.04.025 27137110
    [Google Scholar]
  165. RagelleH. DanhierF. PréatV. LangerR. AndersonD.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures.Expert Opin. Drug Deliv.201714785186410.1080/17425247.2016.1244187 27730820
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347145250321085902
Loading
/content/journals/ctmc/10.2174/0115680266347145250321085902
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; drug; Nanoparticles; neurodegenerative disease; therapeutics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test