Skip to content
2000
Volume 25, Issue 23
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Colorectal cancer (CRC), the world's third leading cause of death, can be caused by a variety of reasons, one of which is a valine-to-glutamate mutation at position 600 in the BRAF gene. Nonetheless, the prognosis of patients with BRAF mutations remains poor, necessitating additional research in this field.

Objective

This work aims to recognize and validate innovative and effective BRAF inhibitor.

Methods

A merged-featured ligand-based pharmacophore model was validated and screened against various external databases. The pharmacokinetic and toxicological characteristics of the 102 hits were analyzed, and the appropriate ligands were docked against BRAF protein. The top four protein-ligand complexes with the lowest binding energies were chosen, and their Molecular Dynamic (MD) simulation studies were accomplished.

Results

The finest complex selected has a Root Mean Square Deviation (RMSD) value of 2.229A° and a Radius of Gyration (RoG) value of 25.770A°. The LC of the best ligand was experimentally calculated to be 102.83 µg/ml. The ligand was found to destroy CRC cells, but it did not affect normal non-cancerous cells much.

Conclusion

This work thus proposes 3-(6,7-dimethoxy-3,4-dihydroisoquinoline-2-carbonyl)-N-(2-methoxyphenyl)benzenesulphonamide as a potential BRAF V600E inhibitor for the CRC treatment.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266337334250320231553
2025-04-11
2025-12-21
Loading full text...

Full text loading...

References

  1. FavoritiP. CarboneG. GrecoM. PirozziF. PirozziR.E.M. CorcioneF. Worldwide burden of colorectal cancer: A review.Updates Surg.201668171110.1007/s13304‑016‑0359‑y 27067591
    [Google Scholar]
  2. KuipersE.J. GradyW.M. LiebermanD. SeufferleinT. SungJ.J. BoelensP.G. van de VeldeC.J.H. WatanabeT. Colorectal cancer.Nat. Rev. Dis. Primers2015111506510.1038/nrdp.2015.65 27189416
    [Google Scholar]
  3. Moghimi-DehkordiB. SafaeeA. An overview of colorectal cancer survival rates and prognosis in Asia.World J. Gastrointest. Oncol.201244717510.4251/wjgo.v4.i4.71 22532879
    [Google Scholar]
  4. KolchW. Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions.Biochem. J.2000351228930510.1042/bj3510289 11023813
    [Google Scholar]
  5. Sanz-GarciaE. ArgilesG. ElezE. TaberneroJ. BRAF mutant colorectal cancer: Prognosis, treatment, and new perspectives.Ann. Oncol.201728112648265710.1093/annonc/mdx401 29045527
    [Google Scholar]
  6. LuuL-J. PriceJ. BRAF Mutation and Its Importance in Colorectal Cancer.In: Advances in the Molecular Understanding of Colorectal Cancer.Intechopen2019
    [Google Scholar]
  7. MichaloglouC. VredeveldL.C.W. MooiW.J. PeeperD.S. BRAFE600 in benign and malignant human tumours.Oncogene200827787789510.1038/sj.onc.1210704 17724477
    [Google Scholar]
  8. BRAF GeneCOSMIC.2018Available from: https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=BRAF
    [Google Scholar]
  9. KarouliaZ. GavathiotisE. PoulikakosP.I. New perspectives for targeting RAF kinase in human cancer.Nat. Rev. Cancer2017171167669110.1038/nrc.2017.79 28984291
    [Google Scholar]
  10. AgianianB. GavathiotisE. Current insights of BRAF inhibitors in cancer.J. Med. Chem.201861145775579310.1021/acs.jmedchem.7b01306 29461827
    [Google Scholar]
  11. KumarA. GautamV. SandhuA. RawatK. SharmaA. SahaL. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review.World J. Gastrointest. Surg.202315449551910.4240/wjgs.v15.i4.495 37206081
    [Google Scholar]
  12. National Cancer InstituteAdvances in Colorectal Cancer Research.2024Available from: https://www.cancer.gov/types/colorectal/research
    [Google Scholar]
  13. EttrichT.J. SeufferleinT. Regorafenib.Recent Results Cancer Res.2018211455610.1007/978‑3‑319‑91442‑8_3 30069758
    [Google Scholar]
  14. CookF.A. CookS.J. Inhibition of RAF dimers: It takes two to tango.Biochem. Soc. Trans.202149123725110.1042/BST20200485 33367512
    [Google Scholar]
  15. Cotto-RiosX.M. AgianianB. GitegoN. ZacharioudakisE. GiriczO. WuY. ZouY. VermaA. PoulikakosP.I. GavathiotisE. Inhibitors of BRAF dimers using an allosteric site.Nat. Commun.2020111437010.1038/s41467‑020‑18123‑2 32873792
    [Google Scholar]
  16. PengS.B. HenryJ.R. KaufmanM.D. LuW.P. SmithB.D. VogetiS. RutkoskiT.J. WiseS. ChunL. ZhangY. Van HornR.D. YinT. ZhangX. YadavV. ChenS.H. GongX. MaX. WebsterY. BuchananS. MochalkinI. HuberL. KaysL. DonohoG.P. WalgrenJ. McCannD. PatelP. ContiI. PlowmanG.D. StarlingJ.J. FlynnD.L. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers.Cancer Cell201528338439810.1016/j.ccell.2015.08.002 26343583
    [Google Scholar]
  17. KrishnanK.A. Identification of novel EGFR inhibitors for the targeted therapy of colorectal cancer using pharmacophore modelling, docking, molecular dynamic simulation and biological activity prediction.Anticancer. Agents Med. Chem.202424426327910.2174/0118715206275566231206094645
    [Google Scholar]
  18. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac956 36305812
    [Google Scholar]
  19. MysingerM.M. CarchiaM. IrwinJ.J. ShoichetB.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking.J. Med. Chem.201255146582659410.1021/jm300687e 22716043
    [Google Scholar]
  20. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  21. GolestanianS. SharifiA. PopowiczG.M. AzizianH. ForoumadiA. SzwagierczakA. HolakT.A. AmanlouM. Discovery of novel dual inhibitors against Mdm2 and Mdmx proteins by in silico approaches and binding assay.Life Sci.201614524024610.1016/j.lfs.2015.12.047 26746660
    [Google Scholar]
  22. KoesD.R. CamachoC.J. ZINCPharmer: pharmacophore search of the ZINC database.Nucleic Acids Res.201240W1W409W41410.1093/nar/gks378 22553363
    [Google Scholar]
  23. WishartD.S. KnoxC. GuoA.C. ShrivastavaS. HassanaliM. StothardP. ChangZ. WoolseyJ. DrugBank: a comprehensive resource for in silico drug discovery and exploration.Nucleic Acids Res.20063490001D668D67210.1093/nar/gkj067 16381955
    [Google Scholar]
  24. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  25. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  26. PrabhaB. EzhilarasiM.R. Synthesis, spectral characterization, in vitro and in silico studies of benzodioxin pyrazoline derivatives.Biointerface Res. Appl. Chem.20201129126913810.33263/BRIAC112.91269138
    [Google Scholar]
  27. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky318 29718510
    [Google Scholar]
  28. BollagG. HirthP. TsaiJ. ZhangJ. IbrahimP.N. ChoH. SpevakW. ZhangC. ZhangY. HabetsG. BurtonE.A. WongB. TsangG. WestB.L. PowellB. ShellooeR. MarimuthuA. NguyenH. ZhangK.Y.J. ArtisD.R. SchlessingerJ. SuF. HigginsB. IyerR. D’AndreaK. KoehlerA. StummM. LinP.S. LeeR.J. GrippoJ. PuzanovI. KimK.B. RibasA. McArthurG.A. SosmanJ.A. ChapmanP.B. FlahertyK.T. XuX. NathansonK.L. NolopK. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma.Nature2010467731559659910.1038/nature09454 20823850
    [Google Scholar]
  29. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  30. SobolevO.V. AfonineP.V. MoriartyN.W. HekkelmanM.L. JoostenR.P. PerrakisA. AdamsP.D. A global ramachandran score identifies protein structures with unlikely stereochemistry.Structure2020281112491258.e210.1016/j.str.2020.08.005 32857966
    [Google Scholar]
  31. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  32. Martínez-RosellG. GiorginoT. De FabritiisG. PlayMolecule ProteinPrepare: A web application for protein preparation for molecular dynamics simulations.J. Chem. Inf. Model.20175771511151610.1021/acs.jcim.7b00190 28594549
    [Google Scholar]
  33. Dassault SystèmesB. Discovery Studio Modeling Environment.San Diego, CA, USADassault Systèmes2021
    [Google Scholar]
  34. SamdaniA. VetrivelU. POAP: A GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening.Comput. Biol. Chem.201874394810.1016/j.compbiolchem.2018.02.012 29533817
    [Google Scholar]
  35. BowersK.J. ChowE. XuH. DrorR.O. EastwoodM.P. GregersenB.A. KlepeisJ.L. KolossvaryI. MoraesM.A. SacerdotiF.D. SalmonJ.K. ShanY. ShawD.E. Scalable algorithms for molecular dynamics simulations on commodity clusters.Proceedings of the ACM/IEEE Conference on Supercomputing (SC06)Tampa, Florida200610.1109/SC.2006.54
    [Google Scholar]
  36. ChowE. RendlemanC.A. BowersK.J. DrorR.O. HughesD.H. GullingsrudJ. Desmond performance on a cluster of multicore processors.2008Available from: https://www.deshawresearch.com/publications/Desmond_Performance_Cluster.pdf
    [Google Scholar]
  37. TalaricoL.B. ZibettiR.G.M. FariaP.C.S. ScolaroL.A. DuarteM.E.R. NosedaM.D. PujolC.A. DamonteE.B. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata.Int. J. Biol. Macromol.2004341-2637110.1016/j.ijbiomac.2004.03.002 15178011
    [Google Scholar]
  38. SchistermanE.F. FaraggiD. ReiserB. Adjusting the generalized ROC curve for covariates.Stat. Med.200423213319333110.1002/sim.1908 15490426
    [Google Scholar]
  39. SelickH.E. BeresfordA.P. TarbitM.H. The emerging importance of predictive ADME simulation in drug discovery.Drug Discov. Today20027210911610.1016/S1359‑6446(01)02100‑6 11790621
    [Google Scholar]
  40. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n 12036371
    [Google Scholar]
  41. Drug lipophilicity and absorption: The continuous challenge in drug discovery.Emery Pharma2017Available from: https://emerypharma.com/blog/drug-lipophilicity-and-absorption-a-continuous-challenge-toward-the-goal-of-drug-discovery/
    [Google Scholar]
  42. ArnottJ.A. PlaneyS.L. The influence of lipophilicity in drug discovery and design.Expert Opin. Drug Discov.201271086387510.1517/17460441.2012.714363 22992175
    [Google Scholar]
  43. VemulaV.R. LagishettyV. LingalaS. Solubility enhancement techniques.Int. J. Pharm. Sci. Rev. Res.2010514151
    [Google Scholar]
  44. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: Importance and enhancement techniques.ISRN Pharm.2012201211010.5402/2012/195727 22830056
    [Google Scholar]
  45. ManikandanP. NaginiS. Cytochrome P450 structure, function and clinical significance: A review.Curr. Drug Targets2018191385410.2174/1389450118666170125144557 28124606
    [Google Scholar]
  46. OguC.C. MaxaJ.L. Drug interactions due to cytochrome P450.Proc. Bayl. Univ. Med. Cent.200013442142310.1080/08998280.2000.11927719 16389357
    [Google Scholar]
  47. FinchA. PillansP. P-glycoprotein and its role in drug-drug interactions.Aust. Prescr.201437413713910.18773/austprescr.2014.050
    [Google Scholar]
  48. EganW.J. MerzK.M.Jr BaldwinJ.J. Prediction of drug absorption using multivariate statistics.J. Med. Chem.200043213867387710.1021/jm000292e 11052792
    [Google Scholar]
  49. MueggeI. Selection criteria for drug‐like compounds.Med. Res. Rev.200323330232110.1002/med.10041 12647312
    [Google Scholar]
  50. DrwalM.N. BanerjeeP. DunkelM. WettigM.R. PreissnerR. ProTox: a web server for the in silico prediction of rodent oral toxicity.Nucleic Acids Res.201442W1W53W5810.1093/nar/gku401 24838562
    [Google Scholar]
  51. WallaceA.C. LaskowskiR.A. ThorntonJ.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions.Protein Eng. Des. Sel.19958212713410.1093/protein/8.2.127 7630882
    [Google Scholar]
  52. IqbalD. AlsaweedM. JamalQ.M.S. AsadM.R. RizviS.M.D. RizviM.R. AlbadraniH.M. HamedM. JahanS. AlyenbaawiH. Pharmacophore-Based screening, molecular docking, and dynamic simulation of fungal metabolites as inhibitors of Multi-Targets in neurodegenerative disorders.Biomolecules20231311161310.3390/biom13111613 38002295
    [Google Scholar]
  53. KirchmairJ. DistintoS. MarktP. SchusterD. SpitzerG.M. LiedlK.R. WolberG. How to optimize shape-based virtual screening: choosing the right query and including chemical information.J. Chem. Inf. Model.200949367869210.1021/ci8004226 19434901
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266337334250320231553
Loading
/content/journals/ctmc/10.2174/0115680266337334250320231553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test