Skip to content
2000
Volume 25, Issue 23
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Thiazole, a five-membered heterocycle containing sulfur and nitrogen, is a pivotal component in the design and synthesis of organic derivatives. Its prevalence in natural sources and its integral role in the structure of drug molecules has made it a focal point for researchers. In this study, we compiled and reviewed research from the past decade and categorized the synthesized thiazole compounds into three groups (di-substituted mono-thiazoles, tri-substituted mono-thiazoles, and bis-thiazoles) based on how the substituents are attached to the thiazole scaffold and additionally discussed the different techniques used by researchers to measure the antimicrobial activity of newly created compounds. Additionally, we discussed various methodologies employed to assess the antimicrobial efficacy of related compounds, aiming to validate the potency of these compounds. This research holds promise in aiding the development of antibiotic replacement amidst the antibiotic resistance crisis, consolidating knowledge of antimicrobial properties of thiazole-based compounds and their potential in combating antibiotic resistance.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266334873250316102556
2025-03-28
2025-12-08
Loading full text...

Full text loading...

References

  1. PraveenA.S. YathirajanH.S. NarayanaB. SarojiniB.K. Synthesis, characterization and antimicrobial studies of a few novel thiazole derivatives.Med. Chem. Res.201423125926810.1007/s00044‑013‑0629‑x
    [Google Scholar]
  2. ChughV. PandeyG. RautelaR. MohanC. Heterocyclic compounds containing thiazole ring as important material in medicinal chemistry.Mater. Today Proc.20226947848110.1016/j.matpr.2022.09.150
    [Google Scholar]
  3. KumawatM.K. Thiazole containing heterocycles with antimalarial activity.Curr. Drug Discov. Technol.201815319620010.2174/1570163814666170725114159 28745209
    [Google Scholar]
  4. PolaS. Significance of thiazole-based heterocycles for bioactive systems.Scope Sel. Heterocycles Org. Pharm. Perspect.20161136210.5772/62077
    [Google Scholar]
  5. QureshiA. PradhanA. Short review on thiazole derivative.J. Drug Deliv. Ther.201994-A842847
    [Google Scholar]
  6. ShuklaA.P. VermaV. A systematic review on thiazole synthesis and biological activities.Educ. Adm. Theory Pract.202430544444457
    [Google Scholar]
  7. KumariG. DhillonS. RaniP. ChahalM. AnejaD.K. KingerM. Development in the synthesis of bioactive thiazole-based heterocyclic hybrids utilizing phenacyl bromide.ACS Omega2024917187091874610.1021/acsomega.3c10299 38708256
    [Google Scholar]
  8. MishraC.B. KumariS. TiwariM. Thiazole: A promising heterocycle for the development of potent CNS active agents.Eur. J. Med. Chem.20159213410.1016/j.ejmech.2014.12.031 25544146
    [Google Scholar]
  9. MakhovaN.N. Belen’kiiL.I. GazievaG.A. DalingerI.L. KonstantinovaL.S. KuznetsovV.V. KravchenkoA.N. KrayushkinM.M. RakitinO.A. StarosotnikovA.M. FershtatL.L. ShevelevS.A. ShirinianV.Z. YarovenkoV.N. Progress in the chemistry of nitrogen-, oxygen- and sulfur-containing heterocyclic systems.Russ. Chem. Rev.20208915512410.1070/RCR4914
    [Google Scholar]
  10. AroraP. AroraV. LambaH.S. WadhwaD. Importance of heterocyclic chemistry: A review.Int. J. Pharm. Sci. Res.2012392947
    [Google Scholar]
  11. PathaniaS. NarangR.K. RawalR.K. Role of sulphur-heterocycles in medicinal chemistry: An update.Eur. J. Med. Chem.201918048650810.1016/j.ejmech.2019.07.043 31330449
    [Google Scholar]
  12. KassabA.E. GedawyE.M. SayedA.S. Fused thiophene as a privileged scaffold: A review on anti-Alzheimer’s disease potentials via targeting cholinesterases, monoamine oxidases, glycogen synthase kinase-3, and Aβ aggregation.Int. J. Biol. Macromol.2024265Pt 213101810.1016/j.ijbiomac.2024.131018 38518928
    [Google Scholar]
  13. NiuZ.X. WangY.T. ZhangS.N. LiY. ChenX.B. WangS.Q. LiuH.M. Application and synthesis of thiazole ring in clinically approved drugs.Eur. J. Med. Chem.202325011517210.1016/j.ejmech.2023.115172 36758304
    [Google Scholar]
  14. CookA.H. HeilbronI. MacDonaldS.F. MahadevanA.P. Synthesis and cytotoxicity evaluation of thiazole derivatives obtained from 2-Amino-4,5,6,7-Tetrahydrobenzo[b]Thiophene-3-Carbonitrile.J. Chem. Soc.1949671064106810.1039/jr9490001064
    [Google Scholar]
  15. NayakS. GaonkarS.L. A review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives.Mini Rev. Med. Chem.201919321523810.2174/1389557518666180816112151 30112994
    [Google Scholar]
  16. MishraR. SharmaP.K. VermaP.K. TomerI. MathurG. DhakadP.K. Biological potential of thiazole derivatives of synthetic origin.J. Heterocycl. Chem.20175442103211610.1002/jhet.2827
    [Google Scholar]
  17. RyabininV.A. SinyakovA.N. de SoultraitV.R. CaumontA. ParissiV. ZakharovaO.D. VasyutinaE.L. YurchenkoE. BayandinR. LitvakS. Tarrago-LitvakL. NevinskyG.A. Inhibition of HIV-1 integrase-catalysed reaction by new DNA minor groove ligands: The oligo-1,3-thiazolecarboxamide derivatives.Eur. J. Med. Chem.20003511989100010.1016/S0223‑5234(00)01181‑8 11137227
    [Google Scholar]
  18. SebastianL. DesaiA. ShampurM.N. PerumalY. SriramD. VasanthapuramR. N-methylisatin-beta-thiosemicarbazone derivative (SCH 16) is an inhibitor of Japanese encephalitis virus infection in vitro and in vivo.Virol. J.2008516410.1186/1743‑422X‑5‑64 18498627
    [Google Scholar]
  19. QinY.J. WangP.F. MakawanaJ.A. WangZ.C. WangZ.N. Yan-Gu; Jiang, A.Q.; Zhu, H.L. Design, synthesis and biological evaluation of metronidazole–thiazole derivatives as antibacterial inhibitors.Bioorg. Med. Chem. Lett.201424225279528310.1016/j.bmcl.2014.09.054 25587588
    [Google Scholar]
  20. GuanZ.R. LiuZ.M. WanQ. DingM.W. One-pot four-component synthesis of polysubstituted thiazoles via cascade Ugi/Wittig cyclization starting from odorless Isocyano(triphenylphosphoranylidene)-acetates.Tetrahedron2020761513110110.1016/j.tet.2020.131101
    [Google Scholar]
  21. Bozdağ-DündarO. ÖzgenÖ. MenteşeA. AltanlarN. AtlıO. KendiE. ErtanR. Synthesis and antimicrobial activity of some new thiazolyl thiazolidine-2,4-dione derivatives.Bioorg. Med. Chem.200715186012601710.1016/j.bmc.2007.06.049 17618124
    [Google Scholar]
  22. BondockS. KhalifaW. FaddaA.A. Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3,4-dihydronaphthalene-2-carboxaldehyde.Eur. J. Med. Chem.200742794895410.1016/j.ejmech.2006.12.025 17316908
    [Google Scholar]
  23. de AquinoT.M. LiesenA.P. da SilvaR.E.A. LimaV.T. CarvalhoC.S. de FariaA.R. de AraújoJ.M. de LimaJ.G. AlvesA.J. de MeloE.J.T. GóesA.J.S. Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids.Bioorg. Med. Chem.200816144645610.1016/j.bmc.2007.09.025 17905587
    [Google Scholar]
  24. KaplancikliZ.A. Turan-ZitouniG. RevialG. GuvenK. Synthesis and study of antibacterial and antifungal activities of Novel 2-[[(benzoxazole/benzimidazole-2-yl)sulfanyl] acetylamino]thiazoles.Arch. Pharm. Res.200427111081108510.1007/BF02975108 15595406
    [Google Scholar]
  25. Turan-ZitouniG. ChevalletP. KiliçF.S. ErolK. Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity.Eur. J. Med. Chem.200035663564110.1016/S0223‑5234(00)00152‑5 10906414
    [Google Scholar]
  26. SowjanyaC.H. SwamyS.S. GomathiS. BabuA.K. Synthesis, chemistry, and antihypertensive activity of some new thiazole-thiadiazole derivatives.Int. J. Adv. Res. Med. Pharm. Sci.20161610
    [Google Scholar]
  27. SinhaS. DobleM. ManjuS.L. Design, synthesis and identification of novel substituted 2-amino thiazole analogues as potential anti-inflammatory agents targeting 5-lipoxygenase.Eur. J. Med. Chem.2018158345010.1016/j.ejmech.2018.08.098 30199704
    [Google Scholar]
  28. KambleR.D. MeshramR.J. HeseS.V. MoreR.A. KambleS.S. GaccheR.N. DawaneB.S. Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents.Comput. Biol. Chem.201661869610.1016/j.compbiolchem.2016.01.007 26844536
    [Google Scholar]
  29. MoharebR. Al-OmranF. AbdelazizM. IbrahimR. Anti-inflammatory and anti-ulcer activities of new fused thiazole derivatives derived from 2-(2-oxo-2H-chromen-3-yl)thiazol-4(5H)-one.Acta Chim. Slov.201764234936410.17344/acsi.2017.3200 28621395
    [Google Scholar]
  30. MuhammadZ.A. MasaretG.S. AminM.M. AbdallahM.A. FarghalyT.A. Anti-inflammatory, analgesic and anti-ulcerogenic activities of novel bis-thiadiazoles, bis-thiazoles and bis-formazanes.Med. Chem.201713322623810.2174/1573406412666160920091146 27659119
    [Google Scholar]
  31. TenórioR.P. CarvalhoC.S. PessanhaC.S. de LimaJ.G. de FariaA.R. AlvesA.J. de MeloE.J.T. GóesA.J.S. Synthesis of thiosemicarbazone and 4-thiazolidinone derivatives and their in vitro anti-Toxoplasma gondii activity.Bioorg. Med. Chem. Lett.200515102575257810.1016/j.bmcl.2005.03.048 15863319
    [Google Scholar]
  32. SantosB. GonzagaD. da SilvaF. FerreiraV. GarciaC. Plasmodium falciparum knockout for the GPCR-like PfSR25 receptor displays greater susceptibility to 1,2,3-triazole compounds that block malaria parasite development.Biomolecules2020108119710.3390/biom10081197 32824696
    [Google Scholar]
  33. JaishreeV. RamdasN. SachinJ. RameshB. In vitro antioxidant properties of new thiazole derivatives.J. Saudi Chem. Soc.201216437137610.1016/j.jscs.2011.02.007
    [Google Scholar]
  34. SalarU. KhanK.M. ChigurupatiS. SyedS. VijayabalanS. WadoodA. RiazM. GhufranM. PerveenS. New hybrid scaffolds based on hydrazinyl thiazole substituted coumarin; as novel leads of dual potential; in vitro α-amylase inhibitory and antioxidant (DPPH and ABTS radical scavenging) activities.Med. Chem.20191518710110.2174/1573406414666180903162243 30179139
    [Google Scholar]
  35. PetrouA. EleftheriouP. GeronikakiA. AkrivouM.G. VizirianakisI. Novel thiazolidin-4-ones as potential non-nucleoside inhibitors of HIV-1 reverse transcriptase.Molecules20192421382110.3390/molecules24213821 31652782
    [Google Scholar]
  36. XuZ. BaM. ZhouH. CaoY. TangC. YangY. HeR. LiangY. ZhangX. LiZ. ZhuL. GuoY. GuoC. 2,4,5-Trisubstituted thiazole derivatives: A novel and potent class of non-nucleoside inhibitors of wild type and mutant HIV-1 reverse transcriptase.Eur. J. Med. Chem.201485274210.1016/j.ejmech.2014.07.072 25072874
    [Google Scholar]
  37. KaurH. GoyalA. A review on thiazole as anticancer agents.Int J Pharm Drug Anal201865509522Available from: http://ijpda.com/
    [Google Scholar]
  38. GhabbourH.A. KadiA.A. ElTahirK.E.H. AngawiR.F. El-SubbaghH.I. Synthesis, biological evaluation and molecular docking studies of thiazole-based pyrrolidinones and isoindolinediones as anticonvulsant agents.Med. Chem. Res.20152483194321110.1007/s00044‑015‑1371‑3
    [Google Scholar]
  39. ŁączkowskiK.Z. BiernasiukA. Baranowska-ŁączkowskaA. ZielińskaS. SałatK. FurgałaA. MisiuraK. MalmA. Synthesis, antimicrobial and anticonvulsant screening of small library of tetrahydro-2H-thiopyran-4-yl based thiazoles and selenazoles.J Enzyme Inhib Med Chem.201631sup2243910.1080/14756366.2016.118602027193505
    [Google Scholar]
  40. SiddiquiA.A. PartapS. KhisalS. YarM.S. MishraR. Synthesis, anti-convulsant activity and molecular docking study of novel thiazole pyridazinone hybrid analogues.Bioorg. Chem.20209910358410.1016/j.bioorg.2020.103584 32229345
    [Google Scholar]
  41. MjambiliF. NjorogeM. NaranK. De KockC. SmithP.J. MizrahiV. WarnerD. ChibaleK. NaickerT. ChibaleK. BodeM.L. Synthesis and biological evaluation of 2-aminothiazole derivatives as antimycobacterial and antiplasmodial agents.Bioorg. Med. Chem. Lett.201424256056410.1016/j.bmcl.2013.12.022 24373723
    [Google Scholar]
  42. IinoT. HashimotoN. SasakiK. OhyamaS. YoshimotoR. HosakaH. HasegawaT. ChibaM. NagataY. EikiJ. NishimuraT. Structure–activity relationships of 3,5-disubstituted benzamides as glucokinase activators with potent in vivo efficacy.Bioorg. Med. Chem.200917113800380910.1016/j.bmc.2009.04.040 19427223
    [Google Scholar]
  43. Gallardo-GodoyA. GeverJ. FifeK.L. SilberB.M. PrusinerS.B. RensloA.R. 2-Aminothiazoles as therapeutic leads for prion diseases.J. Med. Chem.20115441010102110.1021/jm101250y 21247166
    [Google Scholar]
  44. BritoC.C.B. SilvaH.V.C. BrondaniD.J. FariaA.R. XimenesR.M. SilvaI.M. AlbuquerqueJ.F.C. CastilhoM.S. ScottiL. ScottiM.T. AlvesR.J. FerreiraJ.L.P. Synthesis and biological evaluation of thiazole derivatives as Lb SOD inhibitors.J. Enzyme Inhib. Med. Chem.201934133334210.1080/14756366.2018.1550752 30734600
    [Google Scholar]
  45. RodriguesC.A. dos SantosP.F. da CostaM.O.L. PavaniT.F.A. XanderP. GeraldoM.M. MengardaA. de MoraesJ. RandoD.G.G. FerreiraJ.L.P. 4-Phenyl-1,3-thiazole-2-amines as scaffolds for new antileishmanial agents.J. Venom. Anim. Toxins Incl. Trop. Dis.20182412610.1186/s40409‑018‑0163‑x 30214457
    [Google Scholar]
  46. LiarasK. FesatidouM. GeronikakiA. Thiazoles and Thiazolidinones as COX/LOX Inhibitors.Molecules201823368510.3390/molecules23030685 29562646
    [Google Scholar]
  47. Jacob PJ. ManjuS.L. Identification and development of thiazole leads as COX-2/5-LOX inhibitors through in-vitro and in-vivo biological evaluation for anti-inflammatory activity.Bioorg. Chem.202010010388210.1016/j.bioorg.2020.103882 32361295
    [Google Scholar]
  48. RosadaB. BekierA. CytarskaJ. PłazińskiW. ZavyalovaO. SikoraA. DzitkoK. ŁączkowskiK.Z. OldfieldE. RodríguezA. Benzo[b]thiophene-thiazoles as potent anti-Toxoplasma gondii agents: Design, synthesis, tyrosinase/tyrosine hydroxylase inhibitors, molecular docking study, and antioxidant activity.Eur. J. Med. Chem.201918411176510.1016/j.ejmech.2019.111765 31629163
    [Google Scholar]
  49. HenckenC.P. Jones-BrandoL. BordónC. StohlerR. MottB.T. YolkenR. PosnerG.H. WoodardL.E. AnkerI. HalldénC. NussenzweigV. CarrollK.S. JohnP.F. RensloA.R. Thiazole, oxadiazole, and carboxamide derivatives of artemisinin are highly selective and potent inhibitors of Toxoplasma gondii.J. Med. Chem.20105393594360110.1021/jm901857d 20373807
    [Google Scholar]
  50. WeikertR.J. BinghamS.Jr EmanuelM.A. Fraser-SmithE.B. LoughheadD.G. NelsonP.H. PoultonA.L. Synthesis and anthelmintic activity of 3′-benzoylurea derivatives of 6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole.J. Med. Chem.19913451630163310.1021/jm00109a015 2033588
    [Google Scholar]
  51. HuuskonenM.T. TuoQ. LoppiS. DhunganaH. KorhonenP. McInnesL.E. DonnellyP.S. GrubmanA. WojciechowskiS. LejavovaK. PomeshchikY. PeriviitaL. KosonenL. GiordanoM. WalkerF.R. LiuR. BushA.I. KoistinahoJ. MalmT. WhiteA.R. LeiP. KanninenK.M. The copper bis(thiosemicarbazone) complex CuII(atsm) is protective against cerebral ischemia through modulation of the inflammatory milieu.Neurotherapeutics201714251953210.1007/s13311‑016‑0504‑9 28050710
    [Google Scholar]
  52. KumarG. SinghN.P. Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives.Bioorg. Chem.202110710460810.1016/j.bioorg.2020.104608 33465668
    [Google Scholar]
  53. AndreaniA. RambaldiM. MascellaniG. RugarliP. Synthesis and diuretic activity of imidazo[2,1-b]thiazole acetohydrazones.Eur. J. Med. Chem.1987221192210.1016/0223‑5234(87)90169‑3
    [Google Scholar]
  54. PattanS.R. RaghavendraB.K. ThirumalaiR.K. ManjunathaS.S. ChannarayappaC. Synthesis and biological evaluation of some substituted amino thiazole derivatives.Asian J. Res. Chem200922196201
    [Google Scholar]
  55. AnsariA. AliA. AsifM. RaufM.A. OwaisM. Shamsuzzaman, Facile one-pot multicomponent synthesis and molecular docking studies of steroidal oxazole/thiazole derivatives with effective antimicrobial, antibiofilm and hemolytic properties.Steroids2018134223610.1016/j.steroids.2018.04.003 29653115
    [Google Scholar]
  56. MonguchiD. FujiwaraT. FurukawaH. MoriA. Direct amination of azoles via catalytic C-H, N-H coupling.Org. Lett.20091171607161010.1021/ol900298e 19254040
    [Google Scholar]
  57. KiryanovA.A. SampsonP. SeedA.J. Synthesis of 2-alkoxy-substituted thiophenes, 1,3-thiazoles, and related S-heterocycles via Lawesson’s reagent-mediated cyclization under microwave irradiation: applications for liquid crystal synthesis.J. Org. Chem.200166237925792910.1021/jo016063x 11701063
    [Google Scholar]
  58. BachT. HeuserS. Synthesis of 2-(o-hydroxyaryl)-4-arylthiazoles by regioselective Pd(0)-catalyzed cross-coupling.Tetrahedron Lett.200041111707171010.1016/S0040‑4039(00)00018‑6
    [Google Scholar]
  59. Van ZantenA.R.H. OudijkM. Nohlmans-PaulssenM.K.E. Van Der MeerY.G. GirbesA.R.J. PoldermanK.H. Continuous vs. intermittent cefotaxime administration in patients with chronic obstructive pulmonary disease and respiratory tract infections: pharmacokinetics/pharmacodynamics, bacterial susceptibility and clinical efficacy.Br. J. Clin. Pharmacol.200763110010910.1111/j.1365‑2125.2006.02730.x 16869814
    [Google Scholar]
  60. SweetR.L. Treatment of acute pelvic inflammatory disease.Infect. Dis. Obstet. Gynecol.2011201111310.1155/2011/561909 22228985
    [Google Scholar]
  61. DagherH. HachemR. ChaftariA.M. JiangY. AliS. DeebaR. ShahS. RaadI. StrychaczM. KhumaloZ. AnwarZ. ShannonK. LopezD. WaldmanM. Real-world use of isavuconazole as primary therapy for invasive fungal infections in high-risk patients with hematologic malignancy or stem cell transplant.J. Fungi (Basel)2022817410.3390/jof8010074 35050014
    [Google Scholar]
  62. PetrakisV. RafailidisP. TrypsianisG. PapazoglouD. PanagopoulosP. The antiviral effect of nirmatrelvir/ritonavir during COVID-19 pandemic real-world data.Viruses202315497610.3390/v15040976 37112956
    [Google Scholar]
  63. PriceA.H. BrogdenR.N. Nizatidine.Drugs198836552153910.2165/00003495‑198836050‑00002 2905640
    [Google Scholar]
  64. LiJ. RenJ. SunW. Systematic review of ixabepilone for treating metastatic breast cancer.Breast Cancer201724217117910.1007/s12282‑016‑0717‑0 27491426
    [Google Scholar]
  65. SilindirM. OzerA.Y. The benefits of pramipexole selection in the treatment of Parkinson’s disease.Neurol. Sci.201435101505151110.1007/s10072‑014‑1891‑5 25038745
    [Google Scholar]
  66. FangH. ChenW. LiuX. XuW. The efficacy and safety of arotinolol combined with a different calcium channel blocker in the treatment of Chinese patients with essential hypertension: A one-year follow-up study.Clin. Exp. Hypertens.201436859059510.3109/10641963.2014.897714 24678807
    [Google Scholar]
  67. KhalilN.Y. AldosariK.F. Meloxicam. Profiles of Drug Substances, Excipients, and Related Methodology.Elsevier2020Vol. 4515919710.1016/bs.podrm.2019.10.006
    [Google Scholar]
  68. FramptonJ.E. Febuxostat: A review of its use in the treatment of hyperuricaemia in patients with gout.Drugs201575442743810.1007/s40265‑015‑0360‑7 25724536
    [Google Scholar]
  69. PetrouA. FesatidouM. GeronikakiA. Thiazole Ring—A Biologically Active Scaffold.Molecules20212611316610.3390/molecules26113166 34070661
    [Google Scholar]
  70. AlzahraniA.Y. AmmarY.A. Abu-ElghaitM. SalemM.A. AssiriM.A. AliT.E. RagabA. AbdelkaderS. SayedA.A. Development of novel indolin-2-one derivative incorporating thiazole moiety as DHFR and quorum sensing inhibitors: Synthesis, antimicrobial, and antibiofilm activities with molecular modelling study.Bioorg. Chem.202211910557110.1016/j.bioorg.2021.105571 34959177
    [Google Scholar]
  71. CascioferroS. ParrinoB. CarboneD. SchillaciD. GiovannettiE. CirrincioneG. DianaP. Thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance.J. Med. Chem.202063157923795610.1021/acs.jmedchem.9b01245 32208685
    [Google Scholar]
  72. JadhavP.M. KantevariS. TekaleA.B. BhosaleS.V. PawarR.P. TekaleS.U. A review on biological and medicinal significance of thiazoles.Phosphorus Sulfur Silicon Relat. Elem.20211961087989510.1080/10426507.2021.1945601
    [Google Scholar]
  73. PooniaN. LalK. KumarA. KumarA. SahuS. BaidyaA.T.K. KumarR. Urea-thiazole/benzothiazole hybrids with a triazole linker: Synthesis, antimicrobial potential, pharmacokinetic profile and in silico mechanistic studies.Mol. Divers.20222652375239110.1007/s11030‑021‑10336‑x
    [Google Scholar]
  74. Farouk ElsadekM. Mohamed AhmedB. Fawzi FarahatM. An overview on synthetic 2-aminothiazole-based compounds associated with four biological activities.Molecules2021265144910.3390/molecules26051449 33800023
    [Google Scholar]
  75. AlamM.A. Thiazole, A Privileged Scaffold in Drug Discovery. Privileged Scaffolds in Drug Discovery.Elsevier202311910.1016/B978‑0‑443‑18611‑0.00027‑9
    [Google Scholar]
  76. HowardK.C. DennisE.K. WattD.S. Garneau-TsodikovaS. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise.Chem. Soc. Rev.20204982426248010.1039/C9CS00556K 32140691
    [Google Scholar]
  77. BarcinT. YucelM.A. ErsanR.H. AlagozM.A. DogenA. BurmaogluS. AlgulO. Deep learning approach to the discovery of novel bisbenzazole derivatives for antimicrobial effect.J. Mol. Struct.2024129513666810.1016/j.molstruc.2023.136668
    [Google Scholar]
  78. YangY. KesslerM.G.C. Marchán-RivadeneiraM.R. HanY. Combating antimicrobial resistance in the post-genomic era: Rapid antibiotic discovery.Molecules20232810418310.3390/molecules28104183 37241928
    [Google Scholar]
  79. ShiZ. ZhangJ. TianL. XinL. LiangC. RenX. LiM. A comprehensive overview of the antibiotics approved in the last two decades: Retrospects and prospects.Molecules2023284176210.3390/molecules28041762 36838752
    [Google Scholar]
  80. Al-MaqtariQ.A. Al-MekhlafiH.M. Al-EmranM. Application of essential oils as preservatives in food systems: Challenges and future prospectives—a review.Phytochem. Rev.202113810.1007/s11101‑021‑09776‑y
    [Google Scholar]
  81. DupuisV. CerbuC. WitkowskiL. PotarnicheA.V. TimarM.C. ŻychskaM. SabliovC.M. Nanodelivery of essential oils as efficient tools against antimicrobial resistance: A review of the type and physical-chemical properties of the delivery systems and applications.Drug Deliv.20222911007102410.1080/10717544.2022.2056663 35363104
    [Google Scholar]
  82. FarghalyT.A. AlsaediA.M.R. AlenaziN.A. HarrasM.F. Anti-viral activity of thiazole derivatives: an updated patent review.Expert Opin. Ther. Pat.202232779181510.1080/13543776.2022.2067477 35427454
    [Google Scholar]
  83. Muhammed AzizD. HassanS.A. AminA.A.M. AbdullahM.N. QurbaniK. AzizS.B. A synergistic investigation of azo-thiazole derivatives incorporating thiazole moieties: A comprehensive exploration of their synthesis, characterization, computational insights, solvatochromism, and multimodal biological activity assessment.RSC Advances20231349345343455510.1039/D3RA06469G 38024963
    [Google Scholar]
  84. Ali MohamedH. AmmarY.A. A MElhagali G.; A Eyada, H.; S Aboul-Magd, D.; Ragab, A. In vitro antimicrobial evaluation, single-point resistance study, and radiosterilization of novel pyrazole incorporating thiazol-4-one/thiophene derivatives as dual DNA gyrase and DHFR inhibitors against MDR pathogens.ACS Omega2022764970499010.1021/acsomega.1c05801 35187315
    [Google Scholar]
  85. IbrahimS.A. FayedE.A. RizkH.F. DesoukyS.E. RagabA. Hydrazonoyl bromide precursors as DHFR inhibitors for the synthesis of bis-thiazolyl pyrazole derivatives; antimicrobial activities, antibiofilm, and drug combination studies against MRSA.Bioorg. Chem.202111610533910.1016/j.bioorg.2021.105339 34530234
    [Google Scholar]
  86. NaazF. SrivastavaR. SinghA. SinghN. VermaR. SinghV.K. SinghR.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole.Bioorg. Med. Chem.201826123414342810.1016/j.bmc.2018.05.015 29778528
    [Google Scholar]
  87. HuY. HuC. PanG. YuC. AnsariM.F. Yadav BheemanaboinaR.R. ChengY. ZhouC. ZhangJ. Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus.Eur. J. Med. Chem.202122211362810.1016/j.ejmech.2021.113628 34139627
    [Google Scholar]
  88. SnowdenF.M. Emerging and reemerging diseases: A historical perspective.Immunol. Rev.2008225192610.1111/j.1600‑065X.2008.00677.x 18837773
    [Google Scholar]
  89. SakerL. LeeK. CannitoB. GilmoreA. Campbell-LendrumD.H. Globalization and Infectious Diseases: A Review of the Linkages. Social, Economic and Behavioural (SEB) Research.2004Available from: https://iris.who.int/bitstream/handle/10665/68726/TDR_STR_SEB_ST_04.2.pdf
    [Google Scholar]
  90. MorensD.M. FolkersG.K. FauciA.S. Emerging infections: A perpetual challenge.Lancet Infect. Dis.200881171071910.1016/S1473‑3099(08)70256‑1 18992407
    [Google Scholar]
  91. KartsevV. GeronikakiA. ZubenkoA. PetrouA. IvanovM. GlamočlijaJ. SokovicM. DivaevaL. MorkovnikA. KlimenkoA. Synthesis and antimicrobial activity of new heteroaryl(aryl) thiazole derivatives molecular docking studies.Antibiotics (Basel)20221110133710.3390/antibiotics11101337 36289995
    [Google Scholar]
  92. MalūkaitėD. GrybaitėB. VaickelionienėR. VaickelionisG. Sapijanskaitė-BanevičB. KavaliauskasP. MickevičiusV. Synthesis of novel thiazole derivatives bearing β-amino acid and aromatic moieties as promising scaffolds for the development of new antibacterial and antifungal candidates targeting multidrug-resistant pathogens.Molecules20212717410.3390/molecules27010074 35011308
    [Google Scholar]
  93. StankovaI. ChuchkovK. ChayrovR. MukovaL. GalabovA. MarinkovaD. DanalevD. Adamantane derivatives containing thiazole moiety: Synthesis, antiviral and antibacterial activity.Int. J. Pept. Res. Ther.20202641781178710.1007/s10989‑019‑09983‑4
    [Google Scholar]
  94. ChhabriaM.T. PatelS. ModiP. BrahmkshatriyaP.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives.Curr. Top. Med. Chem.201616262841286210.2174/1568026616666160506130731 27150376
    [Google Scholar]
  95. SinghI.P. GuptaS. KumarS. Thiazole compounds as antiviral agents: An update.Med. Chem.202016142310.2174/1573406415666190614101253 31203807
    [Google Scholar]
  96. AgiliF. Novel thiazole derivatives containing imidazole and furan scaffold: Design, synthesis, molecular docking, antibacterial, and antioxidant evaluation.Molecules2024297149110.3390/molecules29071491 38611769
    [Google Scholar]
  97. SaffourS. AL-Sharabi, A.A.; Evren, A.E.; Cankiliç, M.Y.; Yurttaş, L. Antimicrobial activity of novel substituted 1,2,4-triazole and 1,3-thiazole derivatives.J. Mol. Struct.2024129513667510.1016/j.molstruc.2023.136675
    [Google Scholar]
  98. LaboudY.N. ZahranD. HassaneenH.M. ElwahyA.H.M. SalehF.M. Synthesis and Anti‐Bacterial Evaluation of Novel Scaffolds Based on Bis‐Thiazole or bis‐1,3,4‐Thiadiazole Linked to Thieno[2,3‐ b]Thiophene as New Hybrid Molecules.ChemistrySelect2024914e20240004510.1002/slct.202400045
    [Google Scholar]
  99. DawbaaS. EvrenA.E. CantürkZ. YurttaşL. Synthesis of new thiazole derivatives and evaluation of their antimicrobial and cytotoxic activities.Phosphorus Sulfur Silicon Relat. Elem.2021196121093110210.1080/10426507.2021.1972299
    [Google Scholar]
  100. HarounM. TratratC. TsolakiE. GeronikakiA. Thiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation.Comb. Chem. High Throughput Screen.2016191515710.2174/1386207319666151203002348 26632442
    [Google Scholar]
  101. AbdouM.M. EliwaE.M. Abdel ReheimM.A.M. Abu-RayyanA. Abd El-GililS.M. Abu-ElghaitM. SharafM.H. KalabaM.H. HalawaA.H. ElgammalW.E. Tailoring of novel morpholine-sulphonamide linked thiazole moieties as dual targeting DHFR/DNA gyrase inhibitors: synthesis, antimicrobial and antibiofilm activities, and DFT with molecular modelling studies.New J. Chem.202448209149916210.1039/D3NJ05774G
    [Google Scholar]
  102. JonesR.N. WilsonM.L. WeinsteinM.P. StilwellM.G. MendesR.E. Contemporary potencies of minocycline and tetracycline HCL tested against Gram-positive pathogens: SENTRY Program results using CLSI and EUCAST breakpoint criteria.Diagn. Microbiol. Infect. Dis.201375440240510.1016/j.diagmicrobio.2013.01.022 23514756
    [Google Scholar]
  103. FarghalyT.A. AbdallahM.A. KhedrM.A. MahmoudH.K. Synthesis, antimicrobial activity and molecular docking study of thiazole derivatives.J. Heterocycl. Chem.20175442417242510.1002/jhet.2838
    [Google Scholar]
  104. BansalK.K. BhardwajJ.K. SarafP. ThakurV.K. SharmaP.C. Synthesis of thiazole clubbed pyrazole derivatives as apoptosis inducers and anti-infective agents.Mater. Today Chem.20201710033510.1016/j.mtchem.2020.100335
    [Google Scholar]
  105. SaeedS. RashidN. JonesP.G. HussainR. BhattiM.H. Synthesis, spectroscopic characterization, crystal structure, and antifungal activity of thiourea derivatives containing a thiazole moiety.Cent. Eur. J. Chem.2010855055810.2478/s11532‑010‑0014‑2
    [Google Scholar]
  106. de SantanaT.I. BarbosaM.O. GomesP.A.T.M. da CruzA.C.N. da SilvaT.G. LeiteA.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives.Eur. J. Med. Chem.201814487488610.1016/j.ejmech.2017.12.040 29329071
    [Google Scholar]
  107. SkóraB. LewińskaA. Kryshchyshyn-DylevychA. KaminskyyD. LesykR. SzychowskiK.A. Evaluation of anticancer and antibacterial activity of four 4-thiazolidinone-based derivatives.Molecules202227389410.3390/molecules27030894 35164157
    [Google Scholar]
  108. SilvaB.T. In vitro Regulation of Staphylococcus aureus Growth and Virulence by Bovine Non-Aureus Staphylococci.Ghent University2021http://hdl.handle.net/1854/LU-8737002
    [Google Scholar]
  109. ZhangJ. WangD. ZouL. XiaoM. ZhangY. LiZ. YangL. GeG. ZuoZ. Rapid bioluminescence assay for monitoring rat CES1 activity and its alteration by traditional Chinese medicines.J. Pharm. Anal.202010325326210.1016/j.jpha.2020.05.006 32612872
    [Google Scholar]
  110. HassanA.A. IbrahimY.R. El-SherefE.M. Abdel-AzizM. BräseS. NiegerM. Synthesis and antibacterial activity of 4‐Aryl‐2‐(1‐substituted ethylidene)thiazoles.Arch. Pharm. (Weinheim)2013346756257010.1002/ardp.201300099 23776104
    [Google Scholar]
  111. ShettyS. KumarS. VermaA. Synthesis of novel triheterocyclic thiazoles as antimicrobial and analgesic agents.Indian J. Heterocycl. Chem.2013231333810.1016/j.ejmech.2007.01.023
    [Google Scholar]
  112. YurttaşL. ÖzkayY. Karaca GençerH. AcarU. Synthesis of Some New Thiazole Derivatives and Their Biological Activity Evaluation.J. Chem.201520151710.1155/2015/464379
    [Google Scholar]
  113. CappuccinoJ.G. ShermanN. Microbiology-A Laboratory Manual.7th edSydneyAddison Wesley Longman, Inc.1999
    [Google Scholar]
  114. AroraP. NarangR. BhatiaS. NayakS. SinghS. NarasimhanB. Synthesis, molecular docking and QSAR studies of 2, 4- disubstituted thiazoles as antimicrobial agents. J. Appl. Pharm. Sci.20155202804210.7324/JAPS.2015.50206
    [Google Scholar]
  115. YurttaşL. ÖzkayY. DuranM. Turan-ZitouniG. ÖzdemirA. CantürkZ. KüçükoğluK. KaplancıklıZ.A. Synthesis and antimicrobial activity evaluation of new dithiocarbamate derivatives bearing thiazole/benzothiazole rings.Phosphorus Sulfur Silicon Relat. Elem.201619181166117310.1080/10426507.2016.1150277
    [Google Scholar]
  116. GadhiyaB. RajputM. BapodraA. LadvaK. Design, synthesis and evaluation of antimicrobial activities of some novel thiazole and thiadiazole derivatives clubbed with 1H-benzimidazole.J. Pharm. Sci.201653113125
    [Google Scholar]
  117. YogiP. AshidM. HussainN. KhanS. JoshiA. One-pot synthesis of thiazoles via hantzsch thiazole reaction and their antimicrobial activity.Asian J. Chem.201628492793210.14233/ajchem.2016.19603
    [Google Scholar]
  118. BeraP. BrandãoP. MondalG. JanaH. JanaA. SantraA. BeraP. Synthesis of a new pyridinyl thiazole ligand with hydrazone moiety and its cobalt(III) complex: X-ray crystallography, in vitro evaluation of antibacterial activity.Polyhedron201713423023710.1016/j.poly.2017.06.024
    [Google Scholar]
  119. ImranM. BakhtM.A. SamadA. AbidaA. Synthesis of some quinoline-pyrazoline-based naphthalenyl thiazole derivatives and their evaluation as potential antimicrobial agents.Trop. J. Pharm. Res.20171651147115510.4314/tjpr.v16i5.24
    [Google Scholar]
  120. Rodriguez-TudelaJ.L. ArendrupM.C. BarchiesiF. BilleJ. ChryssanthouE. Cuenca-EstrellaM. DannaouiE. DenningD.W. DonnellyJ.P. DromerF. FegelerW. Lass-FlörlC. MooreC. RichardsonM. SandvenP. VelegrakiA. VerweijP. EUCAST Definitive Document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts.Clin. Microbiol. Infect.200814439840510.1111/j.1469‑0691.2007.01935.x 18190574
    [Google Scholar]
  121. Turan-ZitouniG. Kaya ÇavuşoğluB. SağlıkB.N. Acar ÇevikU. Synthesis and antimicrobial activities of some novel thiazole compounds.Turk Biyokim. Derg.201843322022710.1515/tjb‑2017‑0093
    [Google Scholar]
  122. LinoC.I. Gonçalves de SouzaI. BorelliB.M. Silvério MatosT.T. Santos TeixeiraI.N. RamosJ.P. Maria de Souza FagundesE. de Oliveira FernandesP. MaltarolloV.G. JohannS. de OliveiraR.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives.Eur. J. Med. Chem.201815124826010.1016/j.ejmech.2018.03.083 29626797
    [Google Scholar]
  123. WuQ.F. ZhaoB. FanZ.J. ZhaoJ.B. GuoX.F. YangD.Y. ZhangN.L. YuB. KalininaT. GlukharevaT. Design, synthesis and fungicidal activity of isothiazole–thiazole derivatives.RSC Advances2018869395933960110.1039/C8RA07619G 35558013
    [Google Scholar]
  124. YanZ. LiuA. HuangM. LiuM. PeiH. HuangL. YiH. LiuW. HuA. Design, synthesis, DFT study and antifungal activity of the derivatives of pyrazolecarboxamide containing thiazole or oxazole ring.Eur. J. Med. Chem.201814917018110.1016/j.ejmech.2018.02.036 29501939
    [Google Scholar]
  125. KubbaA.A.R.M. RahimN.A.H.A. Synthesis and Antimicrobial Evaluation of New-[2-Amino-4-(4-Chloro-/4-Bromophenyl)-1,3-Thiazole Derivatives.J. Pharm. Res.2018121145
    [Google Scholar]
  126. SalehF.M. AbdelhamidA.O. HassaneenH.M. Synthesis and antimicrobial activity of new thiazole and thiadiazole derivatives via ethyl pyruvate.J. Sulfur Chem.202041213014510.1080/17415993.2019.1694678
    [Google Scholar]
  127. MasoodM.M. IrfanM. AlamS. HasanP. QueenA. ShahidS. ZahidM. AzamA. AbidM. Synthesis, antimicrobial evaluation and in silico studies of novel 2,4- disubstituted-1,3-thiazole derivatives.Lett. Drug Des. Discov.201816216017310.2174/1570180815666180502120042
    [Google Scholar]
  128. AdoleV.A. MoreR.A. JagdaleB.S. PawarT.B. ChobeS.S. Efficient synthesis, antibacterial, antifungal, antioxidant and cytotoxicity study of 2‐(2‐hydrazineyl)thiazole derivatives.ChemistrySelect2020592778278610.1002/slct.201904609
    [Google Scholar]
  129. GondruR. KanugalaS. RajS. Ganesh KumarC. PasupuletiM. BanothuJ. BavantulaR. 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies.Bioorg. Med. Chem. Lett.20213312774610.1016/j.bmcl.2020.127746 33333162
    [Google Scholar]
  130. SivakumarK.K. KarthikeyanL. PonnilavarasanI. RajasekaranA. Designed, conventional and microwave assisted synthesis of hybridized coumarin bearing thiazole analogs as antimicrobial agents.Int J Pharma Res.20201115464
    [Google Scholar]
  131. ShaabanM.R. FarghalyT.A. AlsaediA.M.R. Synthesis, antimicrobial and anticancer evaluations of novel thiazoles incorporated diphenyl sulfone moiety.Polycycl. Aromat. Compd.20224252521253710.1080/10406638.2020.1837887
    [Google Scholar]
  132. BhujbalN. GaikwadD. JagdaleY. PawarC. Synthesis, antimicrobial and anti‐tubercular activity study of N‐(substituted‐benzyl)‐4‐(trifluoromethyl)thiazole‐2‐sulfonamide and 2‐(N‐(substituted‐benzyl)sulfamoyl)thiazole‐4‐carboxylic acid.J. Chin. Chem. Soc. (Taipei)20216881563157310.1002/jccs.202000421
    [Google Scholar]
  133. EvrenA.E. DawbaaS. NuhaD. YavuzŞ.A. GülÜ.D. YurttaşL. Design and synthesis of new 4-methylthiazole derivatives: In vitro and in silico studies of antimicrobial activity.J. Mol. Struct.2021124113069210.1016/j.molstruc.2021.130692
    [Google Scholar]
  134. EissaS.I. FarragA.M. AbbasS.Y. El ShehryM.F. RagabA. FayedE.A. AmmarY.A. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies.Bioorg. Chem.202111010480310.1016/j.bioorg.2021.104803 33761314
    [Google Scholar]
  135. SongJ.U. ChoiS.P. KimT.H. JungC.K. LeeJ.Y. JungS.H. KimG.T. Design and synthesis of novel 2-(indol-5-yl)thiazole derivatives as xanthine oxidase inhibitors.Bioorg. Med. Chem. Lett.20152561254125810.1016/j.bmcl.2015.01.055 25704891
    [Google Scholar]
  136. ShaikhM.S. PalkarM.B. PatelH.M. RaneR.A. AlwanW.S. ShaikhM.M. ShaikhI.M. HampannavarG.A. KarpoormathR. Design and synthesis of novel carbazolo–thiazoles as potential anti-mycobacterial agents using a molecular hybridization approach.RSC Advances20144107623086232010.1039/C4RA11752B
    [Google Scholar]
  137. NguyenM.A.T. MungaraA.K. KimJ.A. LeeK.D. ParkS. Synthesis, anticancer and antioxidant activity of novel carbazole-based thiazole derivatives.Phosphorus Sulfur Silicon Relat. Elem.2015190219119910.1080/10426507.2014.914933
    [Google Scholar]
  138. ZhaoD. LiuY. LiY. ChenY. A green synthesis and antibacterial activity of ferrocene-based thiazole derivatives in choline chloride/glycerol eutectic solvent.RSC Advances20221234220542205910.1039/D2RA04587G 36043099
    [Google Scholar]
  139. RotilieC.A. FassR.J. PriorR.B. PerkinsR.L. Microdilution technique for antimicrobial susceptibility testing of anaerobic bacteria.Antimicrob. Agents Chemother.19757331131510.1128/AAC.7.3.311 1137383
    [Google Scholar]
  140. SpilovskaK. ZemekF. KorabecnyJ. NepovimovaE. SoukupO. WindischM. KucaK. Adamantane – A lead structure for drugs in clinical practice.Curr. Med. Chem.201623293245326610.2174/0929867323666160525114026 27222266
    [Google Scholar]
  141. PfallerM.A. HerwaldtL.A. The clinical microbiology laboratory and infection control: emerging pathogens, antimicrobial resistance, and new technology.Clin. Infect. Dis.199725485887010.1086/515557 9356802
    [Google Scholar]
  142. WardaE.T. El-AshmawyM.B. HabibE.S.E. AbdelbakyM.S.M. Garcia-GrandaS. ThamotharanS. El-EmamA.A. Synthesis and in vitro antibacterial, antifungal, anti-proliferative activities of novel adamantane-containing thiazole compounds.Sci. Rep.20221212105810.1038/s41598‑022‑25390‑0 36474013
    [Google Scholar]
  143. MinickaitėR. GrybaitėB. VaickelionienėR. KavaliauskasP. PetraitisV. PetraitienėR. TumosienėI. JonuškienėI. MickevičiusV. Synthesis of novel aminothiazole derivatives as promising antiviral, antioxidant and antibacterial candidates.Int. J. Mol. Sci.20222314768810.3390/ijms23147688 35887038
    [Google Scholar]
  144. El-HagrasseyE.A. Abdel-LatifE. Abdel-FattahG.M. Synthesis and efficiency of new pyridine, chromene and thiazole containing compounds as antimicrobial and antioxidant agents.Bull. Chem. Soc. Ethiop.202236113714810.4314/bcse.v36i1.12
    [Google Scholar]
  145. MattaR. PochampallyJ. DhoddiB.N. BhookyaS. BitlaS. AkkirajuA.G. Synthesis, antimicrobial and antioxidant activity of triazole, pyrazole containing thiazole derivatives and molecular docking studies on COVID-19.BMC Chem.20231716110.1186/s13065‑023‑00965‑8 37330518
    [Google Scholar]
  146. NandurkarY. ShindeA. BhoyeM.R. JagadaleS. MhaskeP.C. Synthesis and biological screening of new 2-(5-aryl-1-phenyl-1 H -pyrazol-3-yl)-4-aryl thiazole derivatives as potential antimicrobial agents.ACS Omega2023898743875410.1021/acsomega.2c08137 36910954
    [Google Scholar]
  147. SalihR.H.H. HasanA.H. HussenN.H. HawaizF.E. HaddaT.B. JamalisJ. AlmalkiF.A. AdeyinkaA.S. CoetzeeL-C.C. OyebamijiA.K. Thiazole-pyrazoline hybrids as potential antimicrobial agent: Synthesis, biological evaluation, molecular docking, DFT studies and POM analysis.J. Mol. Struct.2023128213519110.1016/j.molstruc.2023.135191
    [Google Scholar]
  148. LuX. LiuX. WanB. FranzblauS.G. ChenL. ZhouC. YouQ. Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6-dichlorobenzyloxy)phenyl thiazole, oxazole and imidazole derivatives. Part 2.Eur. J. Med. Chem.20124916417110.1016/j.ejmech.2012.01.007 22264895
    [Google Scholar]
  149. BondockS. NaserT. AmmarY.A. Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents.Eur. J. Med. Chem.20136227027910.1016/j.ejmech.2012.12.050 23357308
    [Google Scholar]
  150. IbrahimY.M. AbouwardaA.M. NasrT. OmarF.A. BondockS. Antibacterial and anti-quorum sensing activities of a substituted thiazole derivative against methicillin-resistant Staphylococcus aureus and other multidrug-resistant bacteria.Microb. Pathog.202014910450010.1016/j.micpath.2020.104500 32926996
    [Google Scholar]
  151. NastasăC. TiperciucB. DumaM. BenedecD. OnigaO. New hydrazones bearing thiazole scaffold: Synthesis, characterization, antimicrobial, and antioxidant investigation.Molecules2015209173251733810.3390/molecules200917325 26393564
    [Google Scholar]
  152. Abbasi ShiranJ. YahyazadehA. MamaghaniM. YaminB.M. AlbadiJ. ShiriniF. RassaM. Novel, One-Pot, Three-Component, Regioselective Synthesis of Fluorine-Containing Thiazole and Bis-3 H -thiazole Derivatives Using Polyvinyl Pyridine as Heterogeneous Catalyst, and Evaluation of Their Antibacterial Activity.Synth. Commun.201545131520153210.1080/00397911.2015.1025909
    [Google Scholar]
  153. OufS.A. GomhaS.M. EwiesM.M. SharawyI.A.A. Synthesis, characterization, and antifungal activity evaluation of some novel arylazothiazoles.J. Heterocycl. Chem.201855125826410.1002/jhet.3040
    [Google Scholar]
  154. ZhaG.F. LengJ. DarshiniN. ShubhavathiT. VivekH.K. AsiriA.M. MarwaniH.M. RakeshK.P. MalleshaN. QinH.L. Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents.Bioorg. Med. Chem. Lett.201727143148315510.1016/j.bmcl.2017.05.032 28539243
    [Google Scholar]
  155. DemirciS. Synthesis of thiazole derivatives as antimicrobial agents by green chemistry techniques.J. Turkish Chem. Soc. Sect. Chem20185239341410.18596/jotcsa.375716
    [Google Scholar]
  156. SanadS.M.H. AhmedA.A.M. MekkyA.E.M. Synthesis, in‐vitro and in‐silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors.Arch. Pharm. (Weinheim)20203534190030910.1002/ardp.201900309 31967349
    [Google Scholar]
  157. GrybaitėB. VaickelionienėR. StasevychM. Komarovska-PorokhnyavetsO. KantminienėK. NovikovV. MickevičiusV. Synthesis and antimicrobial activity of novel thiazoles with reactive functional groups.ChemistrySelect20194236965697010.1002/slct.201900679
    [Google Scholar]
  158. Abu-MelhaS. EdreesM.M. SalemH.H. KhederN.A. GomhaS.M. AbdelazizM.R. Synthesis and Biological Evaluation of Some Novel Thiazole-Based Heterocycles as Potential Anticancer and Antimicrobial Agents.Molecules201924353910.3390/molecules24030539 30717217
    [Google Scholar]
  159. GirayB. YurttaşL. ŞahinZ. BerkB. DemirayakŞ. Antimicrobial Evaluation of Trisubstituted 2-Piperazinyl Thiazoles.Acta Pharm. Sci.201957111310.23893/1307‑2080.aps.05707
    [Google Scholar]
  160. GhoneimA.A. MorsyN.M. Design and Synthesis of Novel 4-Amino-2,3-Dihydro-2-Imino-3-(1-Iminododecyl) Thiazole-5-Carbonitrile Derivatives as Antimicrobial Agents.Pharma Chem.20209316
    [Google Scholar]
  161. SimakovS. KartsevV. PetrouA. NicolaouI. GeronikakiA. IvanovM. KosticM. GlamočlijaJ. SokovićM. TaleaD. VizirianakisI.S. 4-(indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole acylamines as Novel antimicrobial agents: Synthesis, in silico and in vitro Evaluation.Pharmaceuticals (Basel)20211411109610.3390/ph14111096 34832877
    [Google Scholar]
  162. NuhaD. EvrenA.E. Yılmaz CankılıçM. YurttaşL. Design and synthesis of novel 2,4,5-thiazole derivatives as 6-APA mimics and antimicrobial activity evaluation.Phosphorus Sulfur Silicon Relat. Elem.20211961095496010.1080/10426507.2021.1946537
    [Google Scholar]
  163. KassabR.M. Al-HussainS.A. ElleboudyN.S. AlbohyA. ZakiM.E.A. AbouzidK.A.M. MuhammadZ.A. Tackling microbial resistance with isatin-decorated thiazole derivatives: Design, synthesis, and in vitro evaluation of antimicrobial and antibiofilm activity.Drug Des. Devel. Ther.2022162817283210.2147/DDDT.S365909 36046334
    [Google Scholar]
  164. KumarM. KumarV. SinghV. ThakralS. Synthesis, in silico studies and biological screening of (E)-2-(3-(substitutedstyryl)-5-(substitutedphenyl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole derivatives as an anti-oxidant, anti-inflammatory and antimicrobial agents.BMC Chem.202216110310.1186/s13065‑022‑00901‑2 36434662
    [Google Scholar]
  165. MohamedH.A. AmmarY.A. ElhagaliG.A.M. EyadaH.A. Aboul-MagdD.S. RagabA. Discovery a novel of thiazolo[3,2-a]pyridine and pyrazolo[3,4-d]thiazole derivatives as DNA gyrase inhibitors; design, synthesis, antimicrobial activity, and some in-silico ADMET with molecular docking study.J. Mol. Struct.2023128713567110.1016/j.molstruc.2023.135671
    [Google Scholar]
  166. RozsaT. DumaM. VlaseL. IonuţI. PîrnăuA. TiperciucB. OnigaO. Synthesis and Antimicrobial Evaluation of Some New 4,5′‐Bisthiazoles.J. Heterocycl. Chem.2015524999100610.1002/jhet.2054
    [Google Scholar]
  167. AbhaleY.K. ShindeA.D. DeshmukhK.K. NawaleL. SarkarD. ChoudhariP.B. KumbharS.S. MhaskeP.C. Synthesis, antimycobacterial screening and molecular docking studies of 4-aryl-4′-methyl-2′-aryl-2,5′-bisthiazole derivatives.Med. Chem. Res.201726112889289910.1007/s00044‑017‑1988‑5
    [Google Scholar]
  168. MickevičiusV. GrybaitėB. VaickelionienėR. StasevychM. Komarovska-PorokhnyavetsO. NovikovV. Synthesis, transformation of 3-[(4-arylthiazol-2-yl)(p-tolyl)amino]propanoic acids, bis(thiazol-5-yl)phenyl-, bis(thiazol-5-yl)methane derivatives, and their antimicrobial activity.Heterocycles20189618610510.3987/COM‑17‑13833
    [Google Scholar]
  169. ParašotasI. AnusevičiusK. VaickelionienėR. JonuškienėI. StasevychM. ZvarychV. Komarovska-PorokhnyavetsO. NovikovV. BelyakovS. MickeviciusV. Synthesis and evaluation of the antibacterial, antioxidant activities of novel functionalized thiazole and bis(thiazol-5-yl)methane derivatives.ARKIVOC20182018324025610.24820/ark.5550190.p010.159
    [Google Scholar]
  170. Kumar BabaN.H. AshokD. RaoB.A. SarasijaM. MurthyN.Y.S. Microwave Assisted Synthesis and Biological Activity of Novel Bis2-[2-(substituted benzylidene)hydrazinyl]thiazole Derivatives.Russ. J. Gen. Chem.201888358058610.1134/S1070363218030301
    [Google Scholar]
  171. ParviziJ. MahmoodiN.O. PirbastiF.G. Sequential one‐pot multicomponent synthesis of bis‐aminothiazols and evaluation of their antibacterial and antioxidant activities.J. Chin. Chem. Soc. (Taipei)201966331632410.1002/jccs.201800140
    [Google Scholar]
  172. MahmoudH.K. AbbasA.A. GomhaS.M. Synthesis, antimicrobial evaluation and molecular docking of new functionalized bis(1,3,4-thiadiazole) and bis(thiazole) derivatives.Polycycl. Aromat. Compd.20214192029204110.1080/10406638.2019.1709085
    [Google Scholar]
  173. AlthagafiI. El-MetwalyN. FarghalyT.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking.Molecules2019249174110.3390/molecules24091741 31060260
    [Google Scholar]
  174. KassabR.M. GomhaS.M. Al-HussainS.A. Abo DenaA.S. Abdel-AzizM.M. ZakiM.E.A. MuhammadZ.A. Synthesis and in-silico simulation of some new bis-thiazole derivatives and their preliminary antimicrobial profile: Investigation of hydrazonoyl chloride addition to hydroxy-functionalized bis-carbazones.Arab. J. Chem.2021141110339610.1016/j.arabjc.2021.103396
    [Google Scholar]
  175. NalawadeJ. Synthesis and Antimicrobial Evaluation of Novel 2′-Aryl-4-Aryl-2, 4′-Bisthiazole and 2′-Aryl-4-Pyridyl-2, 4′-Bisthiazole Derivatives as Potential Antibacterial Agents.Polycycl. Aromat. Compd.202311510.1080/10406638.2023.2180524
    [Google Scholar]
  176. PivovarovaE. ClimovaA. ŚwiątkowskiM. StaszewskiM. WalczyńskiK. DzięgielewskiM. BauerM. KamyszW. KrześlakA. JóźwiakP. CzylkowskaA. Synthesis and biological evaluation of thiazole-based derivatives with potential against breast cancer and antimicrobial agents.Int. J. Mol. Sci.20222317984410.3390/ijms23179844 36077257
    [Google Scholar]
  177. KhalilA. AdamM.S.S. Bimetallic bis-aroyldihydrazone-isatin complexes of high O=V(IV) and low Cu(II) valent ions as effective biological reagents for antimicrobial and anticancer assays.Molecules202429241410.3390/molecules29020414 38257327
    [Google Scholar]
  178. EbenezerO. Singh-PillayA. KoorbanallyN.A. SinghP. Antibacterial evaluation and molecular docking studies of pyrazole–thiosemicarbazones and their pyrazole–thiazolidinone conjugates.Mol. Divers.202125119120410.1007/s11030‑020‑10046‑w 32086698
    [Google Scholar]
  179. RusuA. MogaI.M. UncuL. HancuG. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy.Pharmaceutics20231511255410.3390/pharmaceutics15112554 38004534
    [Google Scholar]
  180. DesaiN.C. HarsoraJ.P. MonaparaJ.D. KhedkarV.M. Synthesis, antimicrobial capability and molecular docking of heterocyclic scaffolds clubbed by 2-azetidinone, thiazole and quinoline derivatives.Polycycl. Aromat. Compd.20224273924393810.1080/10406638.2021.1877747
    [Google Scholar]
  181. AyatiA. EmamiS. AsadipourA. ShafieeA. ForoumadiA. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery.Eur. J. Med. Chem.20159769971810.1016/j.ejmech.2015.04.015 25934508
    [Google Scholar]
  182. AroraP. NarangR. NayakS.K. SinghS.K. JudgeV. 2,4-Disubstituted thiazoles as multitargated bioactive molecules.Med. Chem. Res.20162591717174310.1007/s00044‑016‑1610‑2
    [Google Scholar]
  183. CampaniçoA. MoreiraR. LopesF. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents.Eur. J. Med. Chem.201815052554510.1016/j.ejmech.2018.03.020 29549838
    [Google Scholar]
  184. QuB. LuoY. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors – A review.Int. J. Biol. Macromol.202015243744810.1016/j.ijbiomac.2020.02.240 32097742
    [Google Scholar]
  185. VargheseM. BalachandranM. Antibacterial efficiency of carbon dots against Gram-positive and Gram-negative bacteria: A review.J. Environ. Chem. Eng.20219610682110.1016/j.jece.2021.106821
    [Google Scholar]
  186. LobiucA. PavălN.E. MangalagiuI.I. GheorghițăR. TelibanG.C. Amăriucăi-MantuD. StoleruV. Future Antimicrobials: Natural and Functionalized Phenolics.Molecules2023283111410.3390/molecules28031114 36770780
    [Google Scholar]
  187. ArdeanC. DavidescuC.M. NemeşN.S. NegreaA. CiopecM. DuteanuN. NegreaP. Duda-SeimanD. MustaV. Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization.Int. J. Mol. Sci.20212214744910.3390/ijms22147449 34299068
    [Google Scholar]
  188. AbbottoE. CasiniB. PiacenteF. ScaranoN. CerriE. TonelliM. AstigianoC. MilloE. SturlaL. BruzzoneS. CicheroE. Novel thiazole-based SIRT2 inhibitors discovered via molecular modelling studies and enzymatic assays.Pharmaceuticals (Basel)2023169131610.3390/ph16091316 37765125
    [Google Scholar]
  189. ZhaoW.H. XuJ.H. TangadanchuV.K.R. ZhouC.H. Thiazolyl hydrazineylidenyl indolones as unique potential multitargeting broad-spectrum antimicrobial agents.Eur. J. Med. Chem.202325611545210.1016/j.ejmech.2023.115452 37167780
    [Google Scholar]
  190. ZhangZ. ShuB. ZhangY. DeoraG.S. LiQ.S. 2,4,5-trisubstituted thiazole: A privileged scaffold in drug design and activity improvement.Curr. Top. Med. Chem.202020282535257710.2174/1568026620999200917153856 32942975
    [Google Scholar]
  191. TripathiA.C. GuptaS.J. FatimaG.N. SonarP.K. VermaA. SarafS.K. 4-Thiazolidinones: The advances continue….Eur. J. Med. Chem.201472527710.1016/j.ejmech.2013.11.017 24355348
    [Google Scholar]
  192. MakJ.Y.W. XuW. FairlieD.P. Thiazoles in Peptides and Peptidomimetics.Pept.2017I23526610.1007/7081_2015_176
    [Google Scholar]
  193. AkombaetwaN. IlangalaA.B. ThomL. MemvangaP.B. WitikaB.A. BuyaA.B. Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications.Pharmaceutics202315265610.3390/pharmaceutics15020656 36839978
    [Google Scholar]
  194. LiuC. DongS. WangX. XuH. LiuC. YangX. WuS. JiangX. KanM. XuC. Research progress of polyphenols in nanoformulations for antibacterial application.Mater. Today Bio20232110072910.1016/j.mtbio.2023.100729 37529216
    [Google Scholar]
  195. RaniP. Kiran ChahalS. Priyanka KatariaR. KumarP. KumarS. SindhuJ. Unravelling the thermodynamics and binding interactions of bovine serum albumin (BSA) with thiazole based carbohydrazide: Multi-spectroscopic, DFT and molecular dynamics approach.J. Mol. Struct.2022127013393910.1016/j.molstruc.2022.133939
    [Google Scholar]
  196. VaghasiyaM.D. MendaparaJ.V. AhmadI. PatelH. RajaniD.P. KumariP. Development of novel thiazole-based hybrids as DNA gyrase inhibitors: Design, synthesis, in silico and in vitro antibacterial evaluation. J. Iran Cham.Soc.2024211531154510.1007/s13738‑024‑03011‑z
    [Google Scholar]
  197. FrijaL.M.T. PombeiroA.J.L. KopylovichM.N. Coordination chemistry of thiazoles, isothiazoles and thiadiazoles.Coord. Chem. Rev.2016308325510.1016/j.ccr.2015.10.003
    [Google Scholar]
  198. MartinsP. JesusJ. SantosS. RaposoL. Roma-RodriguesC. BaptistaP. FernandesA. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box.Molecules2015209168521689110.3390/molecules200916852 26389876
    [Google Scholar]
  199. WellemanI.M. HoorensM.W.H. FeringaB.L. BoersmaH.H. SzymańskiW. Photoresponsive molecular tools for emerging applications of light in medicine.Chem. Sci. (Camb.)20201143116721169110.1039/D0SC04187D 34094410
    [Google Scholar]
  200. AcharyP.G.R. Applications of quantitative structure-activity relationships (QSAR) based virtual screening in drug design: A review.Mini Rev. Med. Chem.202020141375138810.2174/1389557520666200429102334 32348219
    [Google Scholar]
  201. HaoM. ZhangX. RenH. LiY. ZhangS. LuoF. JiM. LiG. YangL. In silico identification of structure requirement for novel thiazole and oxazole derivatives as potent fructose 1,6-bisphosphatase inhibitors.Int. J. Mol. Sci.201112118161818010.3390/ijms12118161 22174657
    [Google Scholar]
  202. MermerA. The role of machine learning method in the synthesis and biological ınvestigation of heterocyclic compounds.Mol. Divers.20222631875189210.1007/s11030‑021‑10264‑w 34669112
    [Google Scholar]
  203. DaouiO. ElkhattabiS. ChtitaS. Rational design of novel pyridine-based drugs candidates for lymphoma therapy.J. Mol. Struct.2022127013396410.1016/j.molstruc.2022.133964
    [Google Scholar]
  204. WuY. HuoD. ChenG. YanA. SAR and QSAR research on tyrosinase inhibitors using machine learning methods.SAR QSAR Environ. Res.20213228511010.1080/1062936X.2020.1862297 33517778
    [Google Scholar]
  205. VyasV.K. BhatiS. PatelS. GhateM. Structure- and ligand-based drug design methods for the modeling of antimalarial agents: a review of updates from 2012 onwards.J. Biomol. Struct. Dyn.20224020104811050610.1080/07391102.2021.1932598 34129805
    [Google Scholar]
  206. BremnerJ. Single Molecule Non-cleavable Multiply Active Antibacterials.Multiple Action-Based Design Approaches to Antibacterials.SingaporeSpringer202110.1007/978‑981‑16‑0999‑2_3
    [Google Scholar]
  207. LeitãoM.M. VieiraT.F. SousaS.F. BorgesF. SimõesM. BorgesA. Dual action of benzaldehydes: Inhibiting quorum sensing and enhancing antibiotic efficacy for controlling Pseudomonas aeruginosa biofilms.Microb. Pathog.202419110666310.1016/j.micpath.2024.106663 38679246
    [Google Scholar]
  208. Mohi-ud-din, R.; Chawla, A.; Sharma, P.; Mir, P.A.; Potoo, F.H.; Reiner, Ž.; Reiner, I.; Ateşşahin, D.A.; Sharifi-Rad, J.; Mir, R.H.; Calina, D. Repurposing approved non-oncology drugs for cancer therapy: A comprehensive review of mechanisms, efficacy, and clinical prospects.Eur. J. Med. Res.202328134510.1186/s40001‑023‑01275‑4 37710280
    [Google Scholar]
  209. KirtoniaA. GalaK. FernandesS.G. PandyaG. PandeyA.K. SethiG. KhattarE. GargM. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics.Semin. Cancer Biol.20216825827810.1016/j.semcancer.2020.04.006 32380233
    [Google Scholar]
  210. DahiyaR. DahiyaS. FuloriaN.K. JankieS. AgarwalA. DavisV. SahadeoV. RadhayV. RamsubhagY. MullingsW. LangfordZ. BedassieZ. FuloriaS. Natural thiazoline-based cyclodepsipeptides from marine cyanobacteria: Chemistry, bioefficiency and clinical aspects.Curr. Med. Chem.202128387887790910.2174/0929867328666210526095436 34042024
    [Google Scholar]
  211. YuQ. WangC. ZhangX. ChenH. WuM.X. LuM. Photochemical strategies toward precision targeting against multidrug-resistant bacterial infections.ACS Nano20241822140851412210.1021/acsnano.3c12714 38775446
    [Google Scholar]
  212. ChenJ. WangW. HuX. YueY. LuX. WangC. WeiB. ZhangH. WangH. Medium-sized peptides from microbial sources with potential for antibacterial drug development.Nat. Prod. Rep.20244181235126310.1039/D4NP00002A 38651516
    [Google Scholar]
  213. LangendonkR.F. NeillD.R. FothergillJ.L. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: Implications for current resistance-breaking therapies.Front. Cell. Infect. Microbiol.20211166575910.3389/fcimb.2021.665759 33937104
    [Google Scholar]
  214. SharmaD. BansalK.K. SharmaA. PathakM. SharmaP.C. A brief literature and review of patents on thiazole related derivatives.Curr. Bioact. Compd.201915330431510.2174/1573407214666180827094725
    [Google Scholar]
  215. MorigiR. LocatelliA. LeoniA. RambaldiM. Recent patents on thiazole derivatives endowed with antitumor activity.Rec. Pat. Anticancer Drug Discov.201510328029710.2174/1574892810666150708110432 26152151
    [Google Scholar]
  216. Al-AwsiG.R.L. AlameriA.A. Al-DhalimyA.M.B. GabrG.A. KianfarE. Application of nano-antibiotics in the diagnosis and treatment of infectious diseases.Braz. J. Biol.202484e26494610.1590/1519‑6984.264946 36722677
    [Google Scholar]
  217. DasB. BaidyaA.T.K. MathewA.T. YadavA.K. KumarR. Structural modification aimed for improving solubility of lead compounds in early phase drug discovery.Bioorg. Med. Chem.20225611661410.1016/j.bmc.2022.116614 35033884
    [Google Scholar]
  218. VargasonA.M. AnselmoA.C. MitragotriS. The evolution of commercial drug delivery technologies.Nat. Biomed. Eng.20215995196710.1038/s41551‑021‑00698‑w 33795852
    [Google Scholar]
  219. AbetV. FilaceF. RecioJ. Alvarez-BuillaJ. BurgosC. Prodrug approach: An overview of recent cases.Eur. J. Med. Chem.201712781082710.1016/j.ejmech.2016.10.061 27823878
    [Google Scholar]
  220. RealD.A. BolañosK. PriottiJ. YutronicN. KoganM.J. SierpeR. Donoso-GonzálezO. Cyclodextrin-modified nanomaterials for drug delivery: Classification and advances in controlled release and bioavailability.Pharmaceutics20211312213110.3390/pharmaceutics13122131 34959412
    [Google Scholar]
  221. ZhangP.L. LavanyaG. YuY. FangB. ZhouC.H. Identification of a novel antifungal backbone of naphthalimide thiazoles with synergistic potential for chemical and dynamic treatment.Future Med. Chem.202113232047206710.4155/fmc‑2021‑0162 34672778
    [Google Scholar]
  222. HusseinA.M. GomhaS.M. El-GhanyN.A.A. ZakiM.E.A. FaragB. Al-HussainS.A. SayedA.R. ZakiY.H. MohamedN.A. Green biocatalyst for ultrasound-assisted thiazole derivatives: Synthesis, antibacterial evaluation, and docking analysis.ACS Omega2024912136661367910.1021/acsomega.3c07785 38559991
    [Google Scholar]
  223. Sahil; Kaur, K.; Jaitak, V. Thiazole and related heterocyclic systems as anticancer agents: A review on synthetic strategies, mechanisms of Action and SAR studies.Curr. Med. Chem.202229294958500910.2174/0929867329666220318100019 35306982
    [Google Scholar]
  224. ZhouJ. HuangX. ZhangZ. SongP. LiY. Trypsin -catalyzed multicomponent reaction: A novel and efficient one-pot synthesis of thiazole-2-imine derivatives.J. Biotechnol.2017241142110.1016/j.jbiotec.2016.11.004 27825826
    [Google Scholar]
  225. Al-HumaidiJ.Y. GomhaS.M. El-GhanyN.A.A. FaragB. ZakiM.E.A. AbolibdaT.Z. MohamedN.A. Green Synthesis and Molecular Docking Study of Some New Thiazoles Using Terephthalohydrazide Chitosan Hydrogel as Ecofriendly Biopolymeric Catalyst.Catalysts2023139131110.3390/catal13091311
    [Google Scholar]
  226. TratratC. Novel thiazole-based thiazolidinones as potent anti-infective agents: In silico PASS and toxicity prediction, synthesis, biological evaluation and molecular modelling.Comb. Chem. High Throughput Screen.202023212614010.2174/1386207323666200127115238 31985370
    [Google Scholar]
  227. ZhangH.Z. GanL.L. WangH. ZhouC.H. New Progress in Azole Compounds as Antimicrobial Agents.Mini Rev. Med. Chem.201617212216610.2174/1389557516666160630120725 27484625
    [Google Scholar]
  228. ArshadM.F. AlamA. AlshammariA.A. AlhazzaM.B. AlzimamI.M. AlamM.A. MustafaG. AnsariM.S. AlotaibiA.M. AlotaibiA.A. KumarS. AsdaqS.M.B. ImranM. DebP.K. VenugopalaK.N. JomahS. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents.Molecules20222713399410.3390/molecules27133994 35807236
    [Google Scholar]
  229. BrooksL.A. The Chemistry of Thiazoles and Dithiocarbamates as Antioxidants.Rubber Chem. Technol.196336488791010.5254/1.3539639
    [Google Scholar]
  230. VoelkerA.L. TaylorL.S. MauerL.J. Effect of pH and concentration on the chemical stability and reaction kinetics of thiamine mononitrate and thiamine chloride hydrochloride in solution.BMC Chem.20211514710.1186/s13065‑021‑00773‑y 34384471
    [Google Scholar]
  231. ShindeR.R. DhawaleS.A. FarooquiM. Design, synthesis, and anti-microbial study of ethyl 2-(n-(substituted-phenyl) sulfamoyl) thiazole-4-carboxylate derivatives.Chem. Biol. Interact.202010619
    [Google Scholar]
  232. BorceaA.M. IonuțI. CrișanO. OnigaO. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives.Molecules202126362410.3390/molecules26030624 33504100
    [Google Scholar]
  233. MohammadH. ReddyP.V.N. MonteleoneD. MayhoubA.S. CushmanM. HammacG.K. SeleemM.N. Antibacterial characterization of novel synthetic thiazole compounds against Methicillin-Resistant Staphylococcus pseudintermedius.PLoS One2015106e013038510.1371/journal.pone.0130385 26086336
    [Google Scholar]
  234. ElAwamyM. MohammadH. HussienA. AbutalebN.S. HagrasM. SeryaR.A.T. TaherA.T. AbouzidK.A.M. SeleemM.N. MayhoubA.S. Alkoxyphenylthiazoles with broad-spectrum activity against multidrug-resistant gram-positive bacterial pathogens.Eur. J. Med. Chem.201815231832810.1016/j.ejmech.2018.04.049 29734000
    [Google Scholar]
  235. MohammadH. MayhoubA.S. CushmanM. SeleemM.N. Anti-biofilm activity and synergism of novel thiazole compounds with glycopeptide antibiotics against multidrug-resistant Staphylococci.J. Antibiot. (Tokyo)201568425926610.1038/ja.2014.142 25315757
    [Google Scholar]
  236. HagrasM. AbutalebN.S. AliA.O. Abdel-AleemJ.A. ElsebaeiM.M. SeleemM.N. MayhoubA.S. Naphthylthiazoles: Targeting multidrug-resistant and intracellular staphylococcus aureus with biofilm disruption activity.ACS Infect. Dis.20184121679169110.1021/acsinfecdis.8b00172 30247876
    [Google Scholar]
  237. LowrenceR.C. RamanT. MakalaH.V. UlaganathanV. SubramaniapillaiS.G. KuppuswamyA.A. ManiA. Chittoor NeelakantanS. NagarajanS. Dithiazole thione derivative as competitive NorA efflux pump inhibitor to curtail multi drug resistant clinical isolate of MRSA in a zebrafish infection model.Appl. Microbiol. Biotechnol.2016100219265928110.1007/s00253‑016‑7759‑2 27531512
    [Google Scholar]
  238. BhardwajV. Design, Synthesis and Applications of Novel Supramolecular Assemblies.IndiaMaharaja Sayajirao University of Baroda2022
    [Google Scholar]
  239. Harun-Ur-RashidM. JahanI. IslamM.J. KumerA. HudaM.N. ImranA.B. GouadriaS. AlsalhiS.A. Global advances and smart innovations in supramolecular polymers.J. Mol. Struct.2024130413766510.1016/j.molstruc.2024.137665
    [Google Scholar]
  240. ShahinI.G. AbutalebN.S. AlhashimiM. KassabA.E. MohamedK.O. TaherA.T. SeleemM.N. MayhoubA.S. Evaluation of N-phenyl-2-aminothiazoles for treatment of multi-drug resistant and intracellular Staphylococcus aureus infections.Eur. J. Med. Chem.202020211249710.1016/j.ejmech.2020.112497 32707373
    [Google Scholar]
  241. ZhangL. PengX.M. DamuG.L.V. GengR.X. ZhouC.H. Comprehensive review in current developments of imidazole-based medicinal chemistry.Med. Res. Rev.201434234043710.1002/med.21290 23740514
    [Google Scholar]
  242. LiC.M. ChenJ. LuY. NarayananR. ParkeD.N. LiW. AhnS. MillerD.D. DaltonJ.T. Pharmacokinetic optimization of 4-substituted methoxybenzoyl-aryl-thiazole and 2-aryl-4-benzoyl-imidazole for improving oral bioavailability.Drug Metab. Dispos.201139101833183910.1124/dmd.110.036616 21742898
    [Google Scholar]
  243. LeoniA. LocatelliA. MorigiR. RambaldiM. Novel thiazole derivatives: a patent review (2008 – 2012; Part 1).Expert Opin. Ther. Pat.201424220121610.1517/13543776.2014.858121 24215328
    [Google Scholar]
  244. PucekA. TokarekB. WaglewskaE. BazylińskaU. Recent Advances in the Structural Design of Photosensitive Agent Formulations Using “Soft” Colloidal Nanocarriers.Pharmaceutics202012658710.3390/pharmaceutics12060587 32599791
    [Google Scholar]
  245. IraciN. CorsaroC. GiofrèS.V. NeriG. MezzasalmaA.M. VacalebreM. SpecialeA. SaijaA. CiminoF. FazioE. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs.Biomolecules2022128106010.3390/biom12081060 36008954
    [Google Scholar]
  246. DwivediB.K. ArnoldR.G. Chemistry of thiamine degradation on food products and model systems.ReviewJ. Agric. Food Chem.1973211546010.1021/jf60185a004 4565919
    [Google Scholar]
  247. OttawayP.B. Stability of Vitamins During Food Processing and Storage. Chemical Deterioration and Physical Instability of Food and Beverages.Elsevier201053956010.1533/9781845699260.3.539
    [Google Scholar]
  248. WuY.J. MeanwellN.A. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design.J. Med. Chem.202164149786987410.1021/acs.jmedchem.1c00790 34213340
    [Google Scholar]
  249. VoelkerA.L. MillerJ. RunningC.A. TaylorL.S. MauerL.J. Chemical stability and reaction kinetics of two thiamine salts (thiamine mononitrate and thiamine chloride hydrochloride) in solution.Food Res. Int.201811244345610.1016/j.foodres.2018.06.056 30131156
    [Google Scholar]
  250. HammadA. AbutalebN.S. ElsebaeiM.M. NorvilA.B. AlswahM. AliA.O. Abdel-AleemJ.A. AlattarA. BayoumiS.A. GowherH. SeleemM.N. MayhoubA.S. From Phenylthiazoles to Phenylpyrazoles: Broadening the Antibacterial Spectrum toward Carbapenem-Resistant Bacteria.J. Med. Chem.201962177998801010.1021/acs.jmedchem.9b00720 31369262
    [Google Scholar]
  251. AutiP.S. GeorgeG. PaulA.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids.RSC Advances20201068413534139210.1039/D0RA06642G 35516563
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266334873250316102556
Loading
/content/journals/ctmc/10.2174/0115680266334873250316102556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test