Skip to content
2000
image of Recent Advances in Di-, Tri-Substituted Mono-Thiazoles, and Bis-Thiazoles: Factors Affecting Biological Activities, Future Aspects, and Challenges

Abstract

Thiazole, a five-membered heterocycle containing sulfur and nitrogen, is a pivotal component in the design and synthesis of organic derivatives. Its prevalence in natural sources and its integral role in the structure of drug molecules has made it a focal point for researchers. In this study, we compiled and reviewed research from the past decade and categorized the synthesized thiazole compounds into three groups (di-substituted mono-thiazoles, tri-substituted mono-thiazoles, and bis-thiazoles) based on how the substituents are attached to the thiazole scaffold and additionally discussed the different techniques used by researchers to measure the antimicrobial activity of newly created compounds. Additionally, we discussed various methodologies employed to assess the antimicrobial efficacy of related compounds, aiming to validate the potency of these compounds. This research holds promise in aiding the development of antibiotic replacement amidst the antibiotic resistance crisis, consolidating knowledge of antimicrobial properties of thiazole-based compounds and their potential in combating antibiotic resistance.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266334873250316102556
2025-03-28
2025-10-08
Loading full text...

Full text loading...

References

  1. Praveen A.S. Yathirajan H.S. Narayana B. Sarojini B.K. Synthesis, characterization and antimicrobial studies of a few novel thiazole derivatives. Med. Chem. Res. 2014 23 1 259 268 10.1007/s00044‑013‑0629‑x
    [Google Scholar]
  2. Chugh V. Pandey G. Rautela R. Mohan C. Heterocyclic compounds containing thiazole ring as important material in medicinal chemistry. Mater. Today Proc. 2022 69 478 481 10.1016/j.matpr.2022.09.150
    [Google Scholar]
  3. Kumawat M.K. Thiazole containing heterocycles with antimalarial activity. Curr. Drug Discov. Technol. 2018 15 3 196 200 10.2174/1570163814666170725114159 28745209
    [Google Scholar]
  4. Pola S. Significance of thiazole-based heterocycles for bioactive systems. Scope Sel. Heterocycles Org. Pharm. Perspect. 2016 1 13 62 10.5772/62077
    [Google Scholar]
  5. Qureshi A. Pradhan A. Short review on thiazole derivative. J. Drug Deliv. Ther. 2019 9 4-A 842 847
    [Google Scholar]
  6. Shukla A.P. Verma V. A systematic review on thiazole synthesis and biological activities. Educ. Adm. Theory Pract. 2024 30 5 4444 4457
    [Google Scholar]
  7. Kumari G. Dhillon S. Rani P. Chahal M. Aneja D.K. Kinger M. Development in the synthesis of bioactive thiazole-based heterocyclic hybrids utilizing phenacyl bromide. ACS Omega 2024 9 17 18709 18746 10.1021/acsomega.3c10299 38708256
    [Google Scholar]
  8. Mishra C.B. Kumari S. Tiwari M. Thiazole: A promising heterocycle for the development of potent CNS active agents. Eur. J. Med. Chem. 2015 92 1 34 10.1016/j.ejmech.2014.12.031 25544146
    [Google Scholar]
  9. Makhova N.N. Belen’kii L.I. Gazieva G.A. Dalinger I.L. Konstantinova L.S. Kuznetsov V.V. Kravchenko A.N. Krayushkin M.M. Rakitin O.A. Starosotnikov A.M. Fershtat L.L. Shevelev S.A. Shirinian V.Z. Yarovenko V.N. Progress in the chemistry of nitrogen-, oxygen- and sulfur-containing heterocyclic systems. Russ. Chem. Rev. 2020 89 1 55 124 10.1070/RCR4914
    [Google Scholar]
  10. Arora P. Arora V. Lamba H.S. Wadhwa D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res. 2012 3 9 2947
    [Google Scholar]
  11. Pathania S. Narang R.K. Rawal R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 2019 180 486 508 10.1016/j.ejmech.2019.07.043 31330449
    [Google Scholar]
  12. Kassab A.E. Gedawy E.M. Sayed A.S. Fused thiophene as a privileged scaffold: A review on anti-Alzheimer’s disease potentials via targeting cholinesterases, monoamine oxidases, glycogen synthase kinase-3, and Aβ aggregation. Int. J. Biol. Macromol. 2024 265 Pt 2 131018 10.1016/j.ijbiomac.2024.131018 38518928
    [Google Scholar]
  13. Niu Z.X. Wang Y.T. Zhang S.N. Li Y. Chen X.B. Wang S.Q. Liu H.M. Application and synthesis of thiazole ring in clinically approved drugs. Eur. J. Med. Chem. 2023 250 115172 10.1016/j.ejmech.2023.115172 36758304
    [Google Scholar]
  14. Cook A.H. Heilbron I. MacDonald S.F. Mahadevan A.P. Synthesis and cytotoxicity evaluation of thiazole derivatives obtained from 2-Amino-4,5,6,7-Tetrahydrobenzo[b]Thiophene-3-Carbonitrile. J. Chem. Soc. 1949 67 1064 1068 10.1039/jr9490001064
    [Google Scholar]
  15. Nayak S. Gaonkar S.L. A review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives. Mini Rev. Med. Chem. 2019 19 3 215 238 10.2174/1389557518666180816112151 30112994
    [Google Scholar]
  16. Mishra R. Sharma P.K. Verma P.K. Tomer I. Mathur G. Dhakad P.K. Biological potential of thiazole derivatives of synthetic origin. J. Heterocycl. Chem. 2017 54 4 2103 2116 10.1002/jhet.2827
    [Google Scholar]
  17. Ryabinin V.A. Sinyakov A.N. de Soultrait V.R. Caumont A. Parissi V. Zakharova O.D. Vasyutina E.L. Yurchenko E. Bayandin R. Litvak S. Tarrago-Litvak L. Nevinsky G.A. Inhibition of HIV-1 integrase-catalysed reaction by new DNA minor groove ligands: The oligo-1,3-thiazolecarboxamide derivatives. Eur. J. Med. Chem. 2000 35 11 989 1000 10.1016/S0223‑5234(00)01181‑8 11137227
    [Google Scholar]
  18. Sebastian L. Desai A. Shampur M.N. Perumal Y. Sriram D. Vasanthapuram R. N-methylisatin-beta-thiosemicarbazone derivative (SCH 16) is an inhibitor of Japanese encephalitis virus infection in vitro and in vivo. Virol. J. 2008 5 1 64 10.1186/1743‑422X‑5‑64 18498627
    [Google Scholar]
  19. Qin Y.J. Wang P.F. Makawana J.A. Wang Z.C. Wang Z.N. Yan-Gu Jiang A.Q. Zhu H.L. Design, synthesis and biological evaluation of metronidazole–thiazole derivatives as antibacterial inhibitors. Bioorg. Med. Chem. Lett. 2014 24 22 5279 5283 10.1016/j.bmcl.2014.09.054 25587588
    [Google Scholar]
  20. Guan Z.R. Liu Z.M. Wan Q. Ding M.W. One-pot four-component synthesis of polysubstituted thiazoles via cascade Ugi/Wittig cyclization starting from odorless Isocyano(triphenylphosphoranylidene)-acetates. Tetrahedron 2020 76 15 131101 10.1016/j.tet.2020.131101
    [Google Scholar]
  21. Bozdağ-Dündar O. Özgen Ö. Menteşe A. Altanlar N. Atlı O. Kendi E. Ertan R. Synthesis and antimicrobial activity of some new thiazolyl thiazolidine-2,4-dione derivatives. Bioorg. Med. Chem. 2007 15 18 6012 6017 10.1016/j.bmc.2007.06.049 17618124
    [Google Scholar]
  22. Bondock S. Khalifa W. Fadda A.A. Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3,4-dihydronaphthalene-2-carboxaldehyde. Eur. J. Med. Chem. 2007 42 7 948 954 10.1016/j.ejmech.2006.12.025 17316908
    [Google Scholar]
  23. de Aquino T.M. Liesen A.P. da Silva R.E.A. Lima V.T. Carvalho C.S. de Faria A.R. de Araújo J.M. de Lima J.G. Alves A.J. de Melo E.J.T. Góes A.J.S. Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids. Bioorg. Med. Chem. 2008 16 1 446 456 10.1016/j.bmc.2007.09.025 17905587
    [Google Scholar]
  24. Kaplancikli Z.A. Turan-Zitouni G. Revial G. Guven K. Synthesis and study of antibacterial and antifungal activities of Novel 2-[[(benzoxazole/benzimidazole-2-yl)sulfanyl] acetylamino]thiazoles. Arch. Pharm. Res. 2004 27 11 1081 1085 10.1007/BF02975108 15595406
    [Google Scholar]
  25. Turan-Zitouni G. Chevallet P. Kiliç F.S. Erol K. Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity. Eur. J. Med. Chem. 2000 35 6 635 641 10.1016/S0223‑5234(00)00152‑5 10906414
    [Google Scholar]
  26. Sowjanya C.H. Swamy S.S. Gomathi S. Babu A.K. Synthesis, chemistry, and antihypertensive activity of some new thiazole-thiadiazole derivatives. Int. J. Adv. Res. Med. Pharm. Sci. 2016 1 6 10
    [Google Scholar]
  27. Sinha S. Doble M. Manju S.L. Design, synthesis and identification of novel substituted 2-amino thiazole analogues as potential anti-inflammatory agents targeting 5-lipoxygenase. Eur. J. Med. Chem. 2018 158 34 50 10.1016/j.ejmech.2018.08.098 30199704
    [Google Scholar]
  28. Kamble R.D. Meshram R.J. Hese S.V. More R.A. Kamble S.S. Gacche R.N. Dawane B.S. Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Comput. Biol. Chem. 2016 61 86 96 10.1016/j.compbiolchem.2016.01.007 26844536
    [Google Scholar]
  29. Mohareb R. Al-Omran F. Abdelaziz M. Ibrahim R. Anti-inflammatory and anti-ulcer activities of new fused thiazole derivatives derived from 2-(2-oxo-2H-chromen-3-yl)thiazol-4(5H)-one. Acta Chim. Slov. 2017 64 2 349 364 10.17344/acsi.2017.3200 28621395
    [Google Scholar]
  30. Muhammad Z.A. Masaret G.S. Amin M.M. Abdallah M.A. Farghaly T.A. Anti-inflammatory, analgesic and anti-ulcerogenic activities of novel bis-thiadiazoles, bis-thiazoles and bis-formazanes. Med. Chem. 2017 13 3 226 238 10.2174/1573406412666160920091146 27659119
    [Google Scholar]
  31. Tenório R.P. Carvalho C.S. Pessanha C.S. de Lima J.G. de Faria A.R. Alves A.J. de Melo E.J.T. Góes A.J.S. Synthesis of thiosemicarbazone and 4-thiazolidinone derivatives and their in vitro anti-Toxoplasma gondii activity. Bioorg. Med. Chem. Lett. 2005 15 10 2575 2578 10.1016/j.bmcl.2005.03.048 15863319
    [Google Scholar]
  32. Santos B. Gonzaga D. da Silva F. Ferreira V. Garcia C. Plasmodium falciparum knockout for the GPCR-like PfSR25 receptor displays greater susceptibility to 1,2,3-triazole compounds that block malaria parasite development. Biomolecules 2020 10 8 1197 10.3390/biom10081197 32824696
    [Google Scholar]
  33. Jaishree V. Ramdas N. Sachin J. Ramesh B. In vitro antioxidant properties of new thiazole derivatives. J. Saudi Chem. Soc. 2012 16 4 371 376 10.1016/j.jscs.2011.02.007
    [Google Scholar]
  34. Salar U. Khan K.M. Chigurupati S. Syed S. Vijayabalan S. Wadood A. Riaz M. Ghufran M. Perveen S. New hybrid scaffolds based on hydrazinyl thiazole substituted coumarin; as novel leads of dual potential; in vitro α-amylase inhibitory and antioxidant (DPPH and ABTS radical scavenging) activities. Med. Chem. 2019 15 1 87 101 10.2174/1573406414666180903162243 30179139
    [Google Scholar]
  35. Petrou A. Eleftheriou P. Geronikaki A. Akrivou M.G. Vizirianakis I. Novel thiazolidin-4-ones as potential non-nucleoside inhibitors of HIV-1 reverse transcriptase. Molecules 2019 24 21 3821 10.3390/molecules24213821 31652782
    [Google Scholar]
  36. Xu Z. Ba M. Zhou H. Cao Y. Tang C. Yang Y. He R. Liang Y. Zhang X. Li Z. Zhu L. Guo Y. Guo C. 2,4,5-Trisubstituted thiazole derivatives: A novel and potent class of non-nucleoside inhibitors of wild type and mutant HIV-1 reverse transcriptase. Eur. J. Med. Chem. 2014 85 27 42 10.1016/j.ejmech.2014.07.072 25072874
    [Google Scholar]
  37. Kaur H. Goyal A. A review on thiazole as anticancer agents. Int J Pharm Drug Anal 2018 6 5 509 522 Available from: http://ijpda.com/
    [Google Scholar]
  38. Ghabbour H.A. Kadi A.A. ElTahir K.E.H. Angawi R.F. El-Subbagh H.I. Synthesis, biological evaluation and molecular docking studies of thiazole-based pyrrolidinones and isoindolinediones as anticonvulsant agents. Med. Chem. Res. 2015 24 8 3194 3211 10.1007/s00044‑015‑1371‑3
    [Google Scholar]
  39. Łączkowski K.Z. Biernasiuk A. Baranowska-Łączkowska A. Zielińska S. Sałat K. Furgała A. Misiura K. Malm A. Synthesis, antimicrobial and anticonvulsant screening of small library of tetrahydro-2H-thiopyran-4-yl based thiazoles and selenazoles. J Enzyme Inhib Med Chem. 2016 31 sup2 24 39 10.1080/14756366.2016.1186020 27193505
    [Google Scholar]
  40. Siddiqui A.A. Partap S. Khisal S. Yar M.S. Mishra R. Synthesis, anti-convulsant activity and molecular docking study of novel thiazole pyridazinone hybrid analogues. Bioorg. Chem. 2020 99 103584 10.1016/j.bioorg.2020.103584 32229345
    [Google Scholar]
  41. Mjambili F. Njoroge M. Naran K. De Kock C. Smith P.J. Mizrahi V. Warner D. Chibale K. Naicker T. Chibale K. Bode M.L. Synthesis and biological evaluation of 2-aminothiazole derivatives as antimycobacterial and antiplasmodial agents. Bioorg. Med. Chem. Lett. 2014 24 2 560 564 10.1016/j.bmcl.2013.12.022 24373723
    [Google Scholar]
  42. Iino T. Hashimoto N. Sasaki K. Ohyama S. Yoshimoto R. Hosaka H. Hasegawa T. Chiba M. Nagata Y. Eiki J. Nishimura T. Structure–activity relationships of 3,5-disubstituted benzamides as glucokinase activators with potent in vivo efficacy. Bioorg. Med. Chem. 2009 17 11 3800 3809 10.1016/j.bmc.2009.04.040 19427223
    [Google Scholar]
  43. Gallardo-Godoy A. Gever J. Fife K.L. Silber B.M. Prusiner S.B. Renslo A.R. 2-Aminothiazoles as therapeutic leads for prion diseases. J. Med. Chem. 2011 54 4 1010 1021 10.1021/jm101250y 21247166
    [Google Scholar]
  44. Brito C.C.B. Silva H.V.C. Brondani D.J. Faria A.R. Ximenes R.M. Silva I.M. Albuquerque J.F.C. Castilho M.S. Scotti L. Scotti M.T. Alves R.J. Ferreira J.L.P. Synthesis and biological evaluation of thiazole derivatives as Lb SOD inhibitors. J. Enzyme Inhib. Med. Chem. 2019 34 1 333 342 10.1080/14756366.2018.1550752 30734600
    [Google Scholar]
  45. Rodrigues C.A. dos Santos P.F. da Costa M.O.L. Pavani T.F.A. Xander P. Geraldo M.M. Mengarda A. de Moraes J. Rando D.G.G. Ferreira J.L.P. 4-Phenyl-1,3-thiazole-2-amines as scaffolds for new antileishmanial agents. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018 24 1 26 10.1186/s40409‑018‑0163‑x 30214457
    [Google Scholar]
  46. Liaras K. Fesatidou M. Geronikaki A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules 2018 23 3 685 10.3390/molecules23030685 29562646
    [Google Scholar]
  47. Jacob P J. Manju S.L. Identification and development of thiazole leads as COX-2/5-LOX inhibitors through in-vitro and in-vivo biological evaluation for anti-inflammatory activity. Bioorg. Chem. 2020 100 103882 10.1016/j.bioorg.2020.103882 32361295
    [Google Scholar]
  48. Rosada B. Bekier A. Cytarska J. Płaziński W. Zavyalova O. Sikora A. Dzitko K. Łączkowski K.Z. Oldfield E. Rodríguez A. Benzo[b]thiophene-thiazoles as potent anti-Toxoplasma gondii agents: Design, synthesis, tyrosinase/tyrosine hydroxylase inhibitors, molecular docking study, and antioxidant activity. Eur. J. Med. Chem. 2019 184 111765 10.1016/j.ejmech.2019.111765 31629163
    [Google Scholar]
  49. Hencken C.P. Jones-Brando L. Bordón C. Stohler R. Mott B.T. Yolken R. Posner G.H. Woodard L.E. Anker I. Halldén C. Nussenzweig V. Carroll K.S. John P.F. Renslo A.R. Thiazole, oxadiazole, and carboxamide derivatives of artemisinin are highly selective and potent inhibitors of Toxoplasma gondii. J. Med. Chem. 2010 53 9 3594 3601 10.1021/jm901857d 20373807
    [Google Scholar]
  50. Weikert R.J. Bingham S. Jr Emanuel M.A. Fraser-Smith E.B. Loughhead D.G. Nelson P.H. Poulton A.L. Synthesis and anthelmintic activity of 3′-benzoylurea derivatives of 6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole. J. Med. Chem. 1991 34 5 1630 1633 10.1021/jm00109a015 2033588
    [Google Scholar]
  51. Huuskonen M.T. Tuo Q. Loppi S. Dhungana H. Korhonen P. McInnes L.E. Donnelly P.S. Grubman A. Wojciechowski S. Lejavova K. Pomeshchik Y. Periviita L. Kosonen L. Giordano M. Walker F.R. Liu R. Bush A.I. Koistinaho J. Malm T. White A.R. Lei P. Kanninen K.M. The copper bis(thiosemicarbazone) complex CuII(atsm) is protective against cerebral ischemia through modulation of the inflammatory milieu. Neurotherapeutics 2017 14 2 519 532 10.1007/s13311‑016‑0504‑9 28050710
    [Google Scholar]
  52. Kumar G. Singh N.P. Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives. Bioorg. Chem. 2021 107 104608 10.1016/j.bioorg.2020.104608 33465668
    [Google Scholar]
  53. Andreani A. Rambaldi M. Mascellani G. Rugarli P. Synthesis and diuretic activity of imidazo[2,1-b]thiazole acetohydrazones. Eur. J. Med. Chem. 1987 22 1 19 22 10.1016/0223‑5234(87)90169‑3
    [Google Scholar]
  54. Pattan S.R. Raghavendra B.K. Thirumalai R.K. Manjunatha S.S. Channarayappa C. Synthesis and biological evaluation of some substituted amino thiazole derivatives. Asian J. Res. Chem 2009 2 2 196 201
    [Google Scholar]
  55. Ansari A. Ali A. Asif M. Rauf M.A. Owais M. Shamsuzzaman Facile one-pot multicomponent synthesis and molecular docking studies of steroidal oxazole/thiazole derivatives with effective antimicrobial, antibiofilm and hemolytic properties. Steroids 2018 134 22 36 10.1016/j.steroids.2018.04.003 29653115
    [Google Scholar]
  56. Monguchi D. Fujiwara T. Furukawa H. Mori A. Direct amination of azoles via catalytic C-H, N-H coupling. Org. Lett. 2009 11 7 1607 1610 10.1021/ol900298e 19254040
    [Google Scholar]
  57. Kiryanov A.A. Sampson P. Seed A.J. Synthesis of 2-alkoxy-substituted thiophenes, 1,3-thiazoles, and related S-heterocycles via Lawesson’s reagent-mediated cyclization under microwave irradiation: applications for liquid crystal synthesis. J. Org. Chem. 2001 66 23 7925 7929 10.1021/jo016063x 11701063
    [Google Scholar]
  58. Bach T. Heuser S. Synthesis of 2-(o-hydroxyaryl)-4-arylthiazoles by regioselective Pd(0)-catalyzed cross-coupling. Tetrahedron Lett. 2000 41 11 1707 1710 10.1016/S0040‑4039(00)00018‑6
    [Google Scholar]
  59. Van Zanten A.R.H. Oudijk M. Nohlmans-Paulssen M.K.E. Van Der Meer Y.G. Girbes A.R.J. Polderman K.H. Continuous vs. intermittent cefotaxime administration in patients with chronic obstructive pulmonary disease and respiratory tract infections: pharmacokinetics/pharmacodynamics, bacterial susceptibility and clinical efficacy. Br. J. Clin. Pharmacol. 2007 63 1 100 109 10.1111/j.1365‑2125.2006.02730.x 16869814
    [Google Scholar]
  60. Sweet R.L. Treatment of acute pelvic inflammatory disease. Infect. Dis. Obstet. Gynecol. 2011 2011 1 13 10.1155/2011/561909 22228985
    [Google Scholar]
  61. Dagher H. Hachem R. Chaftari A.M. Jiang Y. Ali S. Deeba R. Shah S. Raad I. Strychacz M. Khumalo Z. Anwar Z. Shannon K. Lopez D. Waldman M. Real-world use of isavuconazole as primary therapy for invasive fungal infections in high-risk patients with hematologic malignancy or stem cell transplant. J. Fungi (Basel) 2022 8 1 74 10.3390/jof8010074 35050014
    [Google Scholar]
  62. Petrakis V. Rafailidis P. Trypsianis G. Papazoglou D. Panagopoulos P. The antiviral effect of nirmatrelvir/ritonavir during COVID-19 pandemic real-world data. Viruses 2023 15 4 976 10.3390/v15040976 37112956
    [Google Scholar]
  63. Price A.H. Brogden R.N. Nizatidine. Drugs 1988 36 5 521 539 10.2165/00003495‑198836050‑00002 2905640
    [Google Scholar]
  64. Li J. Ren J. Sun W. Systematic review of ixabepilone for treating metastatic breast cancer. Breast Cancer 2017 24 2 171 179 10.1007/s12282‑016‑0717‑0 27491426
    [Google Scholar]
  65. Silindir M. Ozer A.Y. The benefits of pramipexole selection in the treatment of Parkinson’s disease. Neurol. Sci. 2014 35 10 1505 1511 10.1007/s10072‑014‑1891‑5 25038745
    [Google Scholar]
  66. Fang H. Chen W. Liu X. Xu W. The efficacy and safety of arotinolol combined with a different calcium channel blocker in the treatment of Chinese patients with essential hypertension: A one-year follow-up study. Clin. Exp. Hypertens. 2014 36 8 590 595 10.3109/10641963.2014.897714 24678807
    [Google Scholar]
  67. Khalil N.Y. Aldosari K.F. Meloxicam. Profiles of Drug Substances, Excipients, and Related Methodology. Elsevier 2020 Vol. 45 159 197 10.1016/bs.podrm.2019.10.006
    [Google Scholar]
  68. Frampton J.E. Febuxostat: A review of its use in the treatment of hyperuricaemia in patients with gout. Drugs 2015 75 4 427 438 10.1007/s40265‑015‑0360‑7 25724536
    [Google Scholar]
  69. Petrou A. Fesatidou M. Geronikaki A. Thiazole Ring—A Biologically Active Scaffold. Molecules 2021 26 11 3166 10.3390/molecules26113166 34070661
    [Google Scholar]
  70. Alzahrani A.Y. Ammar Y.A. Abu-Elghait M. Salem M.A. Assiri M.A. Ali T.E. Ragab A. Abdelkader S. Sayed A.A. Development of novel indolin-2-one derivative incorporating thiazole moiety as DHFR and quorum sensing inhibitors: Synthesis, antimicrobial, and antibiofilm activities with molecular modelling study. Bioorg. Chem. 2022 119 105571 10.1016/j.bioorg.2021.105571 34959177
    [Google Scholar]
  71. Cascioferro S. Parrino B. Carbone D. Schillaci D. Giovannetti E. Cirrincione G. Diana P. Thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance. J. Med. Chem. 2020 63 15 7923 7956 10.1021/acs.jmedchem.9b01245 32208685
    [Google Scholar]
  72. Jadhav P.M. Kantevari S. Tekale A.B. Bhosale S.V. Pawar R.P. Tekale S.U. A review on biological and medicinal significance of thiazoles. Phosphorus Sulfur Silicon Relat. Elem. 2021 196 10 879 895 10.1080/10426507.2021.1945601
    [Google Scholar]
  73. Poonia N. Lal K. Kumar A. Kumar A. Sahu S. Baidya A.T.K. Kumar R. Urea-thiazole/benzothiazole hybrids with a triazole linker: Synthesis, antimicrobial potential, pharmacokinetic profile and in silico mechanistic studies. Mol. Divers. 2022 26 5 2375 2391 10.1007/s11030‑021‑10336‑x
    [Google Scholar]
  74. Farouk Elsadek M. Mohamed Ahmed B. Fawzi Farahat M. An overview on synthetic 2-aminothiazole-based compounds associated with four biological activities. Molecules 2021 26 5 1449 10.3390/molecules26051449 33800023
    [Google Scholar]
  75. Alam M.A. Thiazole, A Privileged Scaffold in Drug Discovery. Privileged Scaffolds in Drug Discovery. Elsevier 2023 1 19 10.1016/B978‑0‑443‑18611‑0.00027‑9
    [Google Scholar]
  76. Howard K.C. Dennis E.K. Watt D.S. Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem. Soc. Rev. 2020 49 8 2426 2480 10.1039/C9CS00556K 32140691
    [Google Scholar]
  77. Barcin T. Yucel M.A. Ersan R.H. Alagoz M.A. Dogen A. Burmaoglu S. Algul O. Deep learning approach to the discovery of novel bisbenzazole derivatives for antimicrobial effect. J. Mol. Struct. 2024 1295 136668 10.1016/j.molstruc.2023.136668
    [Google Scholar]
  78. Yang Y. Kessler M.G.C. Marchán-Rivadeneira M.R. Han Y. Combating antimicrobial resistance in the post-genomic era: Rapid antibiotic discovery. Molecules 2023 28 10 4183 10.3390/molecules28104183 37241928
    [Google Scholar]
  79. Shi Z. Zhang J. Tian L. Xin L. Liang C. Ren X. Li M. A comprehensive overview of the antibiotics approved in the last two decades: Retrospects and prospects. Molecules 2023 28 4 1762 10.3390/molecules28041762 36838752
    [Google Scholar]
  80. Al-Maqtari Q.A. Al-Mekhlafi H.M. Al-Emran M. Application of essential oils as preservatives in food systems: Challenges and future prospectives—a review. Phytochem. Rev. 2021 1 38 10.1007/s11101‑021‑09776‑y
    [Google Scholar]
  81. Dupuis V. Cerbu C. Witkowski L. Potarniche A.V. Timar M.C. Żychska M. Sabliov C.M. Nanodelivery of essential oils as efficient tools against antimicrobial resistance: A review of the type and physical-chemical properties of the delivery systems and applications. Drug Deliv. 2022 29 1 1007 1024 10.1080/10717544.2022.2056663 35363104
    [Google Scholar]
  82. Farghaly T.A. Alsaedi A.M.R. Alenazi N.A. Harras M.F. Anti-viral activity of thiazole derivatives: an updated patent review. Expert Opin. Ther. Pat. 2022 32 7 791 815 10.1080/13543776.2022.2067477 35427454
    [Google Scholar]
  83. Muhammed Aziz D. Hassan S.A. Amin A.A.M. Abdullah M.N. Qurbani K. Aziz S.B. A synergistic investigation of azo-thiazole derivatives incorporating thiazole moieties: A comprehensive exploration of their synthesis, characterization, computational insights, solvatochromism, and multimodal biological activity assessment. RSC Advances 2023 13 49 34534 34555 10.1039/D3RA06469G 38024963
    [Google Scholar]
  84. Ali Mohamed H. Ammar Y.A. A M Elhagali G. A Eyada H. S Aboul-Magd D. Ragab A. In vitro antimicrobial evaluation, single-point resistance study, and radiosterilization of novel pyrazole incorporating thiazol-4-one/thiophene derivatives as dual DNA gyrase and DHFR inhibitors against MDR pathogens. ACS Omega 2022 7 6 4970 4990 10.1021/acsomega.1c05801 35187315
    [Google Scholar]
  85. Ibrahim S.A. Fayed E.A. Rizk H.F. Desouky S.E. Ragab A. Hydrazonoyl bromide precursors as DHFR inhibitors for the synthesis of bis-thiazolyl pyrazole derivatives; antimicrobial activities, antibiofilm, and drug combination studies against MRSA. Bioorg. Chem. 2021 116 105339 10.1016/j.bioorg.2021.105339 34530234
    [Google Scholar]
  86. Naaz F. Srivastava R. Singh A. Singh N. Verma R. Singh V.K. Singh R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem. 2018 26 12 3414 3428 10.1016/j.bmc.2018.05.015 29778528
    [Google Scholar]
  87. Hu Y. Hu C. Pan G. Yu C. Ansari M.F. Yadav Bheemanaboina R.R. Cheng Y. Zhou C. Zhang J. Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur. J. Med. Chem. 2021 222 113628 10.1016/j.ejmech.2021.113628 34139627
    [Google Scholar]
  88. Snowden F.M. Emerging and reemerging diseases: A historical perspective. Immunol. Rev. 2008 225 1 9 26 10.1111/j.1600‑065X.2008.00677.x 18837773
    [Google Scholar]
  89. Saker L. Lee K. Cannito B. Gilmore A. Campbell-Lendrum D. H. Globalization and Infectious Diseases: A Review of the Linkages. Social, Economic and Behavioural (SEB) Research 2004 Available from: https://iris.who.int/bitstream/handle/10665/68726/TDR_STR_SEB_ST_04.2.pdf
    [Google Scholar]
  90. Morens D.M. Folkers G.K. Fauci A.S. Emerging infections: A perpetual challenge. Lancet Infect. Dis. 2008 8 11 710 719 10.1016/S1473‑3099(08)70256‑1 18992407
    [Google Scholar]
  91. Kartsev V. Geronikaki A. Zubenko A. Petrou A. Ivanov M. Glamočlija J. Sokovic M. Divaeva L. Morkovnik A. Klimenko A. Synthesis and antimicrobial activity of new heteroaryl(aryl) thiazole derivatives molecular docking studies. Antibiotics (Basel) 2022 11 10 1337 10.3390/antibiotics11101337 36289995
    [Google Scholar]
  92. Malūkaitė D. Grybaitė B. Vaickelionienė R. Vaickelionis G. Sapijanskaitė-Banevič B. Kavaliauskas P. Mickevičius V. Synthesis of novel thiazole derivatives bearing β-amino acid and aromatic moieties as promising scaffolds for the development of new antibacterial and antifungal candidates targeting multidrug-resistant pathogens. Molecules 2021 27 1 74 10.3390/molecules27010074 35011308
    [Google Scholar]
  93. Stankova I. Chuchkov K. Chayrov R. Mukova L. Galabov A. Marinkova D. Danalev D. Adamantane derivatives containing thiazole moiety: Synthesis, antiviral and antibacterial activity. Int. J. Pept. Res. Ther. 2020 26 4 1781 1787 10.1007/s10989‑019‑09983‑4
    [Google Scholar]
  94. Chhabria M.T. Patel S. Modi P. Brahmkshatriya P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem. 2016 16 26 2841 2862 10.2174/1568026616666160506130731 27150376
    [Google Scholar]
  95. Singh I.P. Gupta S. Kumar S. Thiazole compounds as antiviral agents: An update. Med. Chem. 2020 16 1 4 23 10.2174/1573406415666190614101253 31203807
    [Google Scholar]
  96. Agili F. Novel thiazole derivatives containing imidazole and furan scaffold: Design, synthesis, molecular docking, antibacterial, and antioxidant evaluation. Molecules 2024 29 7 1491 10.3390/molecules29071491 38611769
    [Google Scholar]
  97. Saffour S. AL-Sharabi A.A. Evren A.E. Cankiliç M.Y. Yurttaş L. Antimicrobial activity of novel substituted 1,2,4-triazole and 1,3-thiazole derivatives. J. Mol. Struct. 2024 1295 136675 10.1016/j.molstruc.2023.136675
    [Google Scholar]
  98. Laboud Y.N. Zahran D. Hassaneen H.M. Elwahy A.H.M. Saleh F.M. Synthesis and Anti‐Bacterial Evaluation of Novel Scaffolds Based on Bis‐Thiazole or bis‐1,3,4‐Thiadiazole Linked to Thieno[2,3‐ b ]Thiophene as New Hybrid Molecules. ChemistrySelect 2024 9 14 e202400045 10.1002/slct.202400045
    [Google Scholar]
  99. Dawbaa S. Evren A.E. Cantürk Z. Yurttaş L. Synthesis of new thiazole derivatives and evaluation of their antimicrobial and cytotoxic activities. Phosphorus Sulfur Silicon Relat. Elem. 2021 196 12 1093 1102 10.1080/10426507.2021.1972299
    [Google Scholar]
  100. Haroun M. Tratrat C. Tsolaki E. Geronikaki A. Thiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation. Comb. Chem. High Throughput Screen. 2016 19 1 51 57 10.2174/1386207319666151203002348 26632442
    [Google Scholar]
  101. Abdou M.M. Eliwa E.M. Abdel Reheim M.A.M. Abu-Rayyan A. Abd El-Gilil S.M. Abu-Elghait M. Sharaf M.H. Kalaba M.H. Halawa A.H. Elgammal W.E. Tailoring of novel morpholine-sulphonamide linked thiazole moieties as dual targeting DHFR/DNA gyrase inhibitors: synthesis, antimicrobial and antibiofilm activities, and DFT with molecular modelling studies. New J. Chem. 2024 48 20 9149 9162 10.1039/D3NJ05774G
    [Google Scholar]
  102. Jones R.N. Wilson M.L. Weinstein M.P. Stilwell M.G. Mendes R.E. Contemporary potencies of minocycline and tetracycline HCL tested against Gram-positive pathogens: SENTRY Program results using CLSI and EUCAST breakpoint criteria. Diagn. Microbiol. Infect. Dis. 2013 75 4 402 405 10.1016/j.diagmicrobio.2013.01.022 23514756
    [Google Scholar]
  103. Farghaly T.A. Abdallah M.A. Khedr M.A. Mahmoud H.K. Synthesis, antimicrobial activity and molecular docking study of thiazole derivatives. J. Heterocycl. Chem. 2017 54 4 2417 2425 10.1002/jhet.2838
    [Google Scholar]
  104. Bansal K.K. Bhardwaj J.K. Saraf P. Thakur V.K. Sharma P.C. Synthesis of thiazole clubbed pyrazole derivatives as apoptosis inducers and anti-infective agents. Mater. Today Chem. 2020 17 100335 10.1016/j.mtchem.2020.100335
    [Google Scholar]
  105. Saeed S. Rashid N. Jones P.G. Hussain R. Bhatti M.H. Synthesis, spectroscopic characterization, crystal structure, and antifungal activity of thiourea derivatives containing a thiazole moiety. Cent. Eur. J. Chem. 2010 8 550 558 10.2478/s11532‑010‑0014‑2
    [Google Scholar]
  106. de Santana T.I. Barbosa M.O. Gomes P.A.T.M. da Cruz A.C.N. da Silva T.G. Leite A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem. 2018 144 874 886 10.1016/j.ejmech.2017.12.040 29329071
    [Google Scholar]
  107. Skóra B. Lewińska A. Kryshchyshyn-Dylevych A. Kaminskyy D. Lesyk R. Szychowski K.A. Evaluation of anticancer and antibacterial activity of four 4-thiazolidinone-based derivatives. Molecules 2022 27 3 894 10.3390/molecules27030894 35164157
    [Google Scholar]
  108. Silva B.T. In Vitro Regulation of Staphylococcus aureus Growth and Virulence by Bovine Non-Aureus Staphylococci. Ghent University 2021 http://hdl.handle.net/1854/LU-8737002
    [Google Scholar]
  109. Zhang J. Wang D. Zou L. Xiao M. Zhang Y. Li Z. Yang L. Ge G. Zuo Z. Rapid bioluminescence assay for monitoring rat CES1 activity and its alteration by traditional Chinese medicines. J. Pharm. Anal. 2020 10 3 253 262 10.1016/j.jpha.2020.05.006 32612872
    [Google Scholar]
  110. Hassan A.A. Ibrahim Y.R. El-Sheref E.M. Abdel-Aziz M. Bräse S. Nieger M. Synthesis and antibacterial activity of 4‐Aryl‐2‐(1‐substituted ethylidene)thiazoles. Arch. Pharm. (Weinheim) 2013 346 7 562 570 10.1002/ardp.201300099 23776104
    [Google Scholar]
  111. Shetty S. Kumar S. Verma A. Synthesis of novel triheterocyclic thiazoles as antimicrobial and analgesic agents. Indian J. Heterocycl. Chem. 2013 23 1 33 38 10.1016/j.ejmech.2007.01.023
    [Google Scholar]
  112. Yurttaş L. Özkay Y. Karaca Gençer H. Acar U. Synthesis of Some New Thiazole Derivatives and Their Biological Activity Evaluation. J. Chem. 2015 2015 1 7 10.1155/2015/464379
    [Google Scholar]
  113. Cappuccino J.G. Sherman N. Microbiology-A Laboratory Manual. 7th ed Sydney Addison Wesley Longman, Inc. 1999
    [Google Scholar]
  114. Arora P. Narang R. Bhatia S. Nayak S. Singh S. Narasimhan B. Synthesis, molecular docking and QSAR studies of 2, 4-disubstituted thiazoles as antimicrobial agents. J. Appl. Pharm. Sci. 2015 5 2 028 042 10.7324/JAPS.2015.50206
    [Google Scholar]
  115. Yurttaş L. Özkay Y. Duran M. Turan-Zitouni G. Özdemir A. Cantürk Z. Küçükoğlu K. Kaplancıklı Z.A. Synthesis and antimicrobial activity evaluation of new dithiocarbamate derivatives bearing thiazole/benzothiazole rings. Phosphorus Sulfur Silicon Relat. Elem. 2016 191 8 1166 1173 10.1080/10426507.2016.1150277
    [Google Scholar]
  116. Gadhiya B. Rajput M. Bapodra A. Ladva K. Design, synthesis and evaluation of antimicrobial activities of some novel thiazole and thiadiazole derivatives clubbed with 1H-benzimidazole. J. Pharm. Sci. 2016 5 3 113 125
    [Google Scholar]
  117. Yogi P. Ashid M. Hussain N. Khan S. Joshi A. One-pot synthesis of thiazoles via hantzsch thiazole reaction and their antimicrobial activity. Asian J. Chem. 2016 28 4 927 932 10.14233/ajchem.2016.19603
    [Google Scholar]
  118. Bera P. Brandão P. Mondal G. Jana H. Jana A. Santra A. Bera P. Synthesis of a new pyridinyl thiazole ligand with hydrazone moiety and its cobalt(III) complex: X-ray crystallography, in vitro evaluation of antibacterial activity. Polyhedron 2017 134 230 237 10.1016/j.poly.2017.06.024
    [Google Scholar]
  119. Imran M. Bakht M.A. Samad A. Abida A. Synthesis of some quinoline-pyrazoline-based naphthalenyl thiazole derivatives and their evaluation as potential antimicrobial agents. Trop. J. Pharm. Res. 2017 16 5 1147 1155 10.4314/tjpr.v16i5.24
    [Google Scholar]
  120. Rodriguez-Tudela J.L. Arendrup M.C. Barchiesi F. Bille J. Chryssanthou E. Cuenca-Estrella M. Dannaoui E. Denning D.W. Donnelly J.P. Dromer F. Fegeler W. Lass-Flörl C. Moore C. Richardson M. Sandven P. Velegraki A. Verweij P. EUCAST Definitive Document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin. Microbiol. Infect. 2008 14 4 398 405 10.1111/j.1469‑0691.2007.01935.x 18190574
    [Google Scholar]
  121. Turan-Zitouni G. Kaya Çavuşoğlu B. Sağlık B.N. Acar Çevik U. Synthesis and antimicrobial activities of some novel thiazole compounds. Turk Biyokim. Derg. 2018 43 3 220 227 10.1515/tjb‑2017‑0093
    [Google Scholar]
  122. Lino C.I. Gonçalves de Souza I. Borelli B.M. Silvério Matos T.T. Santos Teixeira I.N. Ramos J.P. Maria de Souza Fagundes E. de Oliveira Fernandes P. Maltarollo V.G. Johann S. de Oliveira R.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur. J. Med. Chem. 2018 151 248 260 10.1016/j.ejmech.2018.03.083 29626797
    [Google Scholar]
  123. Wu Q.F. Zhao B. Fan Z.J. Zhao J.B. Guo X.F. Yang D.Y. Zhang N.L. Yu B. Kalinina T. Glukhareva T. Design, synthesis and fungicidal activity of isothiazole–thiazole derivatives. RSC Advances 2018 8 69 39593 39601 10.1039/C8RA07619G 35558013
    [Google Scholar]
  124. Yan Z. Liu A. Huang M. Liu M. Pei H. Huang L. Yi H. Liu W. Hu A. Design, synthesis, DFT study and antifungal activity of the derivatives of pyrazolecarboxamide containing thiazole or oxazole ring. Eur. J. Med. Chem. 2018 149 170 181 10.1016/j.ejmech.2018.02.036 29501939
    [Google Scholar]
  125. Kubba A.A.R.M. Rahim N.A.H.A. Synthesis and Antimicrobial Evaluation of New-[2-Amino-4-(4-Chloro-/4-Bromophenyl)-1,3-Thiazole Derivatives. J. Pharm. Res. 2018 12 1 145
    [Google Scholar]
  126. Saleh F.M. Abdelhamid A.O. Hassaneen H.M. Synthesis and antimicrobial activity of new thiazole and thiadiazole derivatives via ethyl pyruvate. J. Sulfur Chem. 2020 41 2 130 145 10.1080/17415993.2019.1694678
    [Google Scholar]
  127. Masood M.M. Irfan M. Alam S. Hasan P. Queen A. Shahid S. Zahid M. Azam A. Abid M. Synthesis, antimicrobial evaluation and in silico studies of novel 2,4- disubstituted-1,3-thiazole derivatives. Lett. Drug Des. Discov. 2018 16 2 160 173 10.2174/1570180815666180502120042
    [Google Scholar]
  128. Adole V.A. More R.A. Jagdale B.S. Pawar T.B. Chobe S.S. Efficient synthesis, antibacterial, antifungal, antioxidant and cytotoxicity study of 2‐(2‐hydrazineyl)thiazole derivatives. ChemistrySelect 2020 5 9 2778 2786 10.1002/slct.201904609
    [Google Scholar]
  129. Gondru R. Kanugala S. Raj S. Ganesh Kumar C. Pasupuleti M. Banothu J. Bavantula R. 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorg. Med. Chem. Lett. 2021 33 127746 10.1016/j.bmcl.2020.127746 33333162
    [Google Scholar]
  130. Sivakumar K.K. Karthikeyan L. Ponnilavarasan I. Rajasekaran A. Designed, conventional and microwave assisted synthesis of hybridized coumarin bearing thiazole analogs as antimicrobial agents. Int J Pharma Res. 2020 11 1 54 64
    [Google Scholar]
  131. Shaaban M.R. Farghaly T.A. Alsaedi A.M.R. Synthesis, antimicrobial and anticancer evaluations of novel thiazoles incorporated diphenyl sulfone moiety. Polycycl. Aromat. Compd. 2022 42 5 2521 2537 10.1080/10406638.2020.1837887
    [Google Scholar]
  132. Bhujbal N. Gaikwad D. Jagdale Y. Pawar C. Synthesis, antimicrobial and anti‐tubercular activity study of N‐(substituted‐benzyl)‐4‐(trifluoromethyl)thiazole‐2‐sulfonamide and 2‐(N‐(substituted‐benzyl)sulfamoyl)thiazole‐4‐carboxylic acid. J. Chin. Chem. Soc. (Taipei) 2021 68 8 1563 1573 10.1002/jccs.202000421
    [Google Scholar]
  133. Evren A.E. Dawbaa S. Nuha D. Yavuz Ş.A. Gül Ü.D. Yurttaş L. Design and synthesis of new 4-methylthiazole derivatives: In vitro and in silico studies of antimicrobial activity. J. Mol. Struct. 2021 1241 130692 10.1016/j.molstruc.2021.130692
    [Google Scholar]
  134. Eissa S.I. Farrag A.M. Abbas S.Y. El Shehry M.F. Ragab A. Fayed E.A. Ammar Y.A. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorg. Chem. 2021 110 104803 10.1016/j.bioorg.2021.104803 33761314
    [Google Scholar]
  135. Song J.U. Choi S.P. Kim T.H. Jung C.K. Lee J.Y. Jung S.H. Kim G.T. Design and synthesis of novel 2-(indol-5-yl)thiazole derivatives as xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett. 2015 25 6 1254 1258 10.1016/j.bmcl.2015.01.055 25704891
    [Google Scholar]
  136. Shaikh M.S. Palkar M.B. Patel H.M. Rane R.A. Alwan W.S. Shaikh M.M. Shaikh I.M. Hampannavar G.A. Karpoormath R. Design and synthesis of novel carbazolo–thiazoles as potential anti-mycobacterial agents using a molecular hybridization approach. RSC Advances 2014 4 107 62308 62320 10.1039/C4RA11752B
    [Google Scholar]
  137. Nguyen M.A.T. Mungara A.K. Kim J.A. Lee K.D. Park S. Synthesis, anticancer and antioxidant activity of novel carbazole-based thiazole derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2015 190 2 191 199 10.1080/10426507.2014.914933
    [Google Scholar]
  138. Zhao D. Liu Y. Li Y. Chen Y. A green synthesis and antibacterial activity of ferrocene-based thiazole derivatives in choline chloride/glycerol eutectic solvent. RSC Advances 2022 12 34 22054 22059 10.1039/D2RA04587G 36043099
    [Google Scholar]
  139. Rotilie C.A. Fass R.J. Prior R.B. Perkins R.L. Microdilution technique for antimicrobial susceptibility testing of anaerobic bacteria. Antimicrob. Agents Chemother. 1975 7 3 311 315 10.1128/AAC.7.3.311 1137383
    [Google Scholar]
  140. Spilovska K. Zemek F. Korabecny J. Nepovimova E. Soukup O. Windisch M. Kuca K. Adamantane – A lead structure for drugs in clinical practice. Curr. Med. Chem. 2016 23 29 3245 3266 10.2174/0929867323666160525114026 27222266
    [Google Scholar]
  141. Pfaller M.A. Herwaldt L.A. The clinical microbiology laboratory and infection control: emerging pathogens, antimicrobial resistance, and new technology. Clin. Infect. Dis. 1997 25 4 858 870 10.1086/515557 9356802
    [Google Scholar]
  142. Warda E.T. El-Ashmawy M.B. Habib E.S.E. Abdelbaky M.S.M. Garcia-Granda S. Thamotharan S. El-Emam A.A. Synthesis and in vitro antibacterial, antifungal, anti-proliferative activities of novel adamantane-containing thiazole compounds. Sci. Rep. 2022 12 1 21058 10.1038/s41598‑022‑25390‑0 36474013
    [Google Scholar]
  143. Minickaitė R. Grybaitė B. Vaickelionienė R. Kavaliauskas P. Petraitis V. Petraitienė R. Tumosienė I. Jonuškienė I. Mickevičius V. Synthesis of novel aminothiazole derivatives as promising antiviral, antioxidant and antibacterial candidates. Int. J. Mol. Sci. 2022 23 14 7688 10.3390/ijms23147688 35887038
    [Google Scholar]
  144. El-Hagrassey E.A. Abdel-Latif E. Abdel-Fattah G.M. Synthesis and efficiency of new pyridine, chromene and thiazole containing compounds as antimicrobial and antioxidant agents. Bull. Chem. Soc. Ethiop. 2022 36 1 137 148 10.4314/bcse.v36i1.12
    [Google Scholar]
  145. Matta R. Pochampally J. Dhoddi B.N. Bhookya S. Bitla S. Akkiraju A.G. Synthesis, antimicrobial and antioxidant activity of triazole, pyrazole containing thiazole derivatives and molecular docking studies on COVID-19. BMC Chem. 2023 17 1 61 10.1186/s13065‑023‑00965‑8 37330518
    [Google Scholar]
  146. Nandurkar Y. Shinde A. Bhoye M.R. Jagadale S. Mhaske P.C. Synthesis and biological screening of new 2-(5-aryl-1-phenyl-1 H -pyrazol-3-yl)-4-aryl thiazole derivatives as potential antimicrobial agents. ACS Omega 2023 8 9 8743 8754 10.1021/acsomega.2c08137 36910954
    [Google Scholar]
  147. Salih R.H.H. Hasan A.H. Hussen N.H. Hawaiz F.E. Hadda T.B. Jamalis J. Almalki F.A. Adeyinka A.S. Coetzee L-C.C. Oyebamiji A.K. Thiazole-pyrazoline hybrids as potential antimicrobial agent: Synthesis, biological evaluation, molecular docking, DFT studies and POM analysis. J. Mol. Struct. 2023 1282 135191 10.1016/j.molstruc.2023.135191
    [Google Scholar]
  148. Lu X. Liu X. Wan B. Franzblau S.G. Chen L. Zhou C. You Q. Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6-dichlorobenzyloxy)phenyl thiazole, oxazole and imidazole derivatives. Part 2. Eur. J. Med. Chem. 2012 49 164 171 10.1016/j.ejmech.2012.01.007 22264895
    [Google Scholar]
  149. Bondock S. Naser T. Ammar Y.A. Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents. Eur. J. Med. Chem. 2013 62 270 279 10.1016/j.ejmech.2012.12.050 23357308
    [Google Scholar]
  150. Ibrahim Y.M. Abouwarda A.M. Nasr T. Omar F.A. Bondock S. Antibacterial and anti-quorum sensing activities of a substituted thiazole derivative against methicillin-resistant Staphylococcus aureus and other multidrug-resistant bacteria. Microb. Pathog. 2020 149 104500 10.1016/j.micpath.2020.104500 32926996
    [Google Scholar]
  151. Nastasă C. Tiperciuc B. Duma M. Benedec D. Oniga O. New hydrazones bearing thiazole scaffold: Synthesis, characterization, antimicrobial, and antioxidant investigation. Molecules 2015 20 9 17325 17338 10.3390/molecules200917325 26393564
    [Google Scholar]
  152. Abbasi Shiran J. Yahyazadeh A. Mamaghani M. Yamin B.M. Albadi J. Shirini F. Rassa M. Novel, One-Pot, Three-Component, Regioselective Synthesis of Fluorine-Containing Thiazole and Bis-3 H -thiazole Derivatives Using Polyvinyl Pyridine as Heterogeneous Catalyst, and Evaluation of Their Antibacterial Activity. Synth. Commun. 2015 45 13 1520 1532 10.1080/00397911.2015.1025909
    [Google Scholar]
  153. Ouf S.A. Gomha S.M. Ewies M.M. Sharawy I.A.A. Synthesis, characterization, and antifungal activity evaluation of some novel arylazothiazoles. J. Heterocycl. Chem. 2018 55 1 258 264 10.1002/jhet.3040
    [Google Scholar]
  154. Zha G.F. Leng J. Darshini N. Shubhavathi T. Vivek H.K. Asiri A.M. Marwani H.M. Rakesh K.P. Mallesha N. Qin H.L. Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett. 2017 27 14 3148 3155 10.1016/j.bmcl.2017.05.032 28539243
    [Google Scholar]
  155. Demirci S. Synthesis of thiazole derivatives as antimicrobial agents by green chemistry techniques. J. Turkish Chem. Soc. Sect. Chem 2018 5 2 393 414 10.18596/jotcsa.375716
    [Google Scholar]
  156. Sanad S.M.H. Ahmed A.A.M. Mekky A.E.M. Synthesis, in‐vitro and in‐silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors. Arch. Pharm. (Weinheim) 2020 353 4 1900309 10.1002/ardp.201900309 31967349
    [Google Scholar]
  157. Grybaitė B. Vaickelionienė R. Stasevych M. Komarovska-Porokhnyavets O. Kantminienė K. Novikov V. Mickevičius V. Synthesis and antimicrobial activity of novel thiazoles with reactive functional groups. ChemistrySelect 2019 4 23 6965 6970 10.1002/slct.201900679
    [Google Scholar]
  158. Abu-Melha S. Edrees M.M. Salem H.H. Kheder N.A. Gomha S.M. Abdelaziz M.R. Synthesis and Biological Evaluation of Some Novel Thiazole-Based Heterocycles as Potential Anticancer and Antimicrobial Agents. Molecules 2019 24 3 539 10.3390/molecules24030539 30717217
    [Google Scholar]
  159. Giray B. Yurttaş L. Şahin Z. Berk B. Demirayak Ş. Antimicrobial Evaluation of Trisubstituted 2-Piperazinyl Thiazoles. Acta Pharm. Sci. 2019 57 1 1 13 10.23893/1307‑2080.aps.05707
    [Google Scholar]
  160. Ghoneim A.A. Morsy N.M. Design and Synthesis of Novel 4-Amino-2,3-Dihydro-2-Imino-3-(1-Iminododecyl) Thiazole-5-Carbonitrile Derivatives as Antimicrobial Agents. Pharma Chem. 2020 9 3 1 6
    [Google Scholar]
  161. Simakov S. Kartsev V. Petrou A. Nicolaou I. Geronikaki A. Ivanov M. Kostic M. Glamočlija J. Soković M. Talea D. Vizirianakis I.S. 4-(indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole acylamines as Νovel antimicrobial agents: Synthesis, in silico and in vitro Evaluation. Pharmaceuticals (Basel) 2021 14 11 1096 10.3390/ph14111096 34832877
    [Google Scholar]
  162. Nuha D. Evren A.E. Yılmaz Cankılıç M. Yurttaş L. Design and synthesis of novel 2,4,5-thiazole derivatives as 6-APA mimics and antimicrobial activity evaluation. Phosphorus Sulfur Silicon Relat. Elem. 2021 196 10 954 960 10.1080/10426507.2021.1946537
    [Google Scholar]
  163. Kassab R.M. Al-Hussain S.A. Elleboudy N.S. Albohy A. Zaki M.E.A. Abouzid K.A.M. Muhammad Z.A. Tackling microbial resistance with isatin-decorated thiazole derivatives: Design, synthesis, and in vitro evaluation of antimicrobial and antibiofilm activity. Drug Des. Devel. Ther. 2022 16 2817 2832 10.2147/DDDT.S365909 36046334
    [Google Scholar]
  164. Kumar M. Kumar V. Singh V. Thakral S. Synthesis, in silico studies and biological screening of (E)-2-(3-(substitutedstyryl)-5-(substitutedphenyl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole derivatives as an anti-oxidant, anti-inflammatory and antimicrobial agents. BMC Chem. 2022 16 1 103 10.1186/s13065‑022‑00901‑2 36434662
    [Google Scholar]
  165. Mohamed H.A. Ammar Y.A. Elhagali G.A.M. Eyada H.A. Aboul-Magd D.S. Ragab A. Discovery a novel of thiazolo[3,2-a]pyridine and pyrazolo[3,4-d]thiazole derivatives as DNA gyrase inhibitors; design, synthesis, antimicrobial activity, and some in-silico ADMET with molecular docking study. J. Mol. Struct. 2023 1287 135671 10.1016/j.molstruc.2023.135671
    [Google Scholar]
  166. Rozsa T. Duma M. Vlase L. Ionuţ I. Pîrnău A. Tiperciuc B. Oniga O. Synthesis and Antimicrobial Evaluation of Some New 4,5′‐Bisthiazoles. J. Heterocycl. Chem. 2015 52 4 999 1006 10.1002/jhet.2054
    [Google Scholar]
  167. Abhale Y.K. Shinde A.D. Deshmukh K.K. Nawale L. Sarkar D. Choudhari P.B. Kumbhar S.S. Mhaske P.C. Synthesis, antimycobacterial screening and molecular docking studies of 4-aryl-4′-methyl-2′-aryl-2,5′-bisthiazole derivatives. Med. Chem. Res. 2017 26 11 2889 2899 10.1007/s00044‑017‑1988‑5
    [Google Scholar]
  168. Mickevičius V. Grybaitė B. Vaickelionienė R. Stasevych M. Komarovska-Porokhnyavets O. Novikov V. Synthesis, transformation of 3-[(4-arylthiazol-2-yl)(p-tolyl)amino]propanoic acids, bis(thiazol-5-yl)phenyl-, bis(thiazol-5-yl)methane derivatives, and their antimicrobial activity. Heterocycles 2018 96 1 86 105 10.3987/COM‑17‑13833
    [Google Scholar]
  169. Parašotas I. Anusevičius K. Vaickelionienė R. Jonuškienė I. Stasevych M. Zvarych V. Komarovska-Porokhnyavets O. Novikov V. Belyakov S. Mickevicius V. Synthesis and evaluation of the antibacterial, antioxidant activities of novel functionalized thiazole and bis(thiazol-5-yl)methane derivatives. ARKIVOC 2018 2018 3 240 256 10.24820/ark.5550190.p010.159
    [Google Scholar]
  170. Kumar Baba N.H. Ashok D. Rao B.A. Sarasija M. Murthy N.Y.S. Microwave Assisted Synthesis and Biological Activity of Novel Bis2-[2-(substituted benzylidene)hydrazinyl]thiazole Derivatives. Russ. J. Gen. Chem. 2018 88 3 580 586 10.1134/S1070363218030301
    [Google Scholar]
  171. Parvizi J. Mahmoodi N.O. Pirbasti F.G. Sequential one‐pot multicomponent synthesis of bis‐aminothiazols and evaluation of their antibacterial and antioxidant activities. J. Chin. Chem. Soc. (Taipei) 2019 66 3 316 324 10.1002/jccs.201800140
    [Google Scholar]
  172. Mahmoud H.K. Abbas A.A. Gomha S.M. Synthesis, antimicrobial evaluation and molecular docking of new functionalized bis(1,3,4-thiadiazole) and bis(thiazole) derivatives. Polycycl. Aromat. Compd. 2021 41 9 2029 2041 10.1080/10406638.2019.1709085
    [Google Scholar]
  173. Althagafi I. El-Metwaly N. Farghaly T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules 2019 24 9 1741 10.3390/molecules24091741 31060260
    [Google Scholar]
  174. Kassab R.M. Gomha S.M. Al-Hussain S.A. Abo Dena A.S. Abdel-Aziz M.M. Zaki M.E.A. Muhammad Z.A. Synthesis and in-silico simulation of some new bis-thiazole derivatives and their preliminary antimicrobial profile: Investigation of hydrazonoyl chloride addition to hydroxy-functionalized bis-carbazones. Arab. J. Chem. 2021 14 11 103396 10.1016/j.arabjc.2021.103396
    [Google Scholar]
  175. Nalawade J. Synthesis and Antimicrobial Evaluation of Novel 2′-Aryl-4-Aryl-2, 4′-Bisthiazole and 2′-Aryl-4-Pyridyl-2, 4′-Bisthiazole Derivatives as Potential Antibacterial Agents. Polycycl. Aromat. Compd. 2023 1 15 10.1080/10406638.2023.2180524
    [Google Scholar]
  176. Pivovarova E. Climova A. Świątkowski M. Staszewski M. Walczyński K. Dzięgielewski M. Bauer M. Kamysz W. Krześlak A. Jóźwiak P. Czylkowska A. Synthesis and biological evaluation of thiazole-based derivatives with potential against breast cancer and antimicrobial agents. Int. J. Mol. Sci. 2022 23 17 9844 10.3390/ijms23179844 36077257
    [Google Scholar]
  177. Khalil A. Adam M.S.S. Bimetallic bis-aroyldihydrazone-isatin complexes of high O=V(IV) and low Cu(II) valent ions as effective biological reagents for antimicrobial and anticancer assays. Molecules 2024 29 2 414 10.3390/molecules29020414 38257327
    [Google Scholar]
  178. Ebenezer O. Singh-Pillay A. Koorbanally N.A. Singh P. Antibacterial evaluation and molecular docking studies of pyrazole–thiosemicarbazones and their pyrazole–thiazolidinone conjugates. Mol. Divers. 2021 25 1 191 204 10.1007/s11030‑020‑10046‑w 32086698
    [Google Scholar]
  179. Rusu A. Moga I.M. Uncu L. Hancu G. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy. Pharmaceutics 2023 15 11 2554 10.3390/pharmaceutics15112554 38004534
    [Google Scholar]
  180. Desai N.C. Harsora J.P. Monapara J.D. Khedkar V.M. Synthesis, antimicrobial capability and molecular docking of heterocyclic scaffolds clubbed by 2-azetidinone, thiazole and quinoline derivatives. Polycycl. Aromat. Compd. 2022 42 7 3924 3938 10.1080/10406638.2021.1877747
    [Google Scholar]
  181. Ayati A. Emami S. Asadipour A. Shafiee A. Foroumadi A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem. 2015 97 699 718 10.1016/j.ejmech.2015.04.015 25934508
    [Google Scholar]
  182. Arora P. Narang R. Nayak S.K. Singh S.K. Judge V. 2,4-Disubstituted thiazoles as multitargated bioactive molecules. Med. Chem. Res. 2016 25 9 1717 1743 10.1007/s00044‑016‑1610‑2
    [Google Scholar]
  183. Campaniço A. Moreira R. Lopes F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur. J. Med. Chem. 2018 150 525 545 10.1016/j.ejmech.2018.03.020 29549838
    [Google Scholar]
  184. Qu B. Luo Y. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors – A review. Int. J. Biol. Macromol. 2020 152 437 448 10.1016/j.ijbiomac.2020.02.240 32097742
    [Google Scholar]
  185. Varghese M. Balachandran M. Antibacterial efficiency of carbon dots against Gram-positive and Gram-negative bacteria: A review. J. Environ. Chem. Eng. 2021 9 6 106821 10.1016/j.jece.2021.106821
    [Google Scholar]
  186. Lobiuc A. Pavăl N.E. Mangalagiu I.I. Gheorghiță R. Teliban G.C. Amăriucăi-Mantu D. Stoleru V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023 28 3 1114 10.3390/molecules28031114 36770780
    [Google Scholar]
  187. Ardean C. Davidescu C.M. Nemeş N.S. Negrea A. Ciopec M. Duteanu N. Negrea P. Duda-Seiman D. Musta V. Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int. J. Mol. Sci. 2021 22 14 7449 10.3390/ijms22147449 34299068
    [Google Scholar]
  188. Abbotto E. Casini B. Piacente F. Scarano N. Cerri E. Tonelli M. Astigiano C. Millo E. Sturla L. Bruzzone S. Cichero E. Novel thiazole-based SIRT2 inhibitors discovered via molecular modelling studies and enzymatic assays. Pharmaceuticals (Basel) 2023 16 9 1316 10.3390/ph16091316 37765125
    [Google Scholar]
  189. Zhao W.H. Xu J.H. Tangadanchu V.K.R. Zhou C.H. Thiazolyl hydrazineylidenyl indolones as unique potential multitargeting broad-spectrum antimicrobial agents. Eur. J. Med. Chem. 2023 256 115452 10.1016/j.ejmech.2023.115452 37167780
    [Google Scholar]
  190. Zhang Z. Shu B. Zhang Y. Deora G.S. Li Q.S. 2,4,5-trisubstituted thiazole: A privileged scaffold in drug design and activity improvement. Curr. Top. Med. Chem. 2020 20 28 2535 2577 10.2174/1568026620999200917153856 32942975
    [Google Scholar]
  191. Tripathi A.C. Gupta S.J. Fatima G.N. Sonar P.K. Verma A. Saraf S.K. 4-Thiazolidinones: The advances continue…. Eur. J. Med. Chem. 2014 72 52 77 10.1016/j.ejmech.2013.11.017 24355348
    [Google Scholar]
  192. Mak J.Y.W. Xu W. Fairlie D.P. Thiazoles in Peptides and Peptidomimetics. Pept. 2017 I 235 266 10.1007/7081_2015_176
    [Google Scholar]
  193. Akombaetwa N. Ilangala A.B. Thom L. Memvanga P.B. Witika B.A. Buya A.B. Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023 15 2 656 10.3390/pharmaceutics15020656 36839978
    [Google Scholar]
  194. Liu C. Dong S. Wang X. Xu H. Liu C. Yang X. Wu S. Jiang X. Kan M. Xu C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater. Today Bio 2023 21 100729 10.1016/j.mtbio.2023.100729 37529216
    [Google Scholar]
  195. Rani P. Kiran Chahal S. Priyanka Kataria R. Kumar P. Kumar S. Sindhu J. Unravelling the thermodynamics and binding interactions of bovine serum albumin (BSA) with thiazole based carbohydrazide: Multi-spectroscopic, DFT and molecular dynamics approach. J. Mol. Struct. 2022 1270 133939 10.1016/j.molstruc.2022.133939
    [Google Scholar]
  196. Vaghasiya M.D. Mendapara J.V. Ahmad I. Patel H. Rajani D.P. Kumari P. Development of novel thiazole-based hybrids as DNA gyrase inhibitors: Design, synthesis, in silico and in vitro antibacterial evaluation. J. Iran Cham. Soc. 2024 21 1531 1545 10.1007/s13738‑024‑03011‑z
    [Google Scholar]
  197. Frija L.M.T. Pombeiro A.J.L. Kopylovich M.N. Coordination chemistry of thiazoles, isothiazoles and thiadiazoles. Coord. Chem. Rev. 2016 308 32 55 10.1016/j.ccr.2015.10.003
    [Google Scholar]
  198. Martins P. Jesus J. Santos S. Raposo L. Roma-Rodrigues C. Baptista P. Fernandes A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 2015 20 9 16852 16891 10.3390/molecules200916852 26389876
    [Google Scholar]
  199. Welleman I.M. Hoorens M.W.H. Feringa B.L. Boersma H.H. Szymański W. Photoresponsive molecular tools for emerging applications of light in medicine. Chem. Sci. (Camb.) 2020 11 43 11672 11691 10.1039/D0SC04187D 34094410
    [Google Scholar]
  200. Achary P.G.R. Applications of quantitative structure-activity relationships (QSAR) based virtual screening in drug design: A review. Mini Rev. Med. Chem. 2020 20 14 1375 1388 10.2174/1389557520666200429102334 32348219
    [Google Scholar]
  201. Hao M. Zhang X. Ren H. Li Y. Zhang S. Luo F. Ji M. Li G. Yang L. In silico identification of structure requirement for novel thiazole and oxazole derivatives as potent fructose 1,6-bisphosphatase inhibitors. Int. J. Mol. Sci. 2011 12 11 8161 8180 10.3390/ijms12118161 22174657
    [Google Scholar]
  202. Mermer A. The role of machine learning method in the synthesis and biological ınvestigation of heterocyclic compounds. Mol. Divers. 2022 26 3 1875 1892 10.1007/s11030‑021‑10264‑w 34669112
    [Google Scholar]
  203. Daoui O. Elkhattabi S. Chtita S. Rational design of novel pyridine-based drugs candidates for lymphoma therapy. J. Mol. Struct. 2022 1270 133964 10.1016/j.molstruc.2022.133964
    [Google Scholar]
  204. Wu Y. Huo D. Chen G. Yan A. SAR and QSAR research on tyrosinase inhibitors using machine learning methods. SAR QSAR Environ. Res. 2021 32 2 85 110 10.1080/1062936X.2020.1862297 33517778
    [Google Scholar]
  205. Vyas V.K. Bhati S. Patel S. Ghate M. Structure- and ligand-based drug design methods for the modeling of antimalarial agents: a review of updates from 2012 onwards. J. Biomol. Struct. Dyn. 2022 40 20 10481 10506 10.1080/07391102.2021.1932598 34129805
    [Google Scholar]
  206. Bremner J. Bremner J. Single Molecule Non-cleavable Multiply Active Antibacterials. Multiple Action-Based Design Approaches to Antibacterials Springer, Singapore 2021 10.1007/978‑981‑16‑0999‑2_3
    [Google Scholar]
  207. Leitão M.M. Vieira T.F. Sousa S.F. Borges F. Simões M. Borges A. Dual action of benzaldehydes: Inhibiting quorum sensing and enhancing antibiotic efficacy for controlling Pseudomonas aeruginosa biofilms. Microb. Pathog. 2024 191 106663 10.1016/j.micpath.2024.106663 38679246
    [Google Scholar]
  208. Mohi-ud-din R. Chawla A. Sharma P. Mir P.A. Potoo F.H. Reiner Ž. Reiner I. Ateşşahin D.A. Sharifi-Rad J. Mir R.H. Calina D. Repurposing approved non-oncology drugs for cancer therapy: A comprehensive review of mechanisms, efficacy, and clinical prospects. Eur. J. Med. Res. 2023 28 1 345 10.1186/s40001‑023‑01275‑4 37710280
    [Google Scholar]
  209. Kirtonia A. Gala K. Fernandes S.G. Pandya G. Pandey A.K. Sethi G. Khattar E. Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin. Cancer Biol. 2021 68 258 278 10.1016/j.semcancer.2020.04.006 32380233
    [Google Scholar]
  210. Dahiya R. Dahiya S. Fuloria N.K. Jankie S. Agarwal A. Davis V. Sahadeo V. Radhay V. Ramsubhag Y. Mullings W. Langford Z. Bedassie Z. Fuloria S. Natural thiazoline-based cyclodepsipeptides from marine cyanobacteria: Chemistry, bioefficiency and clinical aspects. Curr. Med. Chem. 2021 28 38 7887 7909 10.2174/0929867328666210526095436 34042024
    [Google Scholar]
  211. Yu Q. Wang C. Zhang X. Chen H. Wu M.X. Lu M. Photochemical strategies toward precision targeting against multidrug-resistant bacterial infections. ACS Nano 2024 18 22 14085 14122 10.1021/acsnano.3c12714 38775446
    [Google Scholar]
  212. Chen J. Wang W. Hu X. Yue Y. Lu X. Wang C. Wei B. Zhang H. Wang H. Medium-sized peptides from microbial sources with potential for antibacterial drug development. Nat. Prod. Rep. 2024 41 8 1235 1263 10.1039/D4NP00002A 38651516
    [Google Scholar]
  213. Langendonk R.F. Neill D.R. Fothergill J.L. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: Implications for current resistance-breaking therapies. Front. Cell. Infect. Microbiol. 2021 11 665759 10.3389/fcimb.2021.665759 33937104
    [Google Scholar]
  214. Sharma D. Bansal K.K. Sharma A. Pathak M. Sharma P.C. A brief literature and review of patents on thiazole related derivatives. Curr. Bioact. Compd. 2019 15 3 304 315 10.2174/1573407214666180827094725
    [Google Scholar]
  215. Morigi R. Locatelli A. Leoni A. Rambaldi M. Recent patents on thiazole derivatives endowed with antitumor activity. Rec. Pat. Anticancer Drug Discov. 2015 10 3 280 297 10.2174/1574892810666150708110432 26152151
    [Google Scholar]
  216. Al-Awsi G.R.L. Alameri A.A. Al-Dhalimy A.M.B. Gabr G.A. Kianfar E. Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. Braz. J. Biol. 2024 84 e264946 10.1590/1519‑6984.264946 36722677
    [Google Scholar]
  217. Das B. Baidya A.T.K. Mathew A.T. Yadav A.K. Kumar R. Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. Bioorg. Med. Chem. 2022 56 116614 10.1016/j.bmc.2022.116614 35033884
    [Google Scholar]
  218. Vargason A.M. Anselmo A.C. Mitragotri S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021 5 9 951 967 10.1038/s41551‑021‑00698‑w 33795852
    [Google Scholar]
  219. Abet V. Filace F. Recio J. Alvarez-Builla J. Burgos C. Prodrug approach: An overview of recent cases. Eur. J. Med. Chem. 2017 127 810 827 10.1016/j.ejmech.2016.10.061 27823878
    [Google Scholar]
  220. Real D.A. Bolaños K. Priotti J. Yutronic N. Kogan M.J. Sierpe R. Donoso-González O. Cyclodextrin-modified nanomaterials for drug delivery: Classification and advances in controlled release and bioavailability. Pharmaceutics 2021 13 12 2131 10.3390/pharmaceutics13122131 34959412
    [Google Scholar]
  221. Zhang P.L. Lavanya G. Yu Y. Fang B. Zhou C.H. Identification of a novel antifungal backbone of naphthalimide thiazoles with synergistic potential for chemical and dynamic treatment. Future Med. Chem. 2021 13 23 2047 2067 10.4155/fmc‑2021‑0162 34672778
    [Google Scholar]
  222. Hussein A.M. Gomha S.M. El-Ghany N.A.A. Zaki M.E.A. Farag B. Al-Hussain S.A. Sayed A.R. Zaki Y.H. Mohamed N.A. Green biocatalyst for ultrasound-assisted thiazole derivatives: Synthesis, antibacterial evaluation, and docking analysis. ACS Omega 2024 9 12 13666 13679 10.1021/acsomega.3c07785 38559991
    [Google Scholar]
  223. Sahil Kaur K. Jaitak V. Thiazole and related heterocyclic systems as anticancer agents: A review on synthetic strategies, mechanisms of Action and SAR studies. Curr. Med. Chem. 2022 29 29 4958 5009 10.2174/0929867329666220318100019 35306982
    [Google Scholar]
  224. Zhou J. Huang X. Zhang Z. Song P. Li Y. Trypsin -catalyzed multicomponent reaction: A novel and efficient one-pot synthesis of thiazole-2-imine derivatives. J. Biotechnol. 2017 241 14 21 10.1016/j.jbiotec.2016.11.004 27825826
    [Google Scholar]
  225. Al-Humaidi J.Y. Gomha S.M. El-Ghany N.A.A. Farag B. Zaki M.E.A. Abolibda T.Z. Mohamed N.A. Green Synthesis and Molecular Docking Study of Some New Thiazoles Using Terephthalohydrazide Chitosan Hydrogel as Ecofriendly Biopolymeric Catalyst. Catalysts 2023 13 9 1311 10.3390/catal13091311
    [Google Scholar]
  226. Tratrat C. Novel thiazole-based thiazolidinones as potent anti-infective agents: In silico PASS and toxicity prediction, synthesis, biological evaluation and molecular modelling. Comb. Chem. High Throughput Screen. 2020 23 2 126 140 10.2174/1386207323666200127115238 31985370
    [Google Scholar]
  227. Zhang H.Z. Gan L.L. Wang H. Zhou C.H. New Progress in Azole Compounds as Antimicrobial Agents. Mini Rev. Med. Chem. 2016 17 2 122 166 10.2174/1389557516666160630120725 27484625
    [Google Scholar]
  228. Arshad M.F. Alam A. Alshammari A.A. Alhazza M.B. Alzimam I.M. Alam M.A. Mustafa G. Ansari M.S. Alotaibi A.M. Alotaibi A.A. Kumar S. Asdaq S.M.B. Imran M. Deb P.K. Venugopala K.N. Jomah S. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022 27 13 3994 10.3390/molecules27133994 35807236
    [Google Scholar]
  229. Brooks L.A. The Chemistry of Thiazoles and Dithiocarbamates as Antioxidants. Rubber Chem. Technol. 1963 36 4 887 910 10.5254/1.3539639
    [Google Scholar]
  230. Voelker A.L. Taylor L.S. Mauer L.J. Effect of pH and concentration on the chemical stability and reaction kinetics of thiamine mononitrate and thiamine chloride hydrochloride in solution. BMC Chem. 2021 15 1 47 10.1186/s13065‑021‑00773‑y 34384471
    [Google Scholar]
  231. Shinde R.R. Dhawale S.A. Farooqui M. Design, synthesis, and anti-microbial study of ethyl 2-(n-(substituted-phenyl) sulfamoyl) thiazole-4-carboxylate derivatives. Chem. Biol. Interact. 2020 10 6 1 9
    [Google Scholar]
  232. Borcea A.M. Ionuț I. Crișan O. Oniga O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules 2021 26 3 624 10.3390/molecules26030624 33504100
    [Google Scholar]
  233. Mohammad H. Reddy P.V.N. Monteleone D. Mayhoub A.S. Cushman M. Hammac G.K. Seleem M.N. Antibacterial characterization of novel synthetic thiazole compounds against Methicillin-Resistant Staphylococcus pseudintermedius. PLoS One 2015 10 6 e0130385 10.1371/journal.pone.0130385 26086336
    [Google Scholar]
  234. ElAwamy M. Mohammad H. Hussien A. Abutaleb N.S. Hagras M. Serya R.A.T. Taher A.T. Abouzid K.A.M. Seleem M.N. Mayhoub A.S. Alkoxyphenylthiazoles with broad-spectrum activity against multidrug-resistant gram-positive bacterial pathogens. Eur. J. Med. Chem. 2018 152 318 328 10.1016/j.ejmech.2018.04.049 29734000
    [Google Scholar]
  235. Mohammad H. Mayhoub A.S. Cushman M. Seleem M.N. Anti-biofilm activity and synergism of novel thiazole compounds with glycopeptide antibiotics against multidrug-resistant Staphylococci. J. Antibiot. (Tokyo) 2015 68 4 259 266 10.1038/ja.2014.142 25315757
    [Google Scholar]
  236. Hagras M. Abutaleb N.S. Ali A.O. Abdel-Aleem J.A. Elsebaei M.M. Seleem M.N. Mayhoub A.S. Naphthylthiazoles: Targeting multidrug-resistant and intracellular staphylococcus aureus with biofilm disruption activity. ACS Infect. Dis. 2018 4 12 1679 1691 10.1021/acsinfecdis.8b00172 30247876
    [Google Scholar]
  237. Lowrence R.C. Raman T. Makala H.V. Ulaganathan V. Subramaniapillai S.G. Kuppuswamy A.A. Mani A. Chittoor Neelakantan S. Nagarajan S. Dithiazole thione derivative as competitive NorA efflux pump inhibitor to curtail multi drug resistant clinical isolate of MRSA in a zebrafish infection model. Appl. Microbiol. Biotechnol. 2016 100 21 9265 9281 10.1007/s00253‑016‑7759‑2 27531512
    [Google Scholar]
  238. Bhardwaj V. Design, Synthesis and Applications of Novel Supramolecular Assemblies. India Maharaja Sayajirao University of Baroda 2022
    [Google Scholar]
  239. Harun-Ur-Rashid M. Jahan I. Islam M.J. Kumer A. Huda M.N. Imran A.B. Gouadria S. Alsalhi S.A. Global advances and smart innovations in supramolecular polymers. J. Mol. Struct. 2024 1304 137665 10.1016/j.molstruc.2024.137665
    [Google Scholar]
  240. Shahin I.G. Abutaleb N.S. Alhashimi M. Kassab A.E. Mohamed K.O. Taher A.T. Seleem M.N. Mayhoub A.S. Evaluation of N-phenyl-2-aminothiazoles for treatment of multi-drug resistant and intracellular Staphylococcus aureus infections. Eur. J. Med. Chem. 2020 202 112497 10.1016/j.ejmech.2020.112497 32707373
    [Google Scholar]
  241. Zhang L. Peng X.M. Damu G.L.V. Geng R.X. Zhou C.H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev. 2014 34 2 340 437 10.1002/med.21290 23740514
    [Google Scholar]
  242. Li C.M. Chen J. Lu Y. Narayanan R. Parke D.N. Li W. Ahn S. Miller D.D. Dalton J.T. Pharmacokinetic optimization of 4-substituted methoxybenzoyl-aryl-thiazole and 2-aryl-4-benzoyl-imidazole for improving oral bioavailability. Drug Metab. Dispos. 2011 39 10 1833 1839 10.1124/dmd.110.036616 21742898
    [Google Scholar]
  243. Leoni A. Locatelli A. Morigi R. Rambaldi M. Novel thiazole derivatives: a patent review (2008 – 2012; Part 1). Expert Opin. Ther. Pat. 2014 24 2 201 216 10.1517/13543776.2014.858121 24215328
    [Google Scholar]
  244. Pucek A. Tokarek B. Waglewska E. Bazylińska U. Recent Advances in the Structural Design of Photosensitive Agent Formulations Using “Soft” Colloidal Nanocarriers. Pharmaceutics 2020 12 6 587 10.3390/pharmaceutics12060587 32599791
    [Google Scholar]
  245. Iraci N. Corsaro C. Giofrè S.V. Neri G. Mezzasalma A.M. Vacalebre M. Speciale A. Saija A. Cimino F. Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022 12 8 1060 10.3390/biom12081060 36008954
    [Google Scholar]
  246. Dwivedi B.K. Arnold R.G. Chemistry of thiamine degradation on food products and model systems. Review. J. Agric. Food Chem. 1973 21 1 54 60 10.1021/jf60185a004 4565919
    [Google Scholar]
  247. Ottaway P.B. Stability of Vitamins During Food Processing and Storage. Chemical Deterioration and Physical Instability of Food and Beverages. Elsevier 2010 539 560 10.1533/9781845699260.3.539
    [Google Scholar]
  248. Wu Y.J. Meanwell N.A. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J. Med. Chem. 2021 64 14 9786 9874 10.1021/acs.jmedchem.1c00790 34213340
    [Google Scholar]
  249. Voelker A.L. Miller J. Running C.A. Taylor L.S. Mauer L.J. Chemical stability and reaction kinetics of two thiamine salts (thiamine mononitrate and thiamine chloride hydrochloride) in solution. Food Res. Int. 2018 112 443 456 10.1016/j.foodres.2018.06.056 30131156
    [Google Scholar]
  250. Hammad A. Abutaleb N.S. Elsebaei M.M. Norvil A.B. Alswah M. Ali A.O. Abdel-Aleem J.A. Alattar A. Bayoumi S.A. Gowher H. Seleem M.N. Mayhoub A.S. From Phenylthiazoles to Phenylpyrazoles: Broadening the Antibacterial Spectrum toward Carbapenem-Resistant Bacteria. J. Med. Chem. 2019 62 17 7998 8010 10.1021/acs.jmedchem.9b00720 31369262
    [Google Scholar]
  251. Auti P.S. George G. Paul A.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Advances 2020 10 68 41353 41392 10.1039/D0RA06642G 35516563
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266334873250316102556
Loading
/content/journals/ctmc/10.2174/0115680266334873250316102556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test