Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Despite ongoing advancements in drug design and developments, breast cancer remains a serious and devastating disease and is ranked as the second most common illness in women. Breast cancer rates have increased significantly during the last 40 years. This necessitates the development of novel treatment techniques. Currently, chemotherapy is the primary mode of treatment for breast cancer; however, its toxicity to normal cells and drug resistance are considered the main obstacles. Researchers are looking for novel anti-breast cancer medication classes to improve cancer therapy efficacy and survival rates. Using non-targeting medicines in a 'one-size-fits-all' strategy can harm healthy cells and may not be effective for all patients. Thus, now, the treatment of breast cancer is exploring targeted-based therapy. The tactics involved in this therapy may improve patient survival rates, but their extended usage can lead to significant side effects and medication resistance. Targeted therapy enables precision medicine by targeting particular oncogenic markers in malignancies. Because of their strong cytotoxicity against several cancer cell types, heterocyclic compounds play an important role in the development of therapeutically effective anticancer drugs. Benzimidazole derivatives have grown in favour of anti-breast cancer medicines in recent years due to their broad biological characteristics and therapeutic applications. This review provides healthcare professionals and researchers with an overview of current breakthroughs (2019-2024) in benzimidazole derivatives as breast cancer-targeted therapy, based on the perspectives of leading experts. We have illuminated the diverse and evolving landscape of hybridized benzimidazole, along with its biological targets and anti-breast cancer activity. Further, we also have compiled the various ongoing clinical trials of benzimidazole scaffolds as anti-breast cancer agents. A detailed illustration of the structure-activity connection with special emphasis is provided. The effort may help to develop potent, selective, and effective drugs to combat breast cancer.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266336395241115092048
2025-01-07
2025-12-19
Loading full text...

Full text loading...

References

  1. McGuireA. BrownJ. MaloneC. McLaughlinR. KerinM. Effects of age on the detection and management of breast cancer.Cancers (Basel)20157290892910.3390/cancers7020815 26010605
    [Google Scholar]
  2. BalasubramanianR. RolphR. MorganC. HamedH. Genetics of breast cancer: Management strategies and risk-reducing surgery.Br. J. Hosp. Med. (Lond.)2019801272072510.12968/hmed.2019.80.12.720 31822191
    [Google Scholar]
  3. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  4. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  5. TeliG. ChawlaP.A. Hybridization of imidazole with various heterocycles in targeting cancer: A decade’s work.ChemistrySelect20216194803483610.1002/slct.202101038
    [Google Scholar]
  6. KumarV. DhawanS. GiraseP.S. AwoladeP. ShindeS.R. KarpoormathR. SinghP. Recent advances in chalcone-based anticancer heterocycles: A structural and molecular target perspective.Curr. Med. Chem.202128336805684510.2174/0929867328666210322102836 33749549
    [Google Scholar]
  7. BhatiaR. RawalR.K. Coumarin hybrids: Promising scaffolds in the treatment of breast cancer.Mini Rev. Med. Chem.201919171443145810.2174/1389557519666190308122509 30854961
    [Google Scholar]
  8. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  9. PalR. TeliG. SenguptaS. MajiL. Purawarga MatadaG.S. An outlook of docking analysis and structure-activity relationship of pyrimidine-based analogues as EGFR inhibitors against non-small cell lung cancer (NSCLC).J. Biomol. Struct. Dyn.2023117 37642992
    [Google Scholar]
  10. 2024https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  11. SharminS. RahamanM.M. MartorellM. Sastre-SerraJ. Sharifi-RadJ. ButnariuM. BagiuI.C. BagiuR.V. IslamM.T. Cytotoxicity of synthetic derivatives against breast cancer and multi-drug resistant breast cancer cell lines: A literature-based perspective study.Cancer Cell Int.202121161210.1186/s12935‑021‑02309‑9 34801046
    [Google Scholar]
  12. National breast cancer foundation I. Breast Cancer Facts & Stats2024updated 25/05/2024; cited 2024 23/05]. Available from: https://www.nationalbreastcancer.org/breast-cancer-facts/#:~:text=In%202024%2C%20an%20estimated%20310%2C720%20women%20and,you%20know%20at%20least%20one%20person%20who
    [Google Scholar]
  13. BayrakçekenE. YaralıS. AlkanÖ. Identify risk factors affecting participation of Turkish women in mammography screening for breast cancer prevention.Breast Cancer Res. Treat.2024205348749510.1007/s10549‑024‑07296‑9 38453780
    [Google Scholar]
  14. MosqueraI. BarajasC.B. TheriaultH. Benitez MajanoS. ZhangL. MazaM. LucianiS. CarvalhoA.L. BasuP. Assessment of barriers to cancer screening and interventions implemented to overcome these barriers in 27 LATIN AMERICAN and CARIBBEAN countries.Int. J. Cancer2024155471973010.1002/ijc.34950 38648380
    [Google Scholar]
  15. WadaK. NagataC. UtadaM. SakataR. KimuraT. TamakoshiA. SugawaraY. TsujiI. SatoR. SawadaN. TsuganeS. OzeI. ItoH. KitamuraT. KoyanagiY.N. LinY. MatsuoK. AbeS.K. InoueM. InoueM. AbeS.K. SawadaN. TanakaS. KimuraT. SugawaraY. MizoueT. NomuraS. TakimotoH. ItoH. MatsuoK. LinY. WadaK. KitamuraT. SakataR. TanakaK. CharvatH. HidakaA. HirabayashiM. IwasakiM. KitamuraY. MoriN. MutoM. NagataC. NaitoM. NakayamaT. NishinoY. SadakaneA. SaitoE. SasazukiS. ShimazuT. ShimizuH. SugiyamaK. SuzukiH. TamakoshiA. TsubonoY. TsujiI. TsuganeS. UtadaM. WakaiK. YamagiwaY. YamajiT. Active and passive smoking and breast cancer in Japan: A pooled analysis of nine population-based cohort studies.Int. J. Epidemiol.2024533dyae04710.1093/ije/dyae047 38604675
    [Google Scholar]
  16. ElkaeedE.B. SalamH.A.A.E. SabtA. Al-AnsaryG.H. EldehnaW.M. Recent advancements in the development of anti-breast cancer synthetic small molecules.Molecules20212624761110.3390/molecules26247611 34946704
    [Google Scholar]
  17. MitraS. MicroRNA therapeutics in triple negative breast cancer Arch Pathol Clin Res20171100901710.29328/journal.hjpcr.1001003
    [Google Scholar]
  18. CallahanR. HurvitzS. Human epidermal growth factor receptor-2-positive breast cancer: Current management of early, advanced, and recurrent disease.Curr. Opin. Obstet. Gynecol.2011231374310.1097/GCO.0b013e3283414e87 21500375
    [Google Scholar]
  19. CaoL. NiuY. Triple negative breast cancer: Special histological types and emerging therapeutic methods.Cancer Biol. Med.202017229330610.20892/j.issn.2095‑3941.2019.0465 32587770
    [Google Scholar]
  20. SchlotterC.M. VogtU. AllgayerH. BrandtB. Molecular targeted therapies for breast cancer treatment.Breast Cancer Res.200810421110.1186/bcr2112 18671839
    [Google Scholar]
  21. ShahU. PatelN. PatelM. RohitS. SolankiN. PatelA. PatelS. PatelV. PatelR. JawarkarR.D. Computational exploration of naturally occurring flavonoids as TGF‐β inhibitors in breast cancer: Insights from docking and molecular dynamics simulations and In‐vitro Cytotoxicity study.Chem. Biodivers.2024216e20230190310.1002/cbdv.202301903 38623839
    [Google Scholar]
  22. ShahU. PatelA. PatelS. PatelM. PatelA. PatelS. Role of natural and synthetic flavonoids as potential aromatase inhibitors in breast cancer: Structure-activity relationship perspective.Anticancer. Agents Med. Chem.2022202222112063207910.2174/1871520621666211026101252
    [Google Scholar]
  23. ShahU. PatelS. PatelM. JainN. PandeyN. Chauhan, A In vitro cytotoxicity and Aromatase inhibitory activity of flavonoids: Synthesis, molecular docking and in silico ADME prediction.Anticancer. Agents Med. Chem.202222713701385
    [Google Scholar]
  24. HodsonR. Precision medicine.Nature20165377619S49
    [Google Scholar]
  25. Shagufta; Ahmad, I. Therapeutic significance of molecular hybrids for breast cancer research and treatment.RSC Med. Chem.202314221823810.1039/D2MD00356B 36846377
    [Google Scholar]
  26. LiuJ. MingB. GongG.H. WangD. BaoG.L. YuL.J. Current research on anti-breast cancer synthetic compounds.RSC Advances2018884386441610.1039/C7RA12912B
    [Google Scholar]
  27. LiuT. SongS. WangX. HaoJ. Small-molecule inhibitors of breast cancer-related targets: Potential therapeutic agents for breast cancer.Eur. J. Med. Chem.202121011295410.1016/j.ejmech.2020.112954 33158576
    [Google Scholar]
  28. TantawyM.A. NafieM.S. ElmegeedG.A. AliI.A.I. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs.Bioorg. Chem.20177312814610.1016/j.bioorg.2017.06.006 28668650
    [Google Scholar]
  29. PalR. TeliG. Swamy Purawarga MatadaG. Sanjay DhiwarP. nitrogen‐containing Heterocyclic scaffolds as EGFR inhibitors: Design approaches, molecular docking, and structure‐activity relationships.ChemistrySelect2023826e20230120010.1002/slct.202301200
    [Google Scholar]
  30. TeliG. PalR. MajiL. SenguptaS. RaghavendraN.M. MatadaG.S.P. Medicinal chemistry perspectives on recent advances in Src Kinase inhibitors as a potential target for the development of anticancer agents: Biological profile, selectivity, structure‐activity relationship.Chem. Biodivers.2023209e20230051510.1002/cbdv.202300515 37563848
    [Google Scholar]
  31. SinghK. PalR. KhanS.A. KumarB. AkhtarM.J. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review.J. Mol. Struct.2021123713036910.1016/j.molstruc.2021.130369
    [Google Scholar]
  32. Salahuddin; Shaharyar, M.; Mazumder, A. Benzimidazoles: A biologically active compounds.Arab. J. Chem.201710S157S17310.1016/j.arabjc.2012.07.017
    [Google Scholar]
  33. LeeY.T. TanY.J. OonC.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine.Acta Pharm. Sin. B202313247849710.1016/j.apsb.2022.09.010 36873180
    [Google Scholar]
  34. SongB. ParkE.Y. KimK.J. KiS.H. Repurposing of benzimidazole anthelmintic drugs as cancer therapeutics.Cancers (Basel)20221419460110.3390/cancers14194601 36230527
    [Google Scholar]
  35. NardiM. CanoN.C.H. SimeonovS. BenceR. KurutosA. ScarpelliR. WunderlinD. ProcopioA. A review on the green synthesis of Benzimidazole derivatives and their pharmacological activities.Catalysts202313239210.3390/catal13020392
    [Google Scholar]
  36. Hernández-LópezH. Tejada-RodríguezC.J. Leyva-RamosS. A panoramic review of benzimidazole derivatives and their potential biological activity.Mini Rev. Med. Chem.20222291268128010.2174/1389557522666220104150051 34983345
    [Google Scholar]
  37. RajasekharS. MaitiB.M. BalamuraliM. ChandaK. Synthesis and medicinal applications of benzimidazoles: An overview.Curr. Org. Synth.2017141406010.2174/1570179413666160818151932
    [Google Scholar]
  38. SinglaP. LuxamiV. PaulK. Benzimidazole-biologically attractive scaffold for protein kinase inhibitors.RSC Advances2014424124221244010.1039/c3ra46304d
    [Google Scholar]
  39. AjaniO.O. AderohunmuD.V. IkpoC.O. AdedapoA.E. OlanrewajuI.O. Functionalized benzimidazole scaffolds: Privileged heterocycle for drug design in therapeutic medicine.Arch. Pharm. (Weinheim)2016349747550610.1002/ardp.201500464 27213292
    [Google Scholar]
  40. YadavS. Narasimhan, B Perspectives of Benzimidazole derivatives as anticancer agents in the new era.Anticancer. Agents Med. Chem.201616111403142510.2174/1871520616666151103113412
    [Google Scholar]
  41. BrañaM.F. CastellanoJ.M. KeilhauerG. MachucaA. MartínY. RedondoC. SchlickE. WalkerN. Benzimidazo[1,2-c]quinazolines: A new class of antitumor compounds.Anticancer Drug Des.199496527538 7880377
    [Google Scholar]
  42. RefaatH.M. Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives.Eur. J. Med. Chem.20104572949295610.1016/j.ejmech.2010.03.022 20399544
    [Google Scholar]
  43. BuiH.T.B. HaQ.T.K. OhW.K. VoD.D. ChauY.N.T. TuC.T.K. PhamE.C. TranP.T. TranL.T. MaiH.V. Microwave assisted synthesis and cytotoxic activity evaluations of new benzimidazole derivatives.Tetrahedron Lett.201657888789110.1016/j.tetlet.2016.01.042
    [Google Scholar]
  44. PhamE.C. Le ThiT.V. Ly HongH.H. Vo ThiB.N. VongL.B. VuT.T. VoD.D. Tran NguyenN.V. Bao LeK.N. ; Truong, T.N. N, 2,6-Trisubstituted 1 H -benzimidazole derivatives as a new scaffold of antimicrobial and anticancer agents: Design, synthesis, in vitro evaluation, and in silico studies.RSC Advances202213139942010.1039/D2RA06667J 36605630
    [Google Scholar]
  45. PributN. BassonA.E. van OtterloW.A.L. LiottaD.C. PellyS.C. Aryl substituted benzimidazolones as potent HIV-1 non-nucleoside reverse transcriptase inhibitors.ACS Med. Chem. Lett.201910219620210.1021/acsmedchemlett.8b00549 30783503
    [Google Scholar]
  46. AcharK.C.S. HosamaniK.M. SeetharamareddyH.R. In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives.Eur. J. Med. Chem.20104552048205410.1016/j.ejmech.2010.01.029 20133024
    [Google Scholar]
  47. SharmaM.C. KohliD.V. SharmaS. Benzimidazoles derivatives with (2-6-Chloro-5-nitro-1-[2-(1H-tetrazol-5-yl) biphenyl-4-ylmethyl] 1H-benzoimidazol-2-yl-phenyl)-(substituted-benzylidene)-amine with potential angiotensin II receptor antagonists as antihypertensive activity.Int. J. Drug Deliv.20102322823710.5138/ijdd.2010.0975.0215.02033
    [Google Scholar]
  48. TunçbilekM. KiperT. AltanlarN. Synthesis and in vitro antimicrobial activity of some novel substituted benzimidazole derivatives having potent activity against MRSA.Eur. J. Med. Chem.20094431024103310.1016/j.ejmech.2008.06.026 18718694
    [Google Scholar]
  49. ZhangH.Z. DamuG.L.V. CaiG.X. ZhouC.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole.Eur. J. Med. Chem.20136432934410.1016/j.ejmech.2013.03.049 23644216
    [Google Scholar]
  50. MalasalaS. AhmadM.N. AkunuriR. ShuklaM. KaulG. DasguptaA. MadhaviY.V. ChopraS. NanduriS. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis.Eur. J. Med. Chem.202121211299610.1016/j.ejmech.2020.112996 33190958
    [Google Scholar]
  51. SurineniG. GaoY. HussainM. LiuZ. LuZ. ChhotarayC. IslamM.M. HameedH.M.A. ZhangT. Design, synthesis, and in vitro biological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors of Mycobacterium tuberculosis.MedChemComm2019101496010.1039/C8MD00389K 30774854
    [Google Scholar]
  52. WelageLS BerardiRR Evaluation of omeprazole, lansoprazole, pantoprazole, and rabeprazole in the treatment of acid-related diseases J Am Pharm Assoc (Wash),2000401526210.1016/S1086‑5802(16)31036‑1
    [Google Scholar]
  53. ColeD.C. GrossJ.L. ComeryT.A. AschmiesS. HirstW.D. KelleyC. KimJ.I. KubekK. NingX. PlattB.J. RobichaudA.J. SolvibileW.R. StockJ.R. TawaG. WilliamsM.J. EllingboeJ.W. Benzimidazole- and indole-substituted 1,3′-bipyrrolidine benzamides as histamine H3 receptor antagonists.Bioorg. Med. Chem. Lett.20102031237124010.1016/j.bmcl.2009.11.122 20042333
    [Google Scholar]
  54. MohamedB.G. Abdel-AlimA-A.M. HusseinM.A. Synthesis of 1-acyl-2-alkylthio-1,2,4-triazolobenzimidazoles with antifungal, anti-inflammatory and analgesic effects.Acta Pharm.20065613148 16613733
    [Google Scholar]
  55. OuattaraM. SissoumaD. KonéM.W. MenanH.E. TouréS.A. OuattaraL. Synthesis and anthelmintic activity of some hybrid Benzimidazolyl-chalcone derivatives.Trop. J. Pharm. Res.201110676777510.4314/tjpr.v10i6.10
    [Google Scholar]
  56. Bharti, N.; Shailendra, ; Gonzalez Garza, M.T.; Cruz-Vega, D.E.; Castro-Garza, J.; Saleem, K.; Naqvi, F.; Maurya, M.R.; Azam, A. Synthesis, characterization and antiamoebic activity of benzimidazole derivatives and their vanadium and molybdenum complexes.Bioorg. Med. Chem. Lett.200212686987110.1016/S0960‑894X(02)00034‑3 11958982
    [Google Scholar]
  57. Valdez-PadillaD. Rodríguez-MoralesS. Hernández-CamposA. Hernández-LuisF. Yépez-MuliaL. Tapia-ContrerasA. CastilloR. Synthesis and antiprotozoal activity of novel 1-methylbenzimidazole derivatives.Bioorg. Med. Chem.20091741724173010.1016/j.bmc.2008.12.059 19186059
    [Google Scholar]
  58. BhriguB. SiddiquiN. PathakD. AlamM.S. AliR. AzadB. Anticonvulsant evaluation of some newer benzimidazole derivatives: Design and synthesis.Acta Pol. Pharm.20126915362 22574507
    [Google Scholar]
  59. PalR. KumarB. AkhtarM.J. ChawlaP.A. Voltage gated sodium channel inhibitors as anticonvulsant drugs: A systematic review on recent developments and structure activity relationship studies.Bioorg. Chem.202111510523010.1016/j.bioorg.2021.105230 34416507
    [Google Scholar]
  60. PalR. SinghK. KhanS.A. ChawlaP. KumarB. AkhtarM.J. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction.Eur. J. Med. Chem.202122611389010.1016/j.ejmech.2021.113890 34628237
    [Google Scholar]
  61. AkhtarM.J. PalR. SinghK. PaulJ. KhanS.A. NaimM.J. Overview of chemistry and therapeutic potential of non-nitrogen heterocyclics as anticonvulsant agents.Curr. Neuropharmacol.20222081519155310.2174/1570159X19666210803144815 34344289
    [Google Scholar]
  62. ValdezJ. CedilloR. Hernández-CamposA. YépezL. Hernández-LuisF. Navarrete-VázquezG. TapiaA. CortésR. HernándezM. CastilloR. Synthesis and antiparasitic activity of 1H-benzimidazole derivatives.Bioorg. Med. Chem. Lett.200212162221222410.1016/S0960‑894X(02)00346‑3 12127542
    [Google Scholar]
  63. PalR. TeliG. AkhtarM.J. MatadaG.S.P. The role of natural anti-parasitic guided development of synthetic drugs for leishmaniasis.Eur. J. Med. Chem.202325811560910.1016/j.ejmech.2023.115609 37421889
    [Google Scholar]
  64. UshirodaK. MarutaK. TakazawaT. NaganoT. TaijiM. KohnoT. SatoY. HoraiS. YanagiK. NagataR. Synthesis and pharmacological evaluation of novel benzoylazole-based PPAR α/γ activators.Bioorg. Med. Chem. Lett.20112171978198210.1016/j.bmcl.2011.02.032 21377875
    [Google Scholar]
  65. ÖzilM. EmirikM. BeldüzA. ÜlkerS. Molecular docking studies and synthesis of novel bisbenzimidazole derivatives as inhibitors of α-glucosidase.Bioorg. Med. Chem.201624215103511410.1016/j.bmc.2016.08.024 27576293
    [Google Scholar]
  66. AlpanA.S. SarıkayaG. ÇobanG. ParlarS. ArmaganG. AlptüzünV. Mannich‐Benzimidazole Derivatives as Antioxidant and Anticholinesterase Inhibitors: Synthesis, Biological Evaluations, and Molecular Docking Study.Arch. Pharm. (Weinheim)20173507e160035110.1002/ardp.201600351 28379621
    [Google Scholar]
  67. KarmakerN. LiraD.N. DasB.K. KumarU. RoufA.S.S. Synthesis and antioxidant activity of some novel benzimidazole derivatives.DUJPS201816224524910.3329/dujps.v16i2.35263
    [Google Scholar]
  68. RashidM. HusainA. MishraR. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents.Eur. J. Med. Chem.20125485586610.1016/j.ejmech.2012.04.027 22608854
    [Google Scholar]
  69. SarhanA.A.O. Al-DhfyanA. Al-MozainiM.A. AdraC.N. Aboul-FadlT. Cell cycle disruption and apoptotic activity of 3-aminothiazolo[3,2-a]benzimidazole-2-carbonitrile and its homologues.Eur. J. Med. Chem.20104562689269410.1016/j.ejmech.2010.02.025 20226574
    [Google Scholar]
  70. GuanQ. HanC. ZuoD. ZhaiM. LiZ. ZhangQ. ZhaiY. JiangX. BaoK. WuY. ZhangW. Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities.Eur. J. Med. Chem.20148730631510.1016/j.ejmech.2014.09.071 25262051
    [Google Scholar]
  71. El RashedyA.A. Aboul-EneinH.Y. Benzimidazole derivatives as potential anticancer agents.Mini Rev. Med. Chem.2013133399407 23190032
    [Google Scholar]
  72. KanwalA. SaddiqueF.A. AslamS. AhmadM. ZahoorA.F. MohsinN-A. Mohsin N-u-A. Benzimidazole ring system as a privileged template for anticancer agents.Pharm. Chem. J.201851121068107710.1007/s11094‑018‑1742‑4
    [Google Scholar]
  73. CheongJ.E. ZaffagniM. ChungI. XuY. WangY. JerniganF.E. ZetterB.R. SunL. Synthesis and anticancer activity of novel water soluble benzimidazole carbamates.Eur. J. Med. Chem.201814437238510.1016/j.ejmech.2017.11.037 29288939
    [Google Scholar]
  74. AkhtarM.J. SiddiquiA.A. KhanA.A. AliZ. DewanganR.P. PashaS. YarM.S. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors.Eur. J. Med. Chem.201712685386910.1016/j.ejmech.2016.12.014 27987485
    [Google Scholar]
  75. AkkoçS. KayserV. İlhanİ.Ö. HibbsD.E. GökY. WilliamsP.A. HawkinsB. LaiF. New compounds based on a benzimidazole nucleus: Synthesis, characterization and cytotoxic activity against breast and colon cancer cell lines.J. Organomet. Chem.20178399810710.1016/j.jorganchem.2017.03.037
    [Google Scholar]
  76. BielawskiK. WołczyńskiS. BielawskaA. Inhibition of DNA topoisomerase I and II, and growth inhibition of MDA-MB-231 human breast cancer cells by bis-benzimidazole derivatives with alkylating moiety.Pol. J. Pharmacol.2004563373378 15215569
    [Google Scholar]
  77. LiP. ZhangW. JiangH. LiY. DongC. ChenH. ZhangK. DuZ. Design, synthesis and biological evaluation of benzimidazole–rhodanine conjugates as potent topoisomerase II inhibitors.MedChemComm2018971194120510.1039/C8MD00278A 30109008
    [Google Scholar]
  78. MolehinD. RashaF. RahmanR.L. PruittK. Regulation of aromatase in cancer.Mol. Cell. Biochem.202147662449246410.1007/s11010‑021‑04099‑0 33599895
    [Google Scholar]
  79. SağlıkB.N. ŞenA.M. EvrenA.E. ÇevikU.A. OsmaniyeD. Kaya ÇavuşoğluB. LeventS. KaradumanA.B. ÖzkayY. KaplancıklıZ.A. Synthesis, investigation of biological effects and in silico studies of new benzimidazole derivatives as aromatase inhibitors.Z. Naturforsch. C J. Biosci.2020759-1035336210.1515/znc‑2020‑0104 32681791
    [Google Scholar]
  80. PalmaJ.P. WangY.C. RodriguezL.E. MontgomeryD. EllisP.A. BukofzerG. NiquetteA. LiuX. ShiY. LaskoL. ZhuG.D. PenningT.D. GirandaV.L. RosenbergS.H. FrostD.J. DonawhoC.K. ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors.Clin. Cancer Res.200915237277729010.1158/1078‑0432.CCR‑09‑1245 19934293
    [Google Scholar]
  81. WagnerL. Profile of veliparib and its potential in the treatment of solid tumors.OncoTargets Ther.201581931193910.2147/OTT.S69935 26251615
    [Google Scholar]
  82. RaheemF. OforiH. SimpsonL. ShahV. Abemaciclib: the first FDA-approved CDK4/6 inhibitor for the adjuvant treatment of HR+ HER2− early breast cancer.Ann. Pharmacother.202256111258126610.1177/10600280211073322 35135362
    [Google Scholar]
  83. ZhangQ.W. YeZ.D. ShenC. TieH.X. WangL. ShiL. Synthesis of novel 6,7-dimethoxy-4-anilinoquinolines as potent c-Met inhibitors.J. Enzyme Inhib. Med. Chem.201934112413310.1080/14756366.2018.1533822 30422010
    [Google Scholar]
  84. RicciardelliC. Bianco-MiottoT. JindalS. ButlerL.M. LeungS. McNeilC.M. O’TooleS.A. EbrahimieE. MillarE.K.A. SakkoA.J. RuizA.I. VowlerS.L. HuntsmanD.G. BirrellS.N. SutherlandR.L. PalmieriC. HickeyT.E. TilleyW.D. The magnitude of androgen receptor positivity in breast cancer is critical for reliable prediction of disease outcome.Clin. Cancer Res.201824102328234110.1158/1078‑0432.CCR‑17‑1199 29514843
    [Google Scholar]
  85. YamoriT. MatsunagaA. SatoS. YamazakiK. KomiA. IshizuK. MitaI. EdatsugiH. MatsubaY. TakezawaK. NakanishiO. KohnoH. NakajimaY. KomatsuH. AndohT. TsuruoT. Potent antitumor activity of MS-247, a novel DNA minor groove binder, evaluated by an in vitro and in vivo human cancer cell line panel.Cancer Res.1999591640424049 10463605
    [Google Scholar]
  86. RashidM. HusainA. MishraR. KarimS. KhanS. AhmadM. Al-wabelN. HusainA. AhmadA. KhanS.A. Design and synthesis of benzimidazoles containing substituted oxadiazole, thiadiazole and triazolo-thiadiazines as a source of new anticancer agents.Arab. J. Chem.20191283202322410.1016/j.arabjc.2015.08.019
    [Google Scholar]
  87. KamalA. Praveen KumarP. SreekanthK. SeshadriB.N. RamuluP. Synthesis of new benzimidazole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates with efficient DNA-binding affinity and potent cytotoxicity.Bioorg. Med. Chem. Lett.20081882594259810.1016/j.bmcl.2008.03.039 18378445
    [Google Scholar]
  88. KarthikeyanC. SolomonV.R. LeeH. TrivediP. Synthesis and biological evaluation of 2-(phenyl)-3H-benzo[d]imidazole-5-carboxylic acids and its methyl esters as potent anti-breast cancer agents.Arab. J. Chem.201710S1788S179410.1016/j.arabjc.2013.07.003
    [Google Scholar]
  89. HasanpourghadiM. PanduranganA.K. KarthikeyanC. TrivediP. MustafaM.R. Mechanisms of the anti-tumor activity of Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1 H-benzo[d]imidazole-5-carboxylate against breast cancer in vitro and in vivo.Oncotarget2017817288402885310.18632/oncotarget.16263 28392503
    [Google Scholar]
  90. BlajeskiA.L. PhanV.A. KottkeT.J. KaufmannS.H. G1 and G2 cell-cycle arrest following microtubule depolymerization in human breast cancer cells.J. Clin. Invest.20021101919910.1172/JCI13275 12093892
    [Google Scholar]
  91. SinglaP. LuxamiV. PaulK. Triazine–benzimidazole hybrids: Anticancer activity, DNA interaction and dihydrofolate reductase inhibitors.Bioorg. Med. Chem.20152381691170010.1016/j.bmc.2015.03.012 25792141
    [Google Scholar]
  92. RaimondiM.V. RandazzoO. La FrancaM. BaroneG. VignoniE. RossiD. CollinaS. DHFR inhibitors: Reading the past for discovering novel anticancer agents.Molecules2019246114010.3390/molecules24061140 30909399
    [Google Scholar]
  93. Hontecillas-PrietoL. Flores-CamposR. SilverA. de ÁlavaE. HajjiN. García-DomínguezD.J. Synergistic enhancement of cancer therapy using HDAC inhibitors: Opportunity for clinical trials.Front. Genet.20201157801110.3389/fgene.2020.578011 33024443
    [Google Scholar]
  94. LeeD.H. KimG.W. JeonY.H. YooJ. LeeS.W. KwonS.H. Advances in histone demethylase KDM4 as cancer therapeutic targets.FASEB J.20203433461348410.1096/fj.201902584R 31961018
    [Google Scholar]
  95. KuoK.T. HuangW.C. BamoduO.A. LeeW.H. WangC.H. HsiaoM. WangL.S. YehC.T. Histone demethylase JARID1B/KDM5B promotes aggressiveness of non-small cell lung cancer and serves as a good prognostic predictor.Clin. Epigenetics201810110710.1186/s13148‑018‑0533‑9 30092824
    [Google Scholar]
  96. AlhazzaziT.Y. KamarajanP. VerdinE. KapilaY.L. SIRT3 and cancer: Tumor promoter or suppressor? Biochimica et Biophysica Acta (BBA)-.Rev. Can.2011181618088
    [Google Scholar]
  97. SaundersL.R. VerdinE. Sirtuins: Critical regulators at the crossroads between cancer and aging.Oncogene200726375489550410.1038/sj.onc.1210616 17694089
    [Google Scholar]
  98. Neoadjuvant Chemotherapy Docetaxel With or Without SELUMETINIB in Patients With Triple Negative Breast Cancerhttps://clinicaltrials.gov/study/NCT02685657?cond=Breast%20cancer&term=Selumetinib&rank=8
    [Google Scholar]
  99. BeachD.H. GoadL.J. BermanJ.D. EllenbergerT.E. BeverleyS.M. HolzG.G. Effects of a squalene-2, 3-epoxidase inhibitor on propagation and sterol biosynthesis of Leishmania promastigotes and amastigotes.Leishmaniasis1989885890
    [Google Scholar]
  100. Diaz-GonzalezR. KuhlmannF.M. Galan-RodriguezC. da SilvaL.M. SaldiviaM. KarverC.E. RodriguezA. BeverleyS.M. NavarroM. PollastriM.P. The susceptibility of trypanosomatid pathogens to PI3/mTOR kinase inhibitors affords a new opportunity for drug repurposing.PLoS Negl. Trop. Dis.201158e129710.1371/journal.pntd.0001297 21886855
    [Google Scholar]
  101. AkhoundiM. KuhlsK. CannetA. VotýpkaJ. MartyP. DelaunayP. SerenoD. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies.PLoS Negl. Trop. Dis.2016103e000434910.1371/journal.pntd.0004349 26937644
    [Google Scholar]
  102. SouzaT. TrindadeD. TonoliC. SantosC. Molecular adaptability of nucleoside diphosphate kinase b from trypanosomatid parasites: Stability, oligomerization and structural determinants of nucleotide binding.Mol. Biosyst.2011772189219510.1039/c0mb00307g 21528129
    [Google Scholar]
  103. EdwardsD.I. Nitroimidazole drugs - action and resistance mechanisms II. Mechanisms of resistance.J. Antimicrob. Chemother.199331220121010.1093/jac/31.2.201 8463167
    [Google Scholar]
  104. BandaruP.K. Satyakameswar RaoN. RadhikaG. Venkateswar RaoB. Synthesis of amide derivatives of benzimidazole-isoxazoles as anticancer agents.Chemical Data Collections20234410099410.1016/j.cdc.2023.100994
    [Google Scholar]
  105. NashaatS. HenenM.A. El-MesseryS.M. EisaH. New benzimidazoles targeting breast cancer: Synthesis, Pin1 inhibition, 2D NMR binding, and computational studies.Molecules20222716524510.3390/molecules27165245 36014485
    [Google Scholar]
  106. ZoatierB. YildirimM. AlagozM.A. YetkinD. TurkmenogluB. BurmaogluS. AlgulO. N-(benzazol-2-yl)-2-substituted phenylacetamide derivatives: Design, synthesis and biological evaluation against MCF7 breast cancer cell line.J. Mol. Struct.2023128513551310.1016/j.molstruc.2023.135513
    [Google Scholar]
  107. FanC. ZhongT. YangH. YangY. WangD. YangX. XuY. FanY. Design, synthesis, biological evaluation of 6-(2-amino-1H-benzo[d]imidazole-6-yl)quinazolin-4(3H)-one derivatives as novel anticancer agents with Aurora kinase inhibition.Eur. J. Med. Chem.202019011210810.1016/j.ejmech.2020.112108 32058239
    [Google Scholar]
  108. ÇevikU.A. CelikI. MellaJ. MelladoM. ÖzkayY. KaplancıklıZ.A. Design, synthesis, and molecular modeling studies of a novel benzimidazole as an aromatase inhibitor.ACS Omega2022718161521616310.1021/acsomega.2c01497 35571854
    [Google Scholar]
  109. QuyN.P. HueB.T.B. DoK.M. QuyH.T.K. DeT.Q. PhuongT.T.B. TrangP.C. QuocN.C. MoritaH. Design, synthesis and cytotoxicity Evalufation of substituted Benzimidazole conjugated 1,3,4-Oxadiazoles.Chem. Pharm. Bull. (Tokyo)202270644845310.1248/cpb.c22‑00162 35650042
    [Google Scholar]
  110. NazreenS. AlmalkiA.S.A. ElbehairiS.E.I. ShatiA.A. AlfaifiM.Y. ElhenawyA.A. AlsenaniN.I. AlfarsiA. AlhadhramiA. AlqurashiE.A. AlamM.M. Cell cycle arrest and apoptosis-inducing ability of benzimidazole derivatives: Design, synthesis, docking, and biological evaluation.Molecules20222720689910.3390/molecules27206899 36296495
    [Google Scholar]
  111. KaradayiF.Z. YamanM. KislaM.M. KeskusA.G. KonuO. Ates-AlagozZ. Design, synthesis and anticancer/antiestrogenic activities of novel indole-benzimidazoles.Bioorg. Chem.202010010392910.1016/j.bioorg.2020.103929 32464404
    [Google Scholar]
  112. KaradayiF.Z. YamanM. KislaM.M. KonuO. Ates-AlagozZ. Design, synthesis, anticancer activity, molecular docking and ADME studies of novel methylsulfonyl indole-benzimidazoles in comparison with ethylsulfonyl counterparts.New J. Chem.202145209010901910.1039/D1NJ01019K
    [Google Scholar]
  113. WangM. WuY. XuC. ZhaoR. HuangY. ZengX. ChenT. Design and synthesis of 2‐(5‐Phenylindol‐3‐yl)benzimidazole derivatives with antiproliferative effects towards triple‐negative breast cancer cells by activation of ros‐mediated Mitochondria dysfunction.Chem. Asian J.201914152648265510.1002/asia.201900468 31144429
    [Google Scholar]
  114. SiddigL.A. KhasawnehM.A. SamadiA. SaadehH. AbutahaN. WadaanM.A. Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents.Open Chem.20211911062107310.1515/chem‑2021‑0093
    [Google Scholar]
  115. NashaatS. HenenM.A. El-MesseryS.M. EisaH. Synthesis, state-of-the-art NMR-binding and molecular modeling study of new benzimidazole core derivatives as Pin1 inhibitors: Targeting breast cancer.Bioorg. Med. Chem.2020281111549510.1016/j.bmc.2020.115495 32307260
    [Google Scholar]
  116. OthmanD.I.A. HamdiA. TawfikS.S. ElgazarA.A. MostafaA.S. Identification of new benzimidazole-triazole hybrids as anticancer agents: multi-target recognition, in vitro and in silico studies.J. Enzyme Inhib. Med. Chem.2023381216603710.1080/14756366.2023.2166037 36651111
    [Google Scholar]
  117. AlzahraniH.A. AlamM.M. ElhenawyA.A. MalebariA.M. NazreenS. Synthesis, antiproliferative, docking and DFT studies of benzimidazole derivatives as EGFR inhibitors.J. Mol. Struct.2022125313226510.1016/j.molstruc.2021.132265
    [Google Scholar]
  118. GaikwadN.B. BansodeS. BiradarS. BanM. SrinivasN. GoduguC. YaddanapudiV.M. New 3‐(1 H ‐benzo[ d]imidazol‐2‐yl)quinolin‐2(1 H)‐one‐based triazole derivatives: Design, synthesis, and biological evaluation as antiproliferative and apoptosis‐inducing agents.Arch. Pharm. (Weinheim)202135411210007410.1002/ardp.202100074 34346099
    [Google Scholar]
  119. GünerA. PolatliE. AkkanT. BektaşH. AlbayC. Anticancer and antiangiogenesis activities of novel synthesized 2-substitutedbenzimidazoles molecules.Turk. J. Chem.20194351270128910.3906/kim‑1904‑46
    [Google Scholar]
  120. MorcossM.M. AbdelhafezE.S. Abdel-RahmanH.M. Abdel-AzizM. El-EllaA. Dalal, A Novel Benzimidazole/Hydrazone derivatives as promising anticancer lead compounds: Design, synthesis, and molecular docking study J Adv Biomed.Pharm. Sci.20202020324552
    [Google Scholar]
  121. AtmacaH. İlhanS. BatırM.B. PulatÇ.Ç. GünerA. BektaşH. Novel benzimidazole derivatives: Synthesis, in vitro cytotoxicity, apoptosis and cell cycle studies.Chem. Biol. Interact.202032710916310.1016/j.cbi.2020.109163 32534988
    [Google Scholar]
  122. AbbadeY. KislaM.M. HassanM.A.K. CelikI. DoganT.S. MutluP. Ates-AlagozZ. Synthesis, anticancer activity, and in silico modeling of Alkylsulfonyl Benzimidazole derivatives: Unveiling potent Bcl-2 inhibitors for breast cancer.ACS Omega2024989547956310.1021/acsomega.3c09411 38434899
    [Google Scholar]
  123. WuW. LiS. ChenJ. DuoT. MaC. Design, synthesis and antitumor effects of novel benzimidazole derivatives as PI3K inhibitors.Bioorg. Med. Chem. Lett.20239512946910.1016/j.bmcl.2023.129469 37689214
    [Google Scholar]
  124. AbdullahM.N. Abd HamidS. Muhamad SalhimiS. JalilN.A.S. Al-AminM. JumaliN.S. Design and synthesis of 1 sec/tert butyl-2-chloro/nitrophenylbenzimidazole derivatives: Molecular docking and in vitro evaluation against MDA-MB-231 and MCF-7 cell lines.J. Mol. Struct.2023127713482810.1016/j.molstruc.2022.134828
    [Google Scholar]
  125. PhamE.C. Thi LeT.V. TruongT.N. Design, synthesis, bio-evaluation, and in silico studies of some N-substituted 6-(chloro/nitro)-1 H -benzimidazole derivatives as antimicrobial and anticancer agents.RSC Advances20221233216212164610.1039/D2RA03491C 35975065
    [Google Scholar]
  126. HuynhT.K.C. NguyenT.H.A. NguyenT.C.T. HoangT.K.D. Synthesis and insight into the structure–activity relationships of 2-phenylbenzimidazoles as prospective anticancer agents.RSC Advances20201035205432055110.1039/D0RA02282A 35517717
    [Google Scholar]
  127. ZhangY.L. YangR. XiaL.Y. ManR.J. ChuY.C. JiangA.Q. WangZ.C. ZhuH.L. Synthesis, anticancer activity and molecular docking studies on 1,2-diarylbenzimidazole analogues as anti-tubulin agents.Bioorg. Chem.20199210321910.1016/j.bioorg.2019.103219 31476616
    [Google Scholar]
  128. MostafaA.S. GomaaR.M. ElmorsyM.A. Design and synthesis of 2‐phenyl benzimidazole derivatives as VEGFR ‐2 inhibitors with anti‐breast cancer activity.Chem. Biol. Drug Des.201993445446310.1111/cbdd.13433 30393973
    [Google Scholar]
  129. DiaconuD. AntociV. MangalagiuV. Amariucai-MantuD. MangalagiuI.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity.Sci. Rep.20221211698810.1038/s41598‑022‑21435‑6 36216981
    [Google Scholar]
  130. EdukondaluP. SireeshaR. BandaruC.M. RaoM.V.B. KalaP. RajuR.R. 2021
  131. RasalN.K. SonawaneR.B. JagtapS.V. Potential 2,4-dimethyl-1H-pyrrole-3-carboxamide bearing benzimidazole template: Design, synthesis, in vitro anticancer and in silico ADME study.Bioorg. Chem.20209710366010.1016/j.bioorg.2020.103660 32086056
    [Google Scholar]
  132. HsiehC.Y. KoP.W. ChangY.J. KapoorM. LiangY.C. ChuH-L. LinH-H. HorngJ-C. HsuM-H. Design and synthesis of benzimidazole-chalcone derivatives as potential anticancer agents.Molecules20192418325910.3390/molecules24183259 31500191
    [Google Scholar]
  133. PadhyG.K. PandaJ. BeheraA.K. Synthesis and characterization of novel N-Benzylbenzimidazole linked Pyrimidine derivatives as anticancer agents.IJPER2019532ss129s13410.5530/ijper.53.2s.57
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266336395241115092048
Loading
/content/journals/ctmc/10.2174/0115680266336395241115092048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test