Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Halogenated natural products are an important class of secondary metabolites that are widely distributed in nature. The presence of halogen atoms usually enhances the pharmacological activity of the compounds. As a result, halogenated natural products have shown promising pharmacological activities in antibacterial, antitumour, anti-inflammatory and antiplasmodial properties, providing a rich resource for the development of new drugs. To date, more than 62% of halogenated compounds are produced by marine organisms, mainly including marine sponges, algae, corals, fungi and other organisms. In addition, terrestrial microorganisms, including bacteria and fungi, also produce halogenated metabolites, which are equally important sources of halogenated natural products. The biosynthesis of halogenated natural products involves the synergistic action of multiple enzymes that efficiently and selectively bind halogen atoms to organic molecules, a process that enhances the biological activity of the compounds. Halogenated natural products have a wide range of uses as important raw materials in the agricultural, pharmaceutical and chemical industries. This paper reviews the progress of research on halogenated compounds and their biosynthesis in recent years, laying the foundation for further utilisation and development of halogenated compounds.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266344796241211214414
2025-01-21
2025-11-02
Loading full text...

Full text loading...

References

  1. García-DavisS. Leal-LópezK. Molina-TorresC.A. Vera-CabreraL. Díaz-MarreroA.R. FernándezJ.J. Carranza-RosalesP. Viveros-ValdezE. Antimycobacterial activity of laurinterol and aplysin from Laurencia johnstonii. Mar. Drugs202018628710.3390/md1806028732486286
    [Google Scholar]
  2. PaulsenM.H. EngqvistM. AusbacherD. AnderssenT. LangerM.K. HaugT. MorelloG.R. LiikanenL.E. BlenckeH.M. IsakssonJ. JuskewitzE. BayerA. StrømM.B. Amphipathic barbiturates as mimics of antimicrobial peptides and the marine natural products eusynstyelamides with activity against multi-resistant clinical isolates.J. Med. Chem.20216415113951141710.1021/acs.jmedchem.1c0073434314189
    [Google Scholar]
  3. NwezeJ.A. MbaojiF.N. HuangG. LiY. YangL. ZhangY. HuangS. PanL. YangD. Antibiotics development and the potentials of marine-derived compounds to stem the tide of multidrug-resistant pathogenic bacteria, fungi, and protozoa.Mar. Drugs202018314510.3390/md1803014532121196
    [Google Scholar]
  4. IzzatiF. WarsitoM.F. BayuA. PrasetyoputriA. AtikanaA. SukmariniL. RahmawatiS.I. PutraM.Y. Chemical diversity and biological activity of secondary metabolites isolated from Indonesian marine invertebrates.Molecules2021267189810.3390/molecules2607189833801617
    [Google Scholar]
  5. YamazakiH. Exploration of marine natural resources in Indonesia and development of efficient strategies for the production of microbial halogenated metabolites.J. Nat. Med.202276111910.1007/s11418‑021‑01557‑334415546
    [Google Scholar]
  6. ShindeP. BanerjeeP. MandhareA. Marine natural products as source of new drugs: A patent review (2015–2018).Expert Opin. Ther. Pat.201929428330910.1080/13543776.2019.159897230902039
    [Google Scholar]
  7. JeschkeP. The unique role of halogen substituents in the design of modern agrochemicals.Pest Manag. Sci.2010661102710.1002/ps.182919701961
    [Google Scholar]
  8. GiddingsL.A. NewmanD.J. Extremophilic fungi from marine environments: Underexplored sources of antitumor, anti-infective and other biologically active agents.Mar. Drugs20222016210.3390/md2001006235049917
    [Google Scholar]
  9. VaasS. ZimmermannM.O. SchollmeyerD. StahleckerJ. EngelhardtM.U. RheinganzJ. DrotleffB. OlfertM. LämmerhoferM. KramerM. StehleT. BoecklerF.M. Principles and applications of CF 2 X moieties as unconventional halogen bond donors in medicinal chemistry, chemical biology, and drug discovery.J. Med. Chem.20236615102021022510.1021/acs.jmedchem.3c0063437487500
    [Google Scholar]
  10. SunY.T. LinB. LiS.G. LiuM. ZhouY.J. XuY. HuaH.M. LinH.W. New bromopyrrole alkaloids from the marine sponge Agelas sp. Tetrahedron2017731927862792[J].10.1016/j.tet.2017.03.078
    [Google Scholar]
  11. LiuH.B. LauroG. O’ConnorR.D. LohithK. KellyM. ColinP. BifulcoG. BewleyC.A. Tulongicin, an antibacterial tri-indole alkaloid from a deep-water Topsentia sp. Sponge.J. Nat. Prod.20178092556256010.1021/acs.jnatprod.7b0045228837335
    [Google Scholar]
  12. Lorig-RoachN. Hamkins-IndikF. JohnsonT.A. TenneyK. ValerioteF.A. CrewsP. The potential of achiral sponge-derived and synthetic bromoindoles as selective cytotoxins against PANC-1 tumor cells.Tetrahedron201874221722310.1016/j.tet.2017.11.02929576661
    [Google Scholar]
  13. OluwabusolaE.T. TabudravuJ.N. Al MaqbaliK.S. AnnangF. Pérez-MorenoG. ReyesF. JasparsM. Antiparasitic activity of bromotyrosine alkaloids and new analogues isolated from the Fijian Marine Sponge Aplysinella rhax.Chem. Biodivers.20201710e200033510.1002/cbdv.20200033532697400
    [Google Scholar]
  14. ElsadekL.A. EllisE.K. SeabraG. PaulV.J. LueschH. Chlorinated enyne fatty acid amides from a marine cyanobacterium: Discovery of Taveuniamides L-M and pharmacological characterization of Taveuniamide F as a GPCR antagonist with CNR1 selectivity.Mar. Drugs20232212810.3390/md2201002838248654
    [Google Scholar]
  15. IslamM.d. MikamiM. KuriharaH. Two new algal bromophenols from Odonthalia corymbifera.Tetrahedron Lett.20175843411910.1016/j.tetlet.2017.09.044
    [Google Scholar]
  16. El-GamalA.A. WangW.L. DuhC.Y. Sulfur-containing polybromoindoles from the Formosan red alga Laurencia brongniartii. J. Nat. Prod.200568581581710.1021/np058001y15921441
    [Google Scholar]
  17. ChengW. LiX. YinF. van OfwegenL. LinW. Halogenated briarane diterpenes with acetyl migration from the Gorgonian Coral Junceella fragilis.Chem. Biodivers.2017145e170005310.1002/cbdv.20170005328337842
    [Google Scholar]
  18. AsolkarR.N. SinghA. JensenP.R. AalbersbergW. CartéB.K. FeussnerK.D. SubramaniR. DiPasqualeA. RheingoldA.L. FenicalW. Marinocyanins, cytotoxic bromo-phenazinone meroterpenoids from a marine bacterium from the streptomycete clade MAR4.Tetrahedron201773162234224110.1016/j.tet.2017.03.00328814819
    [Google Scholar]
  19. MascuchS.J. DemkoA. ViuluS. GiniginiJ. SoapiK. JensenP. KubanekJ. Antibiotic activity altered by competitive interactions between two coral reef associated bacteria.Microb. Ecol.20238541226123510.1007/s00248‑022‑02016‑635460372
    [Google Scholar]
  20. ShaalaL.A. YoussefD.T.A. AlzughaibiT.A. ElhadyS.S. Antimicrobial chlorinated 3-phenylpropanoic acid derivatives from the Red Sea Marine Actinomycete Streptomyces coelicolor LY001.Mar. Drugs202018945010.3390/md1809045032867397
    [Google Scholar]
  21. Berek-NagyP.J. TóthG. BőszeS. HorváthL.B. DarcsiA. CsíkosS. KnappD.G. KovácsG.M. BoldizsárI. The grass root endophytic fungus Flavomyces fulophazii: An abundant source of tetramic acid and chlorinated azaphilone derivatives.Phytochemistry202119011285110.1016/j.phytochem.2021.11285134217043
    [Google Scholar]
  22. GuG. HouX. ZhangJ. PanX. XuD. LaiD. ZhouL. Rosellosides A and B, two phenyloxazole glycosides from Glycyrrhiza inflata -derived fungus Rosellinia sp. Glinf021.Nat. Prod. Res.2023•••1510.1080/14786419.2023.228586737999995
    [Google Scholar]
  23. XuW.F. WuN.N. WuY.W. QiY.X. WeiM.Y. PinedaL.M. NgM.G. SpadaforaC. ZhengJ.Y. LuL. WangC.Y. GuY.C. ShaoC.L. Structure modification, antialgal, antiplasmodial, and toxic evaluations of a series of new marine-derived 14-membered resorcylic acid lactone derivatives.Mar. Life Sci. Technol.202241889710.1007/s42995‑021‑00103‑037073350
    [Google Scholar]
  24. LeiH. NiuH. SongC. FuX. LuoY. ChenS. ZhangD. Chlorinated benzophenone derivatives as chemotaxonomic markers for the genus of Pestalotiopsis.Biochem. Syst. Ecol.202091104072[J].10.1016/j.bse.2020.104072
    [Google Scholar]
  25. Thi Hoang AnhN. Mai AnhN. Thi Thu HuyenV. Thi DaoP. Thi Mai HuongD. Van CuongP. Thanh XuanD. Huu TaiB. Thi Hong MinhL. Van KiemP. Antimicrobial activity of depsidones and macrocyclic peptides isolated from marine sponge derived fungus Aspergillus nidulans M256.Chem. Biodivers.20232012e20230166010.1002/cbdv.20230166037957128
    [Google Scholar]
  26. HanY. SunC. LiC. ZhangG. ZhuT. LiD. CheQ. Antibacterial phenalenone derivatives from marine-derived fungus Pleosporales sp. HDN1811400. Tetrahedron Lett.202168152938[J].10.1016/j.tetlet.2021.152938
    [Google Scholar]
  27. ZhangZ. ZhangY. YangC. WangQ. WangH. ZhangY. DengW. NieY. LiuY. LuoX. HuangJ. WangJ. Antitumor effects of 3‐bromoascochlorin on small cell lung cancer via inhibiting MAPK pathway.Cell Biol. Int.202145112380239010.1002/cbin.1167434288235
    [Google Scholar]
  28. JiaoW.H. XuQ.H. GeG.B. ShangR.Y. ZhuH.R. LiuH.Y. CuiJ. SunF. LinH.W. Flavipesides A–C, PKS-NRPS hybrids as pancreatic lipase inhibitors from a marine sponge symbiotic fungus Aspergillus flavipes 164013.Org. Lett.20202251825182910.1021/acs.orglett.0c0015032057246
    [Google Scholar]
  29. HořínkováJ. ŠímaM. SlanařO. Pharmacokinetics of Dasatinib.Prague Med. Rep.20191202-3526310.14712/23362936.2019.1031586504
    [Google Scholar]
  30. WenS. XingW. GaoL. ZhaoS. Effect of Superparamagnetic DMSO@ γ -Fe 2 O 3 combined with carmustine on cervical cancer.J. Nanosci. Nanotechnol.202121126196620410.1166/jnn.2021.1859634229821
    [Google Scholar]
  31. MatzembackerB. FantinelD.S. RodriguesC.M. da SilvaS.P. MarinM.H.D.B. RosaD.S. da CostaM.M. SilveiraS. GirardiniL.K. Antimicrobial efficiency of bromhexine hydrochloride against endometritis-causing Escherichia coli and Trueperella pyogenes in bovines.Braz. J. Microbiol.20245522013202410.1007/s42770‑024‑01320‑238639845
    [Google Scholar]
  32. AfroogheA. BabaeiM. ShayanM. AhmadiE. Mohammad JafariR. DehpourA.R. Therapeutic potential of bromhexine for acute itch in mice: Involvement of TMPRSS2 and kynurenine pathway.Int. Immunopharmacol.202311710991910.1016/j.intimp.2023.10991936842232
    [Google Scholar]
  33. JeschkeP. Latest generation of halogen‐containing pesticides.Pest Manag. Sci.20177361053106610.1002/ps.454028145087
    [Google Scholar]
  34. CroweC. MolyneuxS. SharmaS.V. ZhangY. GkotsiD.S. ConnarisH. GossR.J.M. Halogenases: A palette of emerging opportunities for synthetic biology–synthetic chemistry and C–H functionalisation.Chem. Soc. Rev.202150179443948110.1039/D0CS01551B34368824
    [Google Scholar]
  35. ButlerA. WalkerJ.V. Marine haloperoxidases.Chem. Rev.199393519371944[J].10.1021/cr00021a014
    [Google Scholar]
  36. ZhangS. WangW. TanJ. KangF. ChenD. XuK. ZouZ. RhytidhyestersA. Rhytidhyesters A – D, 4 new chlorinated cyclopentene derivatives from the endophytic fungus Rhytidhysteron sp. BZM-9.Planta Med.202187648949710.1055/a‑1429‑339633757146
    [Google Scholar]
  37. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑46606682
    [Google Scholar]
  38. GaoZ. LiT. MaY. HuangX. GengC. ZhangX. ChenJ. Artemdubinoids A–N: Novel sesquiterpenoids with antihepatoma cytotoxicity from Artemisia dubia. Chin. J. Nat. Med.2023211290291510.1016/S1875‑5364(23)60441‑838143104
    [Google Scholar]
  39. LuoX. LinX. TaoH. WangJ. LiJ. YangB. ZhouX. LiuY. Isochromophilones A–F, cytotoxic Chloroazaphilones from the marine mangrove endophytic fungus Diaporthe sp. SCSIO 41011.J. Nat. Prod.201881493494110.1021/acs.jnatprod.7b0105329517908
    [Google Scholar]
  40. MatsuzakiK. TanakaH. OmuraS. Isochromophilones I and II, novel inhibitors against gp120-CD4 binding produced by Penicillium multicolor FO-2338. II. Structure elucidation.J. Antibiot. (Tokyo)199548770871310.7164/antibiotics.48.7087649872
    [Google Scholar]
  41. ImJ.H. ShinY.H. BaeE.S. LeeS.K. OhD.C. Jejucarbosides B–E, chlorinated cycloaromatized Enediynes, from a marine Streptomyces sp.Mar. Drugs202321740510.3390/md2107040537504936
    [Google Scholar]
  42. VichaiV. KirtikaraK. Sulforhodamine B colorimetric assay for cytotoxicity screening.Nat. Protoc.2006131112111610.1038/nprot.2006.17917406391
    [Google Scholar]
  43. NiuS. LiuD. ShaoZ. HuangJ. FanA. LinW. Tersaphilones A-E, cytotoxic chlorinated azaphilones from the deep-sea-derived fungus Phomopsis tersa FS441.Tetrahedron2021781
    [Google Scholar]
  44. WangW. YangJ. LiaoY.Y. ChengG. ChenJ. ChengX.D. QinJ.J. ShaoZ. Cytotoxic nitrogenated azaphilones from the deep sea derived fungus Chaetomium globosum MP4-S01-7.J. Nat. Prod.20208341157116610.1021/acs.jnatprod.9b0116532193933
    [Google Scholar]
  45. LiJ.X. XuQ.H. ShangR.Y. LiuQ. LuoX.C. LinH.W. JiaoW.H. Aspergetherins A‐D, new chlorinated biphenyls with anti‐MRSA activity from the marine sponge symbiotic fungus Aspergillus terreus 164018.Chem. Biodivers.2023204e20230001010.1002/cbdv.20230001036876631
    [Google Scholar]
  46. ChangY. ZhouL. HouX. ZhuT. PfeiferB.A. LiD. HeX. ZhangG. CheQ. Microbial dimerization and chlorination of isoflavones by a takla makan desert-derived Streptomyces sp. HDN154127.J. Nat. Prod.2023861344410.1021/acs.jnatprod.2c0066936535025
    [Google Scholar]
  47. NiuS. LiuD. ShaoZ. HuangJ. FanA. LinW. Chlorinated metabolites with antibacterial activities from a deep-sea-derived Spiromastix fungus.RSC Advances20211147296612966710.1039/D1RA05736G35479535
    [Google Scholar]
  48. JiangK. YanX. DengZ. LeiC. QuX. Expanding the chemical diversity of Fasamycin via genome mining and biocatalysis.J. Nat. Prod.202285494395010.1021/acs.jnatprod.1c0108935325544
    [Google Scholar]
  49. NiazS.I. KhanD. NazR. SafdarK. AbidinS.Z.U. KhanI.U. GulR. KhanW.U. KhanM.A.U. LanL. Antimicrobial and antioxidant chlorinated azaphilones from mangrove Diaporthe perseae sp. isolated from the stem of Chinese mangrove Pongamia pinnata.J. Asian Nat. Prod. Res.202123111077108410.1080/10286020.2020.183587233140651
    [Google Scholar]
  50. ZhaoM. GuoD.L. LiuG.H. FuX. GuY.C. DingL.S. ZhouY. Antifungal halogenated cyclopentenones from the endophytic fungus Saccharicola bicolor of Bergenia purpurascens by the one strain-many compounds strategy.J. Agric. Food Chem.202068118519210.1021/acs.jafc.9b0659431815467
    [Google Scholar]
  51. RenX. ChenC. YeY. XuZ. ZhaoQ. LuoX. LiuY. GuoP. Anti-inflammatory compounds from the mangrove endophytic fungus Amorosia sp. SCSIO 41026.Front. Microbiol.20221397639910.3389/fmicb.2022.97639936212882
    [Google Scholar]
  52. ChenY. LiuZ. LiuH. PanY. LiJ. LiuL. SheZ. Dichloroisocoumarins with potential anti-inflammatory activity from the mangrove endophytic fungus Ascomycota sp. CYSK-4. Mar. Drugs20181625410.3390/md1602005429425114
    [Google Scholar]
  53. El-KashefD.H. YoussefF.S. HartmannR. KnedelT.O. JaniakC. LinW. ReimcheI. TeuschN. LiuZ. ProkschP. Azaphilones from the Red Sea Fungus Aspergillus falconensis. Mar. Drugs202018420410.3390/md1804020432290208
    [Google Scholar]
  54. ItabashiT. NozawaK. MiyajiM. UdagawaS. NakajimaS. KawaiK. FalconensinsA. Falconensins A, B, C, and D, new compounds related to Azaphilone, from Emericella falconensis Chem. Pharm. Bull. (Tokyo)1992401231423144[J].10.1248/cpb.40.3142
    [Google Scholar]
  55. ItabashiT. NozawaK. NakajimaS. KawaiK. A new azaphilone, falconensin H, from Emericella falconensis.Chem. Pharm. Bull. (Tokyo)1993411120402041[J].10.1248/cpb.41.2040
    [Google Scholar]
  56. OgasawaraN. KawaiK.I. Hydrogenated azaphilones from Emericella falconensis and E. fruticulosa.Phytochemistry199847611311135[J].10.1016/S0031‑9422(98)80085‑X
    [Google Scholar]
  57. ChiodiD. IshiharaY. Magic Chloro: Profound effects of the chlorine atom in drug discovery.J. Med. Chem.20236685305533110.1021/acs.jmedchem.2c0201537014977
    [Google Scholar]
  58. CobanC. The host targeting effect of chloroquine in malaria.Curr. Opin. Immunol.2020669810710.1016/j.coi.2020.07.00532823144
    [Google Scholar]
  59. PinchmanJ.R. BogerD.L. Investigation into the functional impact of the vancomycin C-ring aryl chloride.Bioorg. Med. Chem. Lett.201323174817481910.1016/j.bmcl.2013.06.08023880541
    [Google Scholar]
  60. JenningsL.K. KhanN.M.D. KaurN. RodriguesD. MorrowC. BoydA. ThomasO.P. Brominated bisindole alkaloids from the Celtic Sea Sponge Spongosorites calcicola. Molecules20192421389010.3390/molecules2421389031671793
    [Google Scholar]
  61. WangQ. TangX.L. LuoX.C. de VoogN.J. LiP.L. LiG.Q. Aplysinopsin-type and bromotyrosine-derived alkaloids from the South China Sea Sponge Fascaplysinopsis reticulata. Sci. Rep.201991224810.1038/s41598‑019‑38696‑330783134
    [Google Scholar]
  62. KurimotoS. SeinoS. FromontJ. KobayashiJ. KubotaT. Ma’edamines C and D, New bromotyrosine alkaloids possessing a unique tetrasubstituted pyridinium moiety from an Okinawan Marine Sponge Suberea sp.Org. Lett.201921218824882610.1021/acs.orglett.9b0345731633367
    [Google Scholar]
  63. El-DemerdashA. MoriouC. ToullecJ. BessonM. SouletS. SchmittN. PetekS. LecchiniD. DebitusC. Al-MourabitA. Bioactive bromotyrosine-derived alkaloids from the Polynesian Sponge Suberea ianthelliformis. Mar. Drugs201816514610.3390/md1605014629702602
    [Google Scholar]
  64. HuangZ. LiuD. ChenS. RenJ. GaoC. LiZ. FanA. LinW. Brominated depsidones with antibacterial effects from a deep sea derived fungus Spiromastix sp.Mar. Drugs20242227810.3390/md2202007838393049
    [Google Scholar]
  65. MoriouC. LacroixD. PetekS. El-DemerdashA. TreposR. LeuT.M. FloreanC. DiederichM. HellioC. DebitusC. Al-MourabitA. Bioactive bromotyrosine derivatives from the Pacific Marine Sponge Suberea clavata (Pulitzer-Finali, 1982).Mar. Drugs202119314310.3390/md1903014333800819
    [Google Scholar]
  66. ChenM. YanY. GeH. JiaoW.H. ZhangZ. LinH.W. Pseudoceroximes A–E and pseudocerolides A–E-Bromotyrosine derivatives from a Pseudoceratina sp. Marine Sponge collected in the South China sea.Eur. J. Org. Chem.20202020172583259110.1002/ejoc.202000242
    [Google Scholar]
  67. TintillierF. MoriouC. PetekS. FauchonM. HellioC. SaulnierD. EkinsM. HooperJ.N.A. Al-MourabitA. DebitusC. Quorum sensing inhibitory and antifouling activities of new bromotyrosine metabolites from the Polynesian Sponge Pseudoceratina n. sp.Mar. Drugs202018527210.3390/md1805027232455754
    [Google Scholar]
  68. ZouG. YangW. ChenT. LiuZ. ChenY. LiT. SaidG. SunB. WangB. SheZ. Griseofulvin enantiomers and bromine-containing griseofulvin derivatives with antifungal activity produced by the mangrove endophytic fungus Nigrospora sp. QQYB1.Mar. Life Sci. Technol.20236110211410.1007/s42995‑023‑00210‑038433970
    [Google Scholar]
  69. XuD. MetzJ. HarmodyD. PetersonT. WinderP. GuzmánE.A. RussoR. McCarthyP.J. WrightA.E. WangG. Brominated and sulfur-containing angucyclines derived from a single pathway: Identification of Nocardiopsistins D–F.Org. Lett.202224437900790410.1021/acs.orglett.2c0287936269561
    [Google Scholar]
  70. KleksG. HollandD.C. KennedyE.K. AveryV.M. CarrollA.R. Antiplasmodial Alkaloids from the Australian Bryozoan Amathia lamourouxi.J. Nat. Prod.202083113435344410.1021/acs.jnatprod.0c0092933105995
    [Google Scholar]
  71. AbourehabM.A.S. KhamesA. GenedyS. MostafaS. KhaleelM.A. OmarM.M. El SisiA.M. Sesame oil-based nanostructured lipid carriers of Nicergoline, intranasal delivery system for brain targeting of synergistic cerebrovascular protection.Pharmaceutics202113458110.3390/pharmaceutics1304058133921796
    [Google Scholar]
  72. Miguel-EscuderL. Rocha-de-LossadaC. Sabater-CruzN. Sánchez-GonzálezJ.M. SpencerF. Marín-MartínezS. Batlle-FerrandoS. Carreras CastañerX. TorrasJ. Peraza-NievesJ. Use of nicergoline as adjunctive treatment of neurotrophic keratitis in routine clinical practice: A case series.Ocul. Immunol. Inflamm.2022307-81926193010.1080/09273948.2021.197621434637676
    [Google Scholar]
  73. ChenY. YangW. ZouG. WangG. KangW. YuanJ. SheZ. Cytotoxic bromine and iodine containing cytochalasins produced by the Mangrove Endophytic Fungus Phomopsis sp. QYM-13 Using the OSMAC Approach.J. Nat. Prod.20228551229123810.1021/acs.jnatprod.1c0111535473314
    [Google Scholar]
  74. GlishG.L. VachetR.W. The basics of mass spectrometry in the twenty-first century.Nat. Rev. Drug Discov.20032214015010.1038/nrd101112563305
    [Google Scholar]
  75. JannettoP.J. DansoD. Mass spectrometry.Clin. Biochem.202082110.1016/j.clinbiochem.2020.06.00332511963
    [Google Scholar]
  76. ZhuZ. MaimoneT.J. Enantioselective total synthesis of (−)-Caulamidine A.J. Am. Chem. Soc.202314526142151422010.1021/jacs.3c0449337343162
    [Google Scholar]
  77. BećK.B. GrabskaJ. HuckC.W. Biomolecular and bioanalytical applications of infrared spectroscopy: A review.Anal. Chim. Acta2020113315017710.1016/j.aca.2020.04.01532993867
    [Google Scholar]
  78. HebraT. PolletN. TouboulD. EparvierV. Combining OSMAC, metabolomic and genomic methods for the production and annotation of halogenated azaphilones and ilicicolins in termite symbiotic fungi.Sci. Rep.20221211731010.1038/s41598‑022‑22256‑336243836
    [Google Scholar]
  79. BlinK. ShawS. KloostermanA.M. Charlop-PowersZ. van WezelG.P. MedemaM.H. WeberT. antiSMASH 6.0: Improving cluster detection and comparison capabilities.Nucleic Acids Res.202149W1W29W3510.1093/nar/gkab33533978755
    [Google Scholar]
  80. GilchristC.L.M. ChooiY.H. clinker & clustermap.js: Automatic generation of gene cluster comparison figures.Bioinformatics202137162473247510.1093/bioinformatics/btab00733459763
    [Google Scholar]
  81. ArakiY. AwakawaT. MatsuzakiM. ChoR. MatsudaY. HoshinoS. ShinoharaY. YamamotoM. KidoY. InaokaD.K. NagamuneK. ItoK. AbeI. KitaK. Complete biosynthetic pathways of ascofuranone and ascochlorin in Acremonium egyptiacum.Proc. Natl. Acad. Sci. USA2019116178269827410.1073/pnas.181925411630952781
    [Google Scholar]
  82. HebraT. ElieN. PoyerS. Van ElslandeE. TouboulD. EparvierV. Dereplication, annotation, and characterization of 74 potential antimicrobial metabolites from Penicillium Sclerotiorum using t-SNE molecular networks.Metabolites202111744410.3390/metabo1107044434357338
    [Google Scholar]
  83. ChiangY.M. SzewczykE. DavidsonA.D. KellerN. OakleyB.R. WangC.C.C. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans.J. Am. Chem. Soc.200913182965297010.1021/ja808818519199437
    [Google Scholar]
  84. Prado-AlonsoL. Pérez-VictoriaI. MalmiercaM.G. MonteroI. Rioja-BlancoE. MartínJ. ReyesF. MéndezC. SalasJ.A. OlanoC. Colibrimycins, novel halogenated hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) compounds produced by Streptomyces sp. Strain CS147.Appl. Environ. Microbiol.2022881e01839-2110.1128/AEM.01839‑2134669429
    [Google Scholar]
  85. ReedK.B. BrooksS.M. WellsJ. BlakeK.J. ZhaoM. PlacidoK. d’OelsnitzS. TrivediA. GadhiyarS. AlperH.S. Author Correction: A modular and synthetic biosynthesis platform for de novo production of diverse halogenated tryptophan-derived molecules.Nat. Commun.2024151486810.1038/s41467‑024‑49314‑w38849405
    [Google Scholar]
  86. VeldmannK.H. DachwitzS. RisseJ.M. LeeJ.H. SewaldN. WendischV.F. Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum. Front. Bioeng. Biotechnol.2019721910.3389/fbioe.2019.0021931620432
    [Google Scholar]
  87. VeldmannK.H. MingesH. SewaldN. LeeJ.H. WendischV.F. Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan.J. Biotechnol.201929171610.1016/j.jbiotec.2018.12.00830579891
    [Google Scholar]
  88. LeeJ. KimJ. SongJ.E. SongW.S. KimE.J. KimY.G. JeongH.J. KimH.R. ChoiK.Y. KimB.G. Production of tyrian purple indigoid dye from tryptophan in Escherichia coli. Nat. Chem. Biol.202117110411210.1038/s41589‑020‑00684‑433139950
    [Google Scholar]
  89. SeiboldC. SchnerrH. RumpfJ. KunzendorfA. HatscherC. WageT. ErnyeiA.J. DongC. NaismithJ.H. Van PéeK-H. A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis.Biocatal. Biotransform.2006246401408[J].10.1080/10242420601033738
    [Google Scholar]
  90. YehE. GarneauS. WalshC.T. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis.Proc. Natl. Acad. Sci. USA2005102113960396510.1073/pnas.050075510215743914
    [Google Scholar]
  91. FreseM. SewaldN. Enzymatic halogenation of tryptophan on a gram scale.Angew. Chem. Int. Ed.201554129830110.1002/anie.20140856125394328
    [Google Scholar]
  92. SharmaS.V. TongX. Pubill-UlldemolinsC. CartmellC. BogosyanE.J.A. RackhamE.J. MarelliE. HamedR.B. GossR.J.M. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.Nat. Commun.20178122910.1038/s41467‑017‑00194‑328794415
    [Google Scholar]
  93. RunguphanW. QuX. O’ConnorS.E. Integrating carbon–halogen bond formation into medicinal plant metabolism.Nature2010468732246146410.1038/nature0952421048708
    [Google Scholar]
  94. RodriguezA. MartnezJ.A. FloresN. EscalanteA. GossetG. BolivarF. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.Microb. Cell Fact.201413112610.1186/s12934‑014‑0126‑z25200799
    [Google Scholar]
  95. GunsalusR.P. YanofskyC. Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor.Proc. Natl. Acad. Sci. USA198077127117712110.1073/pnas.77.12.71177012834
    [Google Scholar]
  96. ReedK.B. AlperH.S. Modular biocatalysis for polyamines.Nat. Catal.202146449450[J].10.1038/s41929‑021‑00636‑8
    [Google Scholar]
  97. BecerrilA. Pérez-VictoriaI. MartínJ.M. ReyesF. SalasJ.A. MéndezC. Biosynthesis of Largimycins in Streptomyces argillaceus involves transient β-alkylation and cryptic halogenation steps unprecedented in the Leinamycin Family.ACS Chem. Biol.20221782320233110.1021/acschembio.2c0041635830174
    [Google Scholar]
  98. WalkerP.D. WeirA.N.M. WillisC.L. CrumpM.P. Polyketide β-branching: Diversity, mechanism and selectivity.Nat. Prod. Rep.202138472375610.1039/D0NP00045K33057534
    [Google Scholar]
  99. WuJ. HothersallJ. MazzettiC. O’ConnellY. ShieldsJ.A. RahmanA.S. CoxR.J. CrosbyJ. SimpsonT.J. ThomasC.M. WillisC.L. In vivo mutational analysis of the mupirocin gene cluster reveals labile points in the biosynthetic pathway: The “leaky hosepipe” mechanism.ChemBioChem2008991500150810.1002/cbic.20080008518465759
    [Google Scholar]
  100. LiuT. HuangY. ShenB. Bifunctional acyltransferase/decarboxylase LnmK as the missing link for beta-alkylation in polyketide biosynthesis.J. Am. Chem. Soc.2009131206900690110.1021/ja901213419405532
    [Google Scholar]
  101. MattheusW. GaoL.J. HerdewijnP. LanduytB. VerhaegenJ. MasscheleinJ. VolckaertG. LavigneR. Isolation and purification of a new kalimantacin/batumin-related polyketide antibiotic and elucidation of its biosynthesis gene cluster.Chem. Biol.201017214915910.1016/j.chembiol.2010.01.01420189105
    [Google Scholar]
  102. WuJ. CooperS.M. CoxR.J. CrosbyJ. CrumpM.P. HothersallJ. SimpsonT.J. ThomasC.M. WillisC.L. Mupirocin H, a novel metabolite resulting from mutation of the HMG-CoA synthase analogue, mupH in Pseudomonas fluorescens.Chem. Commun. (Camb.)2007202040204210.1039/b700613f17713071
    [Google Scholar]
  103. BecerrilA. Pérez-VictoriaI. YeS. BrañaA.F. MartínJ. ReyesF. SalasJ.A. MéndezC. Discovery of cryptic largimycins in Streptomyces reveals novel biosynthetic avenues enriching the structural diversity of the Leinamycin family.ACS Chem. Biol.20201561541155310.1021/acschembio.0c0016032310633
    [Google Scholar]
  104. HeathcoteM.L. StauntonJ. LeadlayP.F. Role of type II thioesterases: Evidence for removal of short acyl chains produced by aberrant decarboxylation of chain extender units.Chem. Biol.20018220722010.1016/S1074‑5521(01)00002‑311251294
    [Google Scholar]
  105. LittleR.F. HertweckC. Correction: Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis.Nat. Prod. Rep.202239120620710.1039/D1NP90038B34636382
    [Google Scholar]
  106. GuiC. KalkreuterE. LauterbachL. YangD. ShenB. Enediyne natural product biosynthesis unified by a diiodotetrayne intermediate.Nat. Chem. Biol.20242091210121910.1038/s41589‑024‑01636‑y38831037
    [Google Scholar]
  107. YanX. GeH. HuangT. Hindra YangD. TengQ. CrnovčićI. LiX. RudolfJ.D. LohmanJ.R. GansemansY. ZhuX. HuangY. ZhaoL.X. JiangY. Van NieuwerburghF. RaderC. DuanY. ShenB. Strain prioritization and genome mining for enediyne natural products.MBio201676e02104-1610.1128/mBio.02104‑1627999165
    [Google Scholar]
  108. ZhangJ. Van LanenS.G. JuJ. LiuW. DorresteinP.C. LiW. KelleherN.L. ShenB. A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis.Proc. Natl. Acad. Sci. USA200810551460146510.1073/pnas.071162510518223152
    [Google Scholar]
  109. YanX. ChenJ.J. AdhikariA. TeijaroC.N. GeH. CrnovcicI. ChangC.Y. AnnavalT. YangD. RaderC. ShenB. Comparative studies of the biosynthetic gene clusters for anthraquinone-fused enediynes shedding light into the tailoring steps of tiancimycin biosynthesis.Org. Lett.201820185918592110.1021/acs.orglett.8b0258430212211
    [Google Scholar]
  110. GuiC. KalkreuterE. LiuY.C. AdhikariA. TeijaroC.N. YangD. ChangC. ShenB. Intramolecular C–C bond formation links anthraquinone and enediyne scaffolds in tiancimycin biosynthesis.J. Am. Chem. Soc.202214444204522046210.1021/jacs.2c0895736279548
    [Google Scholar]
  111. RudolfJ.D. YanX. ShenB. Genome neighborhood network reveals insights into enediyne biosynthesis and facilitates prediction and prioritization for discovery.J. Ind. Microbiol. Biotechnol.2016432-326127610.1007/s10295‑015‑1671‑026318027
    [Google Scholar]
  112. LiuW. ChristensonS.D. StandageS. ShenB. Biosynthesis of the enediyne antitumor antibiotic C-1027.Science200229755841170117310.1126/science.107211012183628
    [Google Scholar]
  113. BhardwajM. CuiZ. Daniel HankoreE. MoonschiF.H. Saghaeiannejad EsfahaniH. KalkreuterE. GuiC. YangD. PhillipsG.N. A discrete intermediate for the biosynthesis of both the enediyne core and the anthraquinone moiety of enediyne natural products.Proc. Natl. Acad. Sci. USA202312013e230362812010.1073/pnas.230362812036940345
    [Google Scholar]
  114. AvalonN.E. ReisM.A. ThornburgC.C. WilliamsonR.T. PetrasD. AronA.T. NeuhausG.F. Al-HindyM. MitrevskaJ. FerreiraL. MoraisJ. El AbieadY. GlukhovE. AlexanderK.L. VulpanoviciF.A. BertinM.J. WhitnerS. ChoiH. SpenglerG. BlinovK. AlmohammadiA.M. ShaalaL.A. KewW.R. Paša-TolićL. YoussefD.T.A. DorresteinP.C. VasconcelosV. GerwickL. McPhailK.L. GerwickW.H. Leptochelins A–C, cytotoxic metallophores produced by geographically dispersed Leptothoe strains of marine cyanobacteria.J. Am. Chem. Soc.202414627186261863810.1021/jacs.4c0539938918178
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266344796241211214414
Loading
/content/journals/ctmc/10.2174/0115680266344796241211214414
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioactivities; biosynthesis; bromides; chlorides; Halogenated natural products
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test