Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Ibuprofen, a widely used NSAID from the aryl propionic acid class, effectively relieves pain, fever, and inflammation. On prolonged use, it leads to gastrointestinal, hepatic, and renal toxicities, particularly gastrointestinal ulcers. These side effects are largely attributed to the carboxylic acid functional group common to NSAIDs. The present review highlights the different modifications done to the carboxylic group in Ibuprofen, by various researchers such as esters, amides, hydroxamic acids, and N-substituted hydrazides, along with the integration of heterocyclic moieties like triazoles, tetrazoles, and oxadiazoles. Additionally, Ibuprofen has been hybridized with other drugs and complexed with metals to enhance therapeutic effects. The different synthetic strategies that were employed were esterification, amidation, condensation, Schiff’s base formation, . These modifications have resulted in derivatives with antimicrobial, antifungal, anticancer, and other biological activities, aiming to reduce side effects while retaining or enhancing anti-inflammatory, analgesic, and antipyretic properties.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266334717241127043711
2025-01-10
2025-10-27
Loading full text...

Full text loading...

References

  1. SinghG. TriadafilopoulosG. Epidemiology of NSAID induced gastrointestinal complications.J. Rheumatol. Suppl.199956182410225536
    [Google Scholar]
  2. MohamedS.K. AlbayatiM.R. YounesS. Functionalization of ibuprofen core structure compound: synthesis of new potential chemotherapeutic agents incorporating ibuprofen substructure.Chem. Sci. J.201319
    [Google Scholar]
  3. KantorT.G. Ibuprofen.Ann. Intern. Med.197991687788210.7326/0003‑4819‑91‑6‑877391117
    [Google Scholar]
  4. RainsfordK.D. Discovery, mechanisms of action and safety of ibuprofen.Int. J. Clin. Pract. Suppl.20031351353812723739
    [Google Scholar]
  5. ArandaJ.V. ThomasR. Systematic review: intravenous Ibuprofen in preterm newborns.Semin. Perinatol.200630311412010.1053/j.semperi.2006.04.00316813969
    [Google Scholar]
  6. InjamulH. ArkenduC. SomenathB. RajB. SoniaA. KoushikM. A Review on different types of the non-steroidal anti-inflammatory drugs (NSAIDs).Int. J. Advanced Multidisciplinary Res.201639415110.22192/ijamr.2016.03.09.007
    [Google Scholar]
  7. Pedro-HernándezL. Martínez-KlimovaE. Cortez-MayaS. Mendoza-CardozoS. Ramírez-ÁpanT. Martínez-GarcíaM. Synthesis, characterization, and nanomedical applications of conjugates between resorcinarene-dendrimers and ibuprofen.Nanomaterials (Basel)20177716310.3390/nano707016328665319
    [Google Scholar]
  8. BartzelaT. TürpJ.C. MotschallE. MalthaJ.C. Medication effects on the rate of orthodontic tooth movement: A systematic literature review.Am. J. Orthod. Dentofacial Orthop.20091351162610.1016/j.ajodo.2008.08.01619121496
    [Google Scholar]
  9. BradleyR.L. EllisP.E. ThomasP. BellisH. IrelandA.J. SandyJ.R. A randomized clinical trial comparing the efficacy of ibuprofen and paracetamol in the control of orthodontic pain.Am. J. Orthod. Dentofacial Orthop.2007132451151710.1016/j.ajodo.2006.12.00917920505
    [Google Scholar]
  10. LiuZ. WangX. ZhangH. ZhangS. LiY. LiuY. PengD. Synthesis and anti-inflammatory effects of a series of novel 9-O-substituted berberine derivatives.Med. Chem. Res.201726367267910.1007/s00044‑017‑1787‑z
    [Google Scholar]
  11. GuzmanJ.D. EvangelopoulosD. GuptaA. BirchallK. MwaigwisyaS. SaxtyB. McHughT.D. GibbonsS. MalkinsonJ. BhaktaS. Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay.BMJ Open201336e00267210.1136/bmjopen‑2013‑00267223794563
    [Google Scholar]
  12. ZappavignaS. CossuA.M. GrimaldiA. BocchettiM. FerraroG.A. NicolettiG.F. FilosaR. CaragliaM. Anti-inflammatory drugs as anticancer agents.Int. J. Mol. Sci.2020217260510.3390/ijms2107260532283655
    [Google Scholar]
  13. KhwajaF. AllenJ. LynchJ. AndrewsP. DjakiewD. Ibuprofen inhibits survival of bladder cancer cells by induced expression of the p75NTR tumor suppressor protein.Cancer Res.200464176207621310.1158/0008‑5472.CAN‑03‑381415342406
    [Google Scholar]
  14. GoudaA.M. BeshrE.A. AlmalkiF.A. HalawahH.H. TajB.F. AlnafaeiA.F. AlharaziR.S. KaziW.M. AlMatrafiM.M. Arylpropionic acid-derived NSAIDs: New insights on derivatization, anticancer activity and potential mechanism of action.Bioorg. Chem.20199210322410.1016/j.bioorg.2019.10322431491568
    [Google Scholar]
  15. GharibA. Noroozi PesyanN. Vojdani FardL. RoshaniM. Synthesis of ibuprofen using silica-supported preyssler nanoparticles (H14[NaP5W30O110]/SiO2) as an eco-friendly, inexpensive, and efficient catalyst.Org. Chem. Int.201420141610.1155/2014/906801
    [Google Scholar]
  16. EvansA.M. Comparative pharmacology of S(+)-ibuprofen and (RS)-ibuprofen.Clin. Rheumatol.200120S1Suppl. 191410.1007/BF0334266211771573
    [Google Scholar]
  17. RainsfordK.D. Ibuprofen: from invention to an OTC therapeutic mainstay.Int. J. Clin. Pract.20136717892010.1111/ijcp.1205523163543
    [Google Scholar]
  18. HaM.W. PaekS.M. Recent advances in the synthesis of ibuprofen and naproxen.Molecules20212616479210.3390/molecules2616479234443379
    [Google Scholar]
  19. PandeyaS.N. A Text book of medicinal chemistry (synthesis and biochemical approach).3rd edVaranasiS.G Publishers200421104
    [Google Scholar]
  20. DhikavV. SinghS. Newer non-steroidal anti-inflammatory drugs-a review of their therapeutic potential and adverse drug reactions.J. Indian Acad Clin Med.200234332338
    [Google Scholar]
  21. KantorT.G. Ibuprofen--past, present, and future.Am. J. Med.198477112112510.1016/S0002‑9343(84)80030‑36465159
    [Google Scholar]
  22. JamesM.W. HawkeyC.J. Assessment of non‐steroidal anti‐inflammatory drug (NSAID) damage in the human gastrointestinal tract.Br. J. Clin. Pharmacol.200356214615510.1046/j.1365‑2125.2003.01934.x12895187
    [Google Scholar]
  23. DerleD.V. GujarK.N. SagarB.S.H. Adverse effects associated with the use of nonsteroidal antiinflammatory drugs: An overview.Indian J. Pharm. Sci.200668440941410.4103/0250‑474X.27809
    [Google Scholar]
  24. MurrayM.D. BraterD.C. TierneyW.M. HuiS.L. McDonaldC.J. Ibuprofen-associated renal impairment in a large general internal medicine practice.Am. J. Med. Sci.1990299422222910.1097/00000441‑199004000‑000022321664
    [Google Scholar]
  25. JonesR. RubinG. BerenbaumF. ScheimanJ. Gastrointestinal and cardiovascular risks of nonsteroidal anti-inflammatory drugs.Am. J. Med.2008121646447410.1016/j.amjmed.2008.01.04518501223
    [Google Scholar]
  26. MeekI.L. Van de LaarM.A. E VonkemanH. HaraldE.V. Non-steroidal anti-inflammatory drugs: an overview of cardiovascular risks.Pharmaceuticals (Basel)2010372146216210.3390/ph307214627713346
    [Google Scholar]
  27. BittencourtJ.A.H.M. NetoM.F.A. LacerdaP.S. BittencourtR.C.V.S. SilvaR.C. LobatoC.C. SilvaL.B. LeiteF.H.A. ZulianiJ.P. RosaJ.M.C. BorgesR.S. SantosC.B.R. In silico evaluation of ibuprofen and two benzoylpropionic acid derivatives with potential anti-inflammatory activity.Molecules2019248147610.3390/molecules2408147630991684
    [Google Scholar]
  28. LippincottW. WilkinsP Foye’s Principles of medicinal chemistry4th ed.Philadelphia: Lippincott Williams & Wilkins.2008771773
    [Google Scholar]
  29. BushraR. AslamN. An overview of clinical pharmacology of Ibuprofen.Oman Med. J.201025315516110.5001/omj.2010.4922043330
    [Google Scholar]
  30. BundgaardH. NielsenN.M. Glycolamide esters as a novel biolabile prodrug type for non-steroidal anti-inflammatory carboxylic acid drugs.Int. J. Pharm.1988431-210111010.1016/0378‑5173(88)90064‑6
    [Google Scholar]
  31. ShanbhagV.R. Michael CriderA. GokhaleR. HarpalaniA. DickR.M. Ester and amide prodrugs of ibuprofen and naproxen: synthesis, anti-inflammatory activity, and gastrointestinal toxicity.J. Pharm. Sci.199281214915410.1002/jps.26008102101545354
    [Google Scholar]
  32. LolliM.L. CenaC. MedanaC. LazzaratoL. MoriniG. CoruzziG. ManariniS. FrutteroR. GascoA. A new class of ibuprofen derivatives with reduced gastrotoxicity.J. Med. Chem.200144213463346810.1021/jm010879911585451
    [Google Scholar]
  33. WilliamsJ.L. BorgoS. HasanI. CastilloE. TraganosF. RigasB. Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs: implications for colon cancer chemoprevention.Cancer Res.20016183285328911309281
    [Google Scholar]
  34. KhanM.S.Y. AkhterM. Synthesis, pharmacological activity and hydrolytic behavior of glyceride prodrugs of ibuprofen.Eur. J. Med. Chem.200540437137610.1016/j.ejmech.2004.11.00915804536
    [Google Scholar]
  35. XieG. SunY. NieT. MackenzieG.G. HuangL. KopelovichL. KomninouD. RigasB. Phospho-ibuprofen (MDC-917) is a novel agent against colon cancer: efficacy, metabolism, and pharmacokinetics in mouse models.J. Pharmacol. Exp. Ther.2011337387688610.1124/jpet.111.18022421422165
    [Google Scholar]
  36. GuptaR. SinghM. AjmalM. SinghV. BishtA. Synthesis of 2- (4-sec-butyl-phenyl) -propionic acid- pyrrolidin-2-ylcarbamoyl methyl ester derivatives as anti-inflammatory potential.IJRPC201113342346
    [Google Scholar]
  37. HuangZ. VelázquezC.A. AbdellatifK.R.A. ChowdhuryM.A. ReiszJ.A. DuMondJ.F. KingS.B. KnausE.E. Ethanesulfohydroxamic acid ester prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs): synthesis, nitric oxide and nitroxyl release, cyclooxygenase inhibition, anti-inflammatory, and ulcerogenicity index studies.J. Med. Chem.20115451356136410.1021/jm101403g21280601
    [Google Scholar]
  38. HegazyG.H. AliH.I. Design, synthesis, biological evaluation, and comparative Cox1 and Cox2 docking of p-substituted benzylidenamino phenyl esters of ibuprofenic and mefenamic acids.Bioorg. Med. Chem.20122031259127010.1016/j.bmc.2011.12.03022225915
    [Google Scholar]
  39. PerkovićI. DžolićZ.R. ZorcB. A convenient synthesis of new NSAID esters containing amino acid, urea and amide moieties.Acta Pharm.201363340941810.2478/acph‑2013‑002324152900
    [Google Scholar]
  40. AmirM. AkhterM.W. AlamO. Synthesis, characterization, and biological evaluation of furoxan coupled ibuprofen derivatives as anti-inflammatory agents.Monatsh. Chem.2016147349350810.1007/s00706‑015‑1557‑x
    [Google Scholar]
  41. González-TrujanoM.E. Uribe-FigueroaG. Hidalgo-FigueroaS. MartínezA.L. Déciga-CamposM. Navarrete-VazquezG. Synthesis and antinociceptive evaluation of bioisosteres and hybrids of naproxen, ibuprofen and paracetamol.Biomed. Pharmacother.201810155356210.1016/j.biopha.2018.02.12229514128
    [Google Scholar]
  42. HassanG.S. HegazyG.H. IbrahimN.M. FahimS.H. New ibuprofen derivatives as H2S and NO donors as safer anti-inflammatory agents.Future Med. Chem.201911233029304510.4155/fmc‑2018‑046731680552
    [Google Scholar]
  43. KłobuckiM. UrbaniakA. GrudniewskaA. KocbachB. MaciejewskaG. KiełbowiczG. UgorskiM. WawrzeńczykC. Syntheses and cytotoxicity of phosphatidylcholines containing ibuprofen or naproxen moieties.Sci. Rep.20199122010.1038/s41598‑018‑36571‑130659229
    [Google Scholar]
  44. GyöngyösiA. VernerV. BereczkiI. Kiss-SzikszaiA. ZilinyiR. TósakiÁ. BakI. BorbásA. HerczeghP. LekliI. Basic pharmacological characterization of EV-34, a new H2S-releasing ibuprofen derivative.Molecules202126359910.3390/molecules2603059933498831
    [Google Scholar]
  45. GhanimA.M. GirgisA.S. KariukiB.M. SamirN. SaidM.F. AbdelnaserA. NasrS. BekheitM.S. AbdelhameedM.F. AlmalkiA.J. IbrahimT.S. PandaS.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates.Bioorg. Chem.202211910555710.1016/j.bioorg.2021.10555734952242
    [Google Scholar]
  46. Teresa CoccoM. CongiuC. OnnisV. MorelliM. CauliO. Synthesis of ibuprofen heterocyclic amides and investigation of their analgesic and toxicological properties.Eur. J. Med. Chem.200338551351810.1016/S0223‑5234(03)00074‑612767601
    [Google Scholar]
  47. AmirM. KumarS. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of 3,5-dimethyl pyrazoles, 3-methyl pyrazol-5-ones and 3,5-disubstituted pyrazolines.Indian J. of Chem. Sect. B. Org. Med. Chem2005441225322537
    [Google Scholar]
  48. YadavM.R. NimekarD.M. AnanthakrishnanA. BrahmkshatriyaP.S. ShirudeS.T. GiridharR. ParmarA. BalaramanR. Synthesis of new chemical entities from paracetamol and NSAIDs with improved pharmacodynamic profile.Bioorg. Med. Chem.200614248701870610.1016/j.bmc.2006.08.01716962330
    [Google Scholar]
  49. ChatterjeeN.R. KulkarniA.A. GhulekarS.P. Synthesis, pharmacological activity and hydrolytic behavior of ethylenediamine and benzathine conjugates of ibuprofen.Eur. J. Med. Chem.200843122819282310.1016/j.ejmech.2007.10.02818068271
    [Google Scholar]
  50. SiskouI.C. RekkaE.A. KourounakisA.P. ChrysselisM.C. TsiakitzisK. KourounakisP.N. Design and study of some novel ibuprofen derivatives with potential nootropic and neuroprotective properties.Bioorg. Med. Chem.200715295196110.1016/j.bmc.2006.10.05617126019
    [Google Scholar]
  51. WittineK. BenciK. RajićZ. ZorcB. KraljM. MarjanovićM. PavelićK. De ClercqE. AndreiG. SnoeckR. BalzariniJ. MintasM. The novel phosphoramidate derivatives of NSAID 3-hydroxypropylamides: Synthesis, cytostatic and antiviral activity evaluations.Eur. J. Med. Chem.200944114315110.1016/j.ejmech.2008.03.03718485540
    [Google Scholar]
  52. MehtaN. AggarwalS. TharejaS. MallaP. BhardwajT.R. KumarM. Synthesis, pharmacological and toxicological evaluation of amide derivatives of ibuprofen.Int. J. Chemtech Res.201021233238
    [Google Scholar]
  53. RasheedA. KumarC.K.A. MishraA. Synthesis, hydrolysis studies and phamacodynamic profiles of amide prodrugs of dexibuprofen with amino acids.J. Enzyme Inhib. Med. Chem.201126568869510.3109/14756366.2010.54832721250819
    [Google Scholar]
  54. SadekB.S. HamruoniA.M. AdemA. Anti-inflammatory agents of the carbamoylmethyl ester class: synthesis, characterization, and pharmacological evaluation.J. Inflamm. Res.201361354310.2147/JIR.S3974323576876
    [Google Scholar]
  55. AbdullaI.Q. Synthesis and antimicrobial activity of Ibuprofen derivatives.Nat. Sci. (Irvine Calif.)201462475310.4236/ns.2014.62008
    [Google Scholar]
  56. ChengK.W. NieT. OuyangN. AlstonN. WongC.C. MattheolabakisG. PapayannisI. HuangL. RigasB. A novel ibuprofen derivative with anti-lung cancer properties: Synthesis, formulation, pharmacokinetic and efficacy studies.Int. J. Pharm.20144771-223624310.1016/j.ijpharm.2014.10.01925311177
    [Google Scholar]
  57. IbrahimT.M. KreetM.H.Y. Synthesis of new biologically active 4-isobutylhydrotropoyl (Ibuprofen) derivatives.OCAIJ2014109337350
    [Google Scholar]
  58. WangJ. DaiD. QiuQ. DengX. LinH. QianH. HuangW. Evaluation of anti-inflammatory and analgesic effects of synthesized derivatives of ibuprofen.Chem. Biol. Drug Des.201585562363210.1111/cbdd.1231624618048
    [Google Scholar]
  59. MekhlafiS.A. AlkadiH. El-sayedM.K. Synthesis and anti-inflammatory activity of novel Ketoprofen and Ibuprofen derivatives.J. Chem. Pharm. Res.201572503510
    [Google Scholar]
  60. KiranS. KamalS. AslamN. HussainA.I. GhaffarA. BibiI. KamalA. MunirB. SultanN. Synthesis of ibuprofen derivatives with improved antibacterial activity.Asian J. Chem.20152793259326210.14233/ajchem.2015.18498
    [Google Scholar]
  61. GoyalA. SahewalJ. JainN. JainS. Synthesis and pharmacological evaluation of some.Pharm. Lett.201681275280
    [Google Scholar]
  62. YanL. PanM. FuM. WangJ. HuangW. QianH. Design, synthesis and biological evaluation of novel analgesic agents targeting both cyclooxygenase and TRPV1.Bioorg. Med. Chem.201624484985710.1016/j.bmc.2016.01.00926795113
    [Google Scholar]
  63. IbrahimA. SadikA. DoaA. Synthesis and anti-inflammatory activity of novel aspirin and ibuprofen amide derivatives.J. Chem. Pharm. Res.201683307313
    [Google Scholar]
  64. Theodosis-NobelosP. KourtiM. GavalasA. RekkaE.A. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity.Bioorg. Med. Chem. Lett.201626391091310.1016/j.bmcl.2015.12.06326750253
    [Google Scholar]
  65. SakrA. RezqS. IbrahimS.M. SolimanE. BarakaM.M. RomeroD.G. KothayerH. Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: anti-inflammatory, analgesic and anticancer activities.J. Enzyme Inhib. Med. Chem.20213611810182810.1080/14756366.2021.195691234338135
    [Google Scholar]
  66. SelimA. El-HagF. AttiaR. ShedidS. El-GazzarM. Synthesis, characterization, docking studies and anti-inflammatory activity of new safe NSAIDs agent based on Ibuprofen phenylalanine derivatives.Egypt. J. Chem.202265816317610.21608/ejchem.2022.137847.6069
    [Google Scholar]
  67. RajićZ. PerkovićI. ButulaI. ZorcB. Hadjipavlou-LitinaD. PontikiE. PepeljnjakS. KosalecI. Synthesis and biological evaluation of O -methyl and O -ethyl NSAID hydroxamic acids.J. Enzyme Inhib. Med. Chem.20092451179118710.1080/1475636090277912819772490
    [Google Scholar]
  68. PavelićS.K. SedićM. PoznićM. RajićZ. ZorcB. PavelićK. BalzariniJ. MintasM. Evaluation of in vitro biological activity of O-alkylated hydroxamic derivatives of some nonsteroidal anti-inflammatory drugs.Anticancer Res.201030103987399421036712
    [Google Scholar]
  69. RajasekaranA. SivakumarP. JayakarB. Synthesis and evaluation of anti-inflammatory activity of Ibuprofen analogs.Indian J. Pharm. Sci.1999613158161
    [Google Scholar]
  70. KansaraS.G. PanditR.D. BhaweV.G. Synthesis of some new Ibuprofen derivatives containing chief heterocyclic moiety like s-Triazine and evaluated for their analgesic activity.Rasayan J. Chem.200923699705
    [Google Scholar]
  71. PerkovićI. ButulaI. KraljM. Martin-KleinerI. BalzariniJ. Hadjipavlou-LitinaD. KatsoriA.M. ZorcB. Novel NSAID 1-acyl-4-cycloalkyl/arylsemicarbazides and 1-acyl-5-benzyloxy/hydroxy carbamoylcarbazides as potential anticancer agents and antioxidants.Eur. J. Med. Chem.20125122723810.1016/j.ejmech.2012.02.04622405290
    [Google Scholar]
  72. RakeshK.S. JagadishS. VinayakaA.C. HemshekharM. PaulM. ThusharaR.M. SundaramM.S. SwaroopT.R. MohanC.D. Basappa SadashivaM.P. KemparajuK. GirishK.S. RangappaK.S. A new ibuprofen derivative inhibits platelet aggregation and ROS mediated platelet apoptosis.PLoS One201499e10718210.1371/journal.pone.010718225238069
    [Google Scholar]
  73. SerajF. KanwalK.K.M. KhanA. AliM. KhalilR. Biology-oriented drug synthesis (BIODS), in vitro urease inhibitory activity, and in silico studies on ibuprofen derivatives.Mol. Divers.202011431965436
    [Google Scholar]
  74. Uzgören BaranA. Comparative study of microwave-assisted and conventional synthesis of ibuprofen-based acyl hydrazone derivatives.Turk. J. Chem.20133792793510.3906/kim‑1302‑11
    [Google Scholar]
  75. VasincuI. ApotrosoaeiM. PanzariuA.T. BuronF. RoutierS. ProfireL. Synthesis and biological evaluation of new 1,3-thiazolidine-4-one derivatives of 2-(4-isobutylphenyl)propionic acid.Molecules2014199150051502510.3390/molecules19091500525237755
    [Google Scholar]
  76. Gundogdu-HizliatesC. AlyurukH. GocmenturkM. ErgunY. CavasL. Synthesis of new ibuprofen derivatives with their in silico and in vitro cyclooxygenase-2 inhibitions.Bioorg. Chem.20145281510.1016/j.bioorg.2013.10.00224270352
    [Google Scholar]
  77. GökoğluE. YılmazE. GökoğluE. BaranA.U. Study of binding properties between two new ibuprofen and naproxen-based acyl hydrazone derivatives and trypsin.J. Fluoresc.201626111311910.1007/s10895‑015‑1690‑226482593
    [Google Scholar]
  78. ThejeelK.A. Synthesis and characterization of some new ibuprofen derivatives and study antibacterial activity.Int. J. Drug Delivery Technology202010345445810.25258/ijddt.10.3.26
    [Google Scholar]
  79. El-NassanH.B. HalimP.A. El-DashY.S. Design and synthesis of novel ibuprofen derivatives as selective cox-2 inhibitors and potential anti-inflammatory agents: evaluation of PGE2, TNF-α, IL-6 and histopathological study.Med. Chem.202218442744310.2174/157340641766621080916263634370644
    [Google Scholar]
  80. ShahN.Z. AvulaS.K. KarimN. IslamN.U. El-Saber BatihaG. MuhsinahA.B. KhanA. Al-HarrasiA. Bio-oriented synthesis of ibuprofen derivatives for enhancement efficacy in post-operative and chronic inflammatory pain models.RSC Advances20231318125181252810.1039/D3RA01385E37091596
    [Google Scholar]
  81. TozkoparanB. GökhanN. AktayG. YeşiladaE. ErtanM. 6-Benzylidenethiazolo[3,2-b]-1,2,4-triazole-5(6H)-onessubstituted with ibuprofen: synthesis, characterizationand evaluation of anti-inflammatory activity.Eur. J. Med. Chem.2000357-874375010.1016/S0223‑5234(00)00157‑410960191
    [Google Scholar]
  82. AmirM. KumarS. Synthesis and evaluation of anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation properties of ibuprofen derivatives.Acta Pharm.2007571314510.2478/v10007‑007‑0003‑y19839405
    [Google Scholar]
  83. AmirM. KumarH. JavedS.A. Condensed bridgehead nitrogen heterocyclic system: Synthesis and pharmacological activities of 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives of ibuprofen and biphenyl-4-yloxy acetic acid.Eur. J. Med. Chem.200843102056206610.1016/j.ejmech.2007.09.02518023930
    [Google Scholar]
  84. SujithK.V. RaoJ.N. ShettyP. KallurayaB. Regioselective reaction: Synthesis and pharmacological study of Mannich bases containing ibuprofen moiety.Eur. J. Med. Chem.20094493697370210.1016/j.ejmech.2009.03.04419427713
    [Google Scholar]
  85. IbrahimK.S. JesimaB. Synthesis and antimicrobial activity of some benzimidazole and 2-methylbenzimidazole derivatives.Int. J. Pharm. Sci. Res.201122298302
    [Google Scholar]
  86. SujithK.V. KallurayaB. AdhikariA. RavikumarJ. Microwave mediated synthesis of non-carboxylic analogues of ibuprofen with improved pharmacological activity.Chin. Chem. Lett.201122550851010.1016/j.cclet.2010.12.013
    [Google Scholar]
  87. Uzgören-BaranA. TelB.C. SarıgölD. ÖztürkE.İ. Kazkayasıİ. OkayG. ErtanM. TozkoparanB. Thiazolo[3,2-b]-1,2,4-triazole-5(6H)-one substituted with ibuprofen: Novel non-steroidal anti-inflammatory agents with favorable gastrointestinal tolerance.Eur. J. Med. Chem.20125739840610.1016/j.ejmech.2012.07.00922840494
    [Google Scholar]
  88. NeerajaP. SrinivasS. MukkantiK. DubeyP.K. PalS. 1H-1,2,3-Triazolyl-substituted 1,3,4-oxadiazole derivatives containing structural features of ibuprofen/naproxen: Their synthesis and antibacterial evaluation.Bioorg. Med. Chem. Lett.201626215212521710.1016/j.bmcl.2016.09.05927727124
    [Google Scholar]
  89. MahdiM.F. JihadM.I. Synthesis, characterization and anti-inflammatory activity assessment of new ibuprofen analogues containing imidazole-4- one derivatives.JGPT2018103134
    [Google Scholar]
  90. Abd-ElhakamH. NazmyM. El-DeebT. Abd-EllahH. ShomanM. BeshrE. Abdel-AzizM. Synthesized oxime and ketone derivatives of ibuprofen have higher hepatic safety profile and hepatoprotective potential against acute CCl4 - induced hepatotoxicity in rats.J. Adv. Biomedi. Pharmac. Sci.20192418519010.21608/jabps.2019.15584.1053
    [Google Scholar]
  91. MustafaQ. AlderawyL.A. Mustafa Q. Alderawy Leaqaa A. Alrubaie Falah Hassan Sheri Basim Jasim Hameed Alrubaie, Falah, H.S.; Basim, J.H. Synthesis, characterization and pharmacological activity of ibuprofen acyl hydrazones and their conversion into 1,3,4-oxadiazoline derivatives.Int. J. Res. Pharma. Sci.20191043626363510.26452/ijrps.v10i4.1744
    [Google Scholar]
  92. RayamP. PolkamN. KummariB. BanothuV. GandamallaD. YelluN.R. AnireddyJ.S. Synthesis and biological evaluation of new ibuprofen-1,3,4-oxadiazole-1,2,3-triazole hybrids.J. Heterocycl. Chem.201956129630510.1002/jhet.3409
    [Google Scholar]
  93. Ali AlderawyM.Q. RaheemA.L.A. SheriF.H. Synthesis, characterization of ibuprofen n-acyl-1,3,4 oxadiazole derivatives and anticancer activity against MCF-7 cell line.Systematic Reviews in Pharmacy.2020114681689
    [Google Scholar]
  94. MahmoodS. KhanS.G. RasulA. ChristensenJ.B. AbourehabM.A.S. Ultrasound assisted synthesis and in silico modelling of 1,2,4-triazole coupled acetamide derivatives of 2-(4-isobutyl phenyl)propanoic acid as potential anticancer agents.Molecules20222722798410.3390/molecules2722798436432091
    [Google Scholar]
  95. RedasaniV.K. BariS.B. Synthesis and evaluation of mutual prodrugs of ibuprofen with menthol, thymol and eugenol.Eur. J. Med. Chem.20125613413810.1016/j.ejmech.2012.08.03022982120
    [Google Scholar]
  96. Al-azzawiA.M. AlwanS.M. SaudM.D. ShakerA.G. Dexamethasone / Ibuprofen prodrug synthesis and preliminary kinetic study.Nat. Prod. Chem. Res.20131227
    [Google Scholar]
  97. WuX-Y. LiX-C. MiJ. YouJ. HaiL. Design, synthesis and preliminary biological evaluation of brain targeting l-ascorbic acid prodrugs of ibuprofen.Chin. Chem. Lett.201324211711910.1016/j.cclet.2013.01.022
    [Google Scholar]
  98. XinG. WangY. GuoX. HuangB. DuD. HeS. ZhangR. XingZ. ZhaoH. ChenQ. HuangW. HeY. Synthesis of diosgenin-ibuprofen derivatives and their activities against insulin-dependent diabetes mellitus.Chem. Pharm. Bull.201361553253810.1248/cpb.c12‑0102423649196
    [Google Scholar]
  99. KadhimM.J. GhanimH.T. Synthesis and identification 1-3 diazepine from Ibuprofen.IJSTR2014310213217
    [Google Scholar]
  100. ZhaoY. QuB. WuX. LiX. LiuQ. JinX. GuoL. HaiL. WuY. Design, synthesis and biological evaluation of brain targeting l-ascorbic acid prodrugs of ibuprofen with “lock-in” function.Eur. J. Med. Chem.20148231432310.1016/j.ejmech.2014.05.07224927052
    [Google Scholar]
  101. ZacchignaM. CateniF. DrioliS. ProcidaG. AltieriT. A new bi-functional derivative of polyethylene glycol as molecular carrier for eugenol and ibuprofen.JPDD20152218
    [Google Scholar]
  102. DatarP. TejashreeS. Design, synthesis and stability studies of mutual prodrugs of NSAID’s.ChemInform20151118
    [Google Scholar]
  103. LiuW. LiY. YueY. ZhangK. ChenQ. WangH. LuY. HuangM.T. ZhengX. DuZ. Synthesis and biological evaluation of curcumin derivatives containing NSAIDs for their anti-inflammatory activity.Bioorg. Med. Chem. Lett.201525153044305110.1016/j.bmcl.2015.04.07726048786
    [Google Scholar]
  104. OmarT.N.A. MahdiM.F. Al-MudhafarM.M.J. ZainabBassim Synthesize of new ibuprofen and naproxen sulphonamide conjugate with anti-inflammatory study and molecular docking study.Int. J. Pharmaceutical Quality Assurance20189210210810.25258/ijpqa.v9i2.13630
    [Google Scholar]
  105. AlwashA.H. MahdiA.M. Al-karagullyH.J. Synthesis, characterization, and antimicrobial evaluation of new n-phenylcinnamamide derivatives linked to aspirin and ibuprofen.Asian J. Pharm. Clin. Res.2018111044344610.22159/ajpcr.2018.v11i10.26937
    [Google Scholar]
  106. Abu AliH. OmarS.N. DarawshehM.D. FaresH. Synthesis, characterization and antimicrobial activity of zinc(II) ibuprofen complexes with nitrogen-based ligands.J. Coord. Chem.20166961110112210.1080/00958972.2016.1149819
    [Google Scholar]
  107. CurciA. DenoraN. IacobazziR.M. DitarantoN. Synthesis, characterization, and in vitro cytotoxicity of a Kiteplatin-Ibuprofen Pt(IV) prodrug.Inorganica Chim Acta.2017IV12910.1016/j.ica.2017.07.019
    [Google Scholar]
  108. MumtazA. ArshadJ. SaeedA. NawazM.A.H. IqbalJ. Synthesis, characterization and urease inhibition studies of transition metal complexes of thioureas bearing ibuprofen moiety.J. Chil. Chem. Soc.20186323934394010.4067/s0717‑97072018000203934
    [Google Scholar]
  109. RomeroC.M.M. PinedaU.K. PérezD.J. ObledoB.F. FloresP.A GómezS. Z Organotin (IV) compounds derived from ibuprofen and cinnamic acids, an alternative into design of anti-inflammatory by the cyclooxygenases (COX-1 and COX-2) pathway.J. Organomet. Chem.2018862Iv5870
    [Google Scholar]
  110. MercyO.B. IkechukwuP.E. Synthesis, characterization, antimalarial and antimicrobial activities of mixed ibuprofen-pyrimethamine m(ii) complexes. [M = Cd, Co, Zn, Mn].J. Nat. Appl. Sci2019223850
    [Google Scholar]
  111. TabriziL. RomanovaJ. Antiproliferative activity of gold(i) n-heterocyclic carbene and triphenylphosphine complexes with ibuprofen derivatives as effective enzyme inhibitors.Appl. Organomet. Chem.2020345e561810.1002/aoc.5618
    [Google Scholar]
  112. AbbasA.M. AboelmagdA. KishkS.M. NasrallahH.H. BoydW.C. KalilH. OrabiA.S. A novel ibuprofen derivative and its complexes: physicochemical characterization, dft modeling, docking, in vitro anti-inflammatory studies, and DNA interaction.Molecules20222721754010.3390/molecules2721754036364366
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266334717241127043711
Loading
/content/journals/ctmc/10.2174/0115680266334717241127043711
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Analgesic; COX inhibitors; Gastric ulcers; Ibuprofen; Inflammation; NSAIDs; Pain
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test